1
|
Li X, Wang W, Ding X. Pan-cancer investigation of psoriasis-related BUB1B gene: genetical alteration and oncogenic immunology. Sci Rep 2023; 13:6058. [PMID: 37055476 PMCID: PMC10102166 DOI: 10.1038/s41598-023-33174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/08/2023] [Indexed: 04/15/2023] Open
Abstract
Unknown factors contribute to psoriasis' hyperproliferative, chronic, inflammatory, and arthritic features. Psoriasis patients have been linked to an increased risk of cancer, though the underlying genetics remain unknown. Since our prior research indicated that BUB1B contributes to the development of psoriasis, we designed and carried out this investigation using bioinformatics analysis. Using the TCGA database, we investigated the oncogenic function of BUB1B in 33 tumor types. To sum up, our work sheds light on BUB1B's function in pan-cancer from various perspectives, including its pertinent signaling pathways, mutation locations, and connection to immune cell infiltration. BUB1B was shown to have a non-negligible role in pan-cancer, which is connected to immunology, cancer stemness, and genetic alterations in a variety of cancer types. BUB1B is highly expressed in a variety of cancers and may serve as a prognostic marker. This study is anticipated to offer molecular details on the elevated cancer risk that psoriasis sufferers experience.
Collapse
Affiliation(s)
- Xiaobin Li
- Department of Orthopedic Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwen Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaoxia Ding
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Identification of Novel Hub Genes Associated with Psoriasis Using Integrated Bioinformatics Analysis. Int J Mol Sci 2022; 23:ijms232315286. [PMID: 36499614 PMCID: PMC9737295 DOI: 10.3390/ijms232315286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, prolonged, and recurrent inflammatory skin disease and the current therapeutics can only alleviate the symptoms rather than cure it completely. Therefore, we aimed to identify the molecular signatures and specific biomarkers of psoriasis to provide novel clues for psoriasis and targeted therapy. In the present study, the Gene Expression Omnibus (GEO) database was used to retrieve three microarray datasets (GSE166388, GSE50790 and GSE42632) and to explore the differentially expressed genes (DEGs) in psoriasis using the Affy package in R software. The gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment were utilized to determine the common DEGs and their capabilities. The STRING database was used to develop DEG-encoded proteins and a protein-protein interaction network (PPI) and the Cytohubba plugin to classify hub genes. Using the NetworkAnalyst platform, we detected transcription factors (TFs), microRNAs and drug candidates interacting with hub genes. In addition, the expression levels of hub genes in HaCaT cells were detected by western blot. We screened the up- and downregulated DEGs from the transcriptome microarrays of corresponding psoriasis patients. Functional enrichment of DEGs in psoriasis was mainly associated with positive regulation of leukocyte cell-cell adhesion and T cell activation, cytokine binding, cytokine activity and the Wnt signaling pathway. Through further data processing, we obtained 57 intersecting genes in the three datasets and probed them in STRING to determine the interaction of their expressed proteins and we obtained the critical 10 hub genes in the Cytohubba plugin, including TOP2A, CDKN3, MCM10, PBK, HMMR, CEP55, ASPM, KIAA0101, ESC02, and IL-1β. Using these hub genes as targets, we obtained 35 TFs and 213 miRNAs that may regulate these genes and 33 potential therapeutic agents for psoriasis. Furthermore, the expression levels of TOP2A, MCM10, PBK, ASPM, KIAA0101 and IL-1β were observably increased in HaCaT cells. In conclusion, we identified potential biomarkers, risk factors and drugs for psoriasis.
