1
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
2
|
Bolamperti S, Saito H, Heerdmann S, Hesse E, Taipaleenmäki H. Tgif1-deficiency impairs cytoskeletal architecture in osteoblasts by activating PAK3 signaling. eLife 2024; 13:RP94265. [PMID: 38661167 PMCID: PMC11045221 DOI: 10.7554/elife.94265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.
Collapse
Affiliation(s)
- Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Sarah Heerdmann
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
3
|
Tan B, Wu Y, Wang R, Lee D, Li Y, Qian Z, Liao J. Biodegradable Nanoflowers with Abaloparatide Spatiotemporal Management of Functional Alveolar Bone Regeneration. NANO LETTERS 2024; 24:2619-2628. [PMID: 38350110 DOI: 10.1021/acs.nanolett.3c04977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Post-extraction alveolar bone atrophy greatly hinders the subsequent orthodontic tooth movement (OTM) or implant placement. In this study, we synthesized biodegradable bifunctional bioactive calcium phosphorus nanoflowers (NFs) loaded with abaloparatide (ABL), namely ABL@NFs, to achieve spatiotemporal management for alveolar bone regeneration. The NFs exhibited a porous hierarchical structure, high drug encapsulation efficacy, and desirable biocompatibility. ABL was initially released to recruit stem cells, followed by sustained release of Ca2+ and PO43- for in situ interface mineralization, establishing an osteogenic "biomineralized environment". ABL@NFs successfully restored morphologically and functionally active alveolar bone without affecting OTM. In conclusion, the ABL@NFs demonstrated promising outcomes for bone regeneration under orthodontic condition, which might provide a desirable reference of man-made "bone powder" in the hard tissue regeneration field.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruyi Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
5
|
Su H, Liao Y, Yuan X, Huang J, Chen Y, Zhao B. G/ β- TCP composite scaffold material promotes osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:2025-2031. [PMID: 37530537 DOI: 10.1002/jbm.b.35302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
To explore self-made graphene/β Graphene (G)/β- tricalcium phosphate, G/β- The effect of TCP composite scaffold material on osteogenic differentiation of BMSC. Preparation of G/β- TCP composite material was used to investigate the effect of composite material on bone marrow mesenchymal stem cell ossification/β- TCP material was used to treat primary BMSCs of rats. Cell morphology changes were observed under scanning electron microscopy, cell cycle and proliferation were detected by flow cytometry, and gene expression of chondrogenic genes Fibronectin, collagen I, collagen II, ICAM, and VCAM was detected by q-PCR. In addition, using osteogenic induction medium and G/β- TCP composite materials were co treated with BMSCs, and ALP and alizarin red staining were used to observe the effect of the materials on osteogenic differentiation. q-PCR was used to detect the gene expression of osteogenic related genes Runx2, OCN, and OPN. G/ β- After the TCP composite was co cultured with BMSC, the proportion of G0/G1 phase of BMSC cells was significantly increased, the cell proliferation ability was enhanced, and the gene expression of fibronectin, collagen I, collagen II, ICAM, and VCAM were significantly increased. The ALP staining results indicate that BMSC in G/β- After treatment with TCP composite material, significant enhancement of osteogenic ability was observed at 7,14 and 21 days. In addition, BMSC in G/β- A significant increase in calcium deposition was observed at 7,14 and 21 days after treatment with TCP composite materials. The effect of different time points on the expression of osteogenic related genes varies. At 7 and 14 days, the expression of RUNX2 was significantly reduced compared to the control, but significantly increased at 21 days; OCN significantly increased on the 21st day; OPN significantly increased at 14 days. G/β- TCP materials significantly promote the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Hairong Su
- Department of Traditional Chinese Medicine, Maoming People's Hospital, Maoming, Guandong, China
| | - Yong Liao
- Department of Pharmacy, Maoming People's Hospital, Maoming, Guandong, China
| | - Xiaolu Yuan
- Department of Pathology, Maoming People's Hospital, Maoming, Guandong, China
| | - Jianhui Huang
- Department of Spine Surgery, Maoming People's Hospital, Maoming, Guandong, China
| | - Ya Chen
- Department of Spine Surgery, Maoming People's Hospital, Maoming, Guandong, China
| | - Binxiu Zhao
- Department of Spine Surgery, Maoming People's Hospital, Maoming, Guandong, China
| |
Collapse
|
6
|
Zhou C, Guan D, Guo J, Niu S, Cai Z, Li C, Qin C, Yan W, Yang D. Human Parathyroid Hormone Analog (3-34/29-34) promotes wound re-epithelialization through inducing keratinocyte migration and epithelial-mesenchymal transition via PTHR1-PI3K/AKT activation. Cell Commun Signal 2023; 21:217. [PMID: 37612710 PMCID: PMC10464420 DOI: 10.1186/s12964-023-01243-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Re-epithelialization is important in the process of wound healing. Various methods have been identified to expedite the process, but their clinical application remains limited. While parathyroid hormone (PTH) has shown promising results in wound healing due to its role in promoting collagen deposition and cell migration, application is limited by its potentially inhibitive effects when being continuously and locally administrated. Herein, we developed a novel PTH analog, Human parathyroid hormone (hPTH) (3-34/29-34) (henceforth MY-1), by partially replacing and repeating the amino acid sequences of hPTH (1-34), and evaluated its effect on skin wound re-epithelialization. METHODS CCK-8, colony formation unit assay, and Ki67 immunofluorescent staining were performed to evaluate the effect of MY-1 on HaCaT cell proliferation. Then, wound scratch assay, Transwell assay and lamellipodia staining were carried out to evaluate the effect of MY-1 on cell migration. Moreover, the epithelial-mesenchymal transition (EMT) markers were measured using qPCR and western blot analysis. For in-vivo drug delivery, gelatin methacryloyl (GelMA) hydrogel was employed to load the MY-1, with the physicochemical characteristics evaluated prior to its application in wound models. Then, MY-1's role in wound healing was determined via acute skin wound models. Finally, the mechanism that MY-1 activated was also detected on HaCaT cells and in-vivo wound models. RESULTS In-vitro, MY-1 accelerated the migration and EMT of HaCaT cells, while having little effect on cell proliferation. GelMA and MY-1-incorporated GelMA hydrogels showed similar physicochemical characteristics and were used in the in-vivo studies, where the results revealed that MY-1 led to a stronger re-epithelialization by