Collapse
|
3
|
Wang Y, Zang J, Liu C, Yan Z, Shi D. Interleukin-17 Links Inflammatory Cross-Talks Between Comorbid Psoriasis and Atherosclerosis. Front Immunol 2022; 13:835671. [PMID: 35514987 PMCID: PMC9063001 DOI: 10.3389/fimmu.2022.835671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a chronic, systemic, immune-mediated inflammatory disorder that is associated with a significantly increased risk of cardiovascular disease (CVD). Studies have shown that psoriasis often coexists with atherosclerosis, a chronic inflammatory disease of large and medium-sized arteries, which is a major cause of CVD. Although the molecular mechanisms underlying this comorbidity are not fully understood, clinical studies have shown that when interleukin (IL)-17A inhibitors effectively improve psoriatic lesions, atherosclerotic symptoms are also ameliorated in patients with both psoriasis and atherosclerosis. Also, IL-17A levels are highly expressed in the psoriatic lesions and atherosclerotic plaques. These clinical observations implicit that IL-17A could be a crucial link for psoriasis and atherosclerosis and IL-17A-induced inflammatory responses are the major contribution to the pathogenesis of comorbid psoriasis and atherosclerosis. In this review, the current literature related to epidemiology, genetic predisposition, and inflammatory mechanisms of comorbidity of psoriasis and atherosclerosis is summarized. We focus on the immunopathological effects of IL-17A in both diseases. The goal of this review is to provide the theoretical base for future preventing or treating psoriasis patients with atherosclerosis comorbidity. The current evidence support the notion that treatments targeting IL-17 seem to be hold some promise to reduce cardiovascular risk in patients with psoriasis.
Collapse
Affiliation(s)
- Yan Wang
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jinxin Zang
- Department of Neurology, Jining No.1 People's Hospital, Jining, China
| | - Chen Liu
- Laboratory of Medical Mycology, Jining No.1 People's Hospital, Jining, China
| | - Zhongrui Yan
- Department of Neurology, Jining No.1 People's Hospital, Jining, China
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No.1 People's Hospital, Jining, China.,Department of Dermatology, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
4
|
Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated Perspectives on Keratinocytes and Psoriasis: Keratinocytes are More Than Innocent Bystanders. PSORIASIS (AUCKLAND, N.Z.) 2022; 12:73-87. [PMID: 35529056 PMCID: PMC9075909 DOI: 10.2147/ptt.s327310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
Psoriasis is a complex disease triggered by genetic, immunologic, and environmental stimuli. Many genes have been linked to psoriasis, like the psoriasis susceptibility genes, some of which are critical in keratinocyte biology and epidermal barrier function. Still, the exact pathogenesis of psoriasis is unknown. In the disease, the balance between the proliferative and differentiative processes of keratinocytes becomes altered. Multiple studies have highlighted the role of dysregulated immune cells in provoking the inflammatory responses seen in psoriasis. In addition to immune cells, accumulating evidence shows that keratinocytes are involved in psoriasis pathogenesis, as discussed in this review. Although certain immune cell-derived factors stimulate keratinocyte hyperproliferation, activated keratinocytes can also produce anti-microbial peptides, cytokines, and chemokines that can promote their proliferation, as well as recruit immune cells to help initiate and reinforce inflammatory feedback loops. Psoriatic keratinocytes also show intrinsic differences from normal keratinocytes even after removal from the in vivo inflammatory environment; thus, psoriatic keratinocytes have been found to exhibit abnormal calcium metabolism and possible epigenetic changes that contribute to psoriasis. The Koebner phenomenon, in which injury promotes the development of psoriatic lesions, also provides evidence for keratinocytes' contributions to disease pathogenesis. Furthermore, transgenic mouse studies have confirmed the importance of keratinocytes in the etiology of psoriasis. Finally, in addition to immune cells and keratinocytes, data in the literature support roles for other cell types, tissues, and systems in psoriasis development. These other contributors are all potential targets for therapies, suggesting the importance of a holistic approach when treating psoriasis.
Collapse
Affiliation(s)
- Laura I Ortiz-Lopez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Wendy B Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
5
|
Yi P, Jiang J, Wang Z, Wang X, Zhao M, Wu H, Ding Y. Comparison of mean platelet volume (MPV) and red blood cell distribution width (RDW) between psoriasis patients and controls: A systematic review and meta-analysis. PLoS One 2022; 17:e0264504. [PMID: 35213665 PMCID: PMC8880915 DOI: 10.1371/journal.pone.0264504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The predictive role of hematological indexes of mean platelet volume (MPV) and red cell distribution width (RDW) has been demonstrated in cardiovascular disease concomitant with psoriasis. This meta-analysis is intended to assess whether MPV and RDW can also serve as biomarkers for the early diagnosis and disease severity assessment of psoriasis. MATERIAL AND METHODS 13 studies which enrolled 1331 psoriasis patients and 919 healthy volunteers were included after screening the search results from PubMed, Embase and the Cochrane Library since inception to Mar 14, 2020. MPV of psoriasis participants and their counterparts was assessed in 10 studies, and RDW was evaluated in 4 studies, while the disease severity was measured by the Psoriasis Area and Severity Index (PASI) in 11 studies. Random-effect model analysis was applied to calculate pooled standard mean difference (SMD) with 95% confidence interval (95% CI). RESULTS Associations of MPV and RDW with the presence of psoriasis were demonstrated (MPV: SMD = 0.503, 95% CI: 0.242-0.765; RDW: SMD = 0.522, 95% CI: 0.228-0.817), but no statistically significant correlation of MPV and disease severity of psoriasis was found in meta-regression analysis (p = 0.208). Subgroup analysis revealed that the diagnosis value of MPV and RDW was consistent regardless of PASI and study type. Heterogeneity analysis between studies was implemented by chi-squared test and I2 statistics. Begg's and Egger's test were utilized for the evaluation of publication bias. The sensitivity analysis revealed no significant alteration no matter which study was excluded. CONCLUSION MPV and RDW could serve as promising predictive diagnostic biomarkers of psoriasis.
Collapse
Affiliation(s)
- Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheyu Wang
- Department of Dermatology, Hainan General Hospital, Haikou, Hainan, China
| | - Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan, China
| |
Collapse
|
6
|
Jiang Z, Shao M, Dai X, Pan Z, Liu D. Identification of Diagnostic Biomarkers in Systemic Lupus Erythematosus Based on Bioinformatics Analysis and Machine Learning. Front Genet 2022; 13:865559. [PMID: 35495164 PMCID: PMC9047905 DOI: 10.3389/fgene.2022.865559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several organs and causes variable clinical symptoms. Exploring new insights on genetic factors may help reveal SLE etiology and improve the survival of SLE patients. The current study is designed to identify key genes involved in SLE and develop potential diagnostic biomarkers for SLE in clinical practice. Expression data of all genes of SLE and control samples in GSE65391 and GSE72509 datasets were downloaded from the Gene Expression Omnibus (GEO) database. A total of 11 accurate differentially expressed genes (DEGs) were identified by the "limma" and "RobustRankAggreg" R package. All these genes were functionally associated with several immune-related biological processes and a single KEGG (Kyoto Encyclopedia of Genes and Genome) pathway of necroptosis. The PPI analysis showed that IFI44, IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, PRIC285, XAF1, and PARP9 could interact with each other. In addition, the expression patterns of these DEGs were found to be consistent in GSE39088. Moreover, Receiver operating characteristic (ROC) curves analysis indicated that all these DEGs could serve as potential diagnostic biomarkers according to the area under the ROC curve (AUC) values. Furthermore, we constructed the transcription factor (TF)-diagnostic biomarker-microRNA (miRNA) network composed of 278 nodes and 405 edges, and a drug-diagnostic biomarker network consisting of 218 nodes and 459 edges. To investigate the relationship between diagnostic biomarkers and the immune system, we evaluated the immune infiltration landscape of SLE and control samples from GSE6539. Finally, using a variety of machine learning methods, IFI44 was determined to be the optimal diagnostic biomarker of SLE and then verified by quantitative real-time PCR (qRT-PCR) in an independent cohort. Our findings may benefit the diagnosis of patients with SLE and guide in developing novel targeted therapy in treating SLE patients.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mengting Shao
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Xinzhu Dai
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhixin Pan
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dongmei Liu
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Dongmei Liu,
| |
Collapse
|
7
|
Fan C, Ma Y, Chen S, Zhou Q, Jiang H, Zhang J, Wu F. Comprehensive Analysis of the Transcriptome-Wide m6A Methylation Modification Difference in Liver Fibrosis Mice by High-Throughput m6A Sequencing. Front Cell Dev Biol 2021; 9:767051. [PMID: 34869362 PMCID: PMC8635166 DOI: 10.3389/fcell.2021.767051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
N6-Methyladenosine (m6A), a unique and common mRNA modification method in eukaryotes, is involved in the occurrence and development of many diseases. Liver fibrosis (LF) is a common response to chronic liver injury and may lead to cirrhosis and even liver cancer. However, the involvement of m6A methylation in the development of LF is still unknown. In this study, we performed a systematic evaluation of hepatic genome-wide m6A modification and mRNA expression by m6A-seq and RNA-seq using LF mice. There were 3,315 genes with significant differential m6A levels, of which 2,498 were hypermethylated and 817 hypomethylated. GO and KEGG analyses illustrated that differentially expressed m6A genes were closely correlated with processes such as the endoplasmic reticulum stress response, PPAR signaling pathway and TGF-β signaling pathway. Moreover, a total of 90 genes had both a significant change in the m6A level and mRNA expression shown by joint analysis of m6A-seq and RNA-seq. Hence, the critical elements of m6A modification, including methyltransferase WTAP, demethylases ALKBH5 and binding proteins YTHDF1 were confirmed by RT-qPCR and Western blot. In an additional cell experiment, we also observed that the decreased expression of WTAP induced the development of LF as a result of promoting hepatic stellate cell (HSC) activation. Therefore, this study revealed unique differential m6A methylation patterns in LF mice and suggested that m6A methylation was associated with the occurrence and course of LF to some extent.
Collapse
Affiliation(s)
- Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Sen Chen
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jiafu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Furong Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Jedynak P, Tost J, Calafat AM, Bourova-Flin E, Busato F, Forhan A, Heude B, Jakobi M, Rousseaux S, Schwartz J, Slama R, Vaiman D, Philippat C, Lepeule J. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118024. [PMID: 34523531 PMCID: PMC8590835 DOI: 10.1016/j.envpol.2021.118024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/14/2023]
Abstract
In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta - a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC, FOXG1, GNAS, GNASAS, MIR886, PEG10, SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ekaterina Bourova-Flin
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Milan Jakobi
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
9
|
Contribution of Dysregulated DNA Methylation to Autoimmunity. Int J Mol Sci 2021; 22:ijms222111892. [PMID: 34769338 PMCID: PMC8584328 DOI: 10.3390/ijms222111892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5′-C-phosphate-G-3′ (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.
Collapse
|
10
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
11
|
Jiang H, Cao K, Fan C, Cui X, Ma Y, Liu J. Transcriptome-Wide High-Throughput m6A Sequencing of Differential m6A Methylation Patterns in the Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes Cell Line MH7A. J Inflamm Res 2021; 14:575-586. [PMID: 33658830 PMCID: PMC7920605 DOI: 10.2147/jir.s296006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction N6-methyladenosine (m6A) is the most frequent internal modification in eukaryotic mRNAs and is closely related to the occurrence and development of many diseases, especially tumors. However, the relationship between m6A methylation and rheumatoid arthritis (RA) is still a mystery. Methods Two high-throughput sequencing methods, namely, m6A modified RNA immunoprecipitation sequence (m6A-seq) and RNA sequence (RNA-seq) were performed to identify the differentially expressed m6A methylation in human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A after stimulation with TNF-α. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to obtain enriched GO terms and significant KEGG pathways. Then, four candidate genes, Wilms tumor 1-associating protein (WTAP), receptor-interacting serine/threonine protein kinase 2 (RIPK2), Janus kinase 3 (JAK3) and tumor necrosis factor receptor SF10A (TNFRSF10A) were selected to further validate the m6A methylation, mRNA and protein expression levels in MH7A cells and synovial tissues of adjuvant arthritis (AA) rats by RT-qPCR and Western blot. Results Using m6A-seq, we identified a total of 206 genes with differentially expressed m6A methylation, of which 118 were significantly upregulated and 88 genes were significantly downregulated. Likewise, 1207 differentially mRNA expressed mRNAs were obtained by RNA-seq, of which 793 were upregulated and 414 downregulated. Further joint analysis showed that the m6A methylation and mRNA expression levels of 88 genes changed significantly, of which 30 genes displayed increased m6A methylation and decreased mRNA expression, 57 genes displayed decreased m6A methylation and increased mRNA expression increased, and 1 gene displayed increased m6A methylation and increased mRNA expression. GO and KEGG analyses indicated that these unique genes were mainly enriched in inflammation-related pathways, cell proliferation and apoptosis. In addition, the validations of WTAP, RIPK2, JAK3 and TNFRSF10A were in accordance with the m6A and RNA sequencing results. Conclusion This study established the transcriptional map of m6A in MH7A cells and revealed the potential relationship between RNA methylation modification and RA related genes. The results suggested that m6A modification was associated with the occurrence and course of RA to some extent.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Kefeng Cao
- Departments of Laboratory Medicine, Traditional Chinese Medical Hospital of Taihe County, Fuyang, Anhui, People's Republic of China
| | - Chang Fan
- Experimental Center of Clinical Research, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiaoya Cui
- Experimental Center of Clinical Research, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yanzhen Ma
- Experimental Center of Clinical Research, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Jian Liu
- Experimental Center of Clinical Research, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| |
Collapse
|
12
|
Choudhary S, Anand R, Pradhan D, Bastia B, Kumar SN, Singh H, Puri P, Thomas G, Jain AK. Transcriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris. Int J Mol Med 2021; 47:219-231. [PMID: 33416099 PMCID: PMC7723513 DOI: 10.3892/ijmm.2020.4771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/31/2020] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease affecting >125 million individuals worldwide. The therapeutic course for the disease is generally designed upon the severity of the disease. In the present study, the gene expression profile GSE78097, was retrieved from the National Centre of Biotechnology (NCBI)‑Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) in mild and severe psoriasis using the Affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways of the DEGs were analysed using clusterProfiler, Bioconductor, version 3.8. In addition, the STRING database was used to develop DEG‑encoded proteins and a protein‑protein interaction network (PPI). Cytoscape software, version 3.7.1 was utilized to construct a protein interaction association network and analyse the interaction of the candidate DEGs encoding proteins in psoriasis. The top 2 hub genes in Cytohubba plugin parameters were validated using immunohistochemical analysis in psoriasis tissues. A total of 382 and 3,001 dysregulated mild and severe psoriasis DEGs were reported, respectively. The dysregulated mild psoriasis genes were enriched in pathways involving cytokine‑cytokine receptor interaction and rheumatoid arthritis, whereas cytokine‑cytokine receptor interaction, cell cycle and cell adhesion molecules were the most enriched pathways in severe psoriasis group. PL1N1, TLR4, ADIPOQ, CXCL8, PDK4, CXCL1, CXCL5, LPL, AGT, LEP were hub genes in mild psoriasis, whereas BUB1, CCNB1, CCNA2, CDK1, CDH1, VEGFA, PLK1, CDC42, CCND1 and CXCL8 were reported hub genes in severe psoriasis. Among these, CDC42, for the first time (to the best of our knowledge), has been reported in the psoriasis transcriptome, with its involvement in the adaptive immune pathway. Furthermore, the immunoexpression of CDK1 and CDH1 proteins in psoriasis skin lesions were demonstrated using immunohistochemical analysis. On the whole, the findings of the present integrated bioinformatics and immunohistochemical study, may enhance our understanding of the molecular events occurring in psoriasis, and these candidate genes and pathways together may prove to be therapeutic targets for psoriasis vulgaris.
Collapse
Affiliation(s)
- Saumya Choudhary
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi 110029
| | - Rishika Anand
- Amity Institute of Biotechnology, Amity University, Noida Uttar Pradesh 201313
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre (ISRM) Division, Indian Council of Medical Research
| | - Banajit Bastia
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi 110029
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi 110029
| | - Shashi Nandar Kumar
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi 110029
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre (ISRM) Division, Indian Council of Medical Research
| | - Poonam Puri
- Department of Dermatology and STD, Vardhman Mahavir Medical College, Safdarjung Hospital, New Delhi 110029, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi 110029
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi 110029
| |
Collapse
|
13
|
Liu X, Wang X, Liu N, Zhu K, Zhang S, Duan X, Huang Y, Jin Z, Jaypaul H, Wu Y, Chen H. TET2 is involved in DNA hydroxymethylation, cell proliferation and inflammatory response in keratinocytes. Mol Med Rep 2020; 21:1941-1949. [PMID: 32319620 PMCID: PMC7057829 DOI: 10.3892/mmr.2020.10989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and hydroxymethylation are the most common epigenetic modifications associated with the cell cycle and the inflammatory response. The present study aimed to investigate the role of 5-hydroxymethyl-cytosine (5-hmC) and ten-eleven translocation-2 (TET2) in keratinocytes. Following TET2 knockdown, dot blot analysis was performed to assess the levels of 5-hmC in keratinocytes, using HaCaT cells. Subsequently, the viability and cell cycle of HaCaT cells were assessed by MTT, Cell Counting Kit-8 assay and flow cytometric assays. Cyclin-dependent kinase inhibitor 2A and proinflammatory cytokine protein and mRNA expression levels were also detected. The present results suggested that TET2 may play an important role in regulating cellular proliferation by mediating DNA hydroxymethylation in HaCaT cells. In addition, TET2 knockdown decreased the production of proinflammatory cytokines, including lipocalin 2, S100 calcium binding protein A7, matrix metallopeptidase 9, C-X-C motif chemokine ligand 1, interferon regulatory factor 7 and interleukin-7 receptor. The present study suggested that TET2 regulated cell viability, apoptosis and the expression of inflammatory mediators in keratinocytes. Collectively, the results indicated that TET2 knockdown may relieve inflammatory responses in the skin.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Nian Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Ke Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Zilin Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Himanshu Jaypaul
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hebei 430022, P.R. China
| |
Collapse
|
14
|
Review-Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2020; 21:ijms21030699. [PMID: 31973112 PMCID: PMC7037913 DOI: 10.3390/ijms21030699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decades, high-throughput assessment of gene expression in patient tissues using microarray technology or RNA-Seq took center stage in clinical research. Insights into the diversity and frequency of transcripts in healthy and diseased conditions provide valuable information on the cellular status in the respective tissues. Growing with the technique, the bioinformatic analysis toolkit reveals biologically relevant pathways which assist in understanding basic pathophysiological mechanisms. Conventional classification systems of inflammatory skin diseases rely on descriptive assessments by pathologists. In contrast to this, molecular profiling may uncover previously unknown disease classifying features. Thereby, treatments and prognostics of patients may be improved. Furthermore, disease models in basic research in comparison to the human disease can be directly validated. The aim of this article is not only to provide the reader with information on the opportunities of these techniques, but to outline potential pitfalls and technical limitations as well. Major published findings are briefly discussed to provide a broad overview on the current findings in transcriptomics in inflammatory skin diseases.
Collapse
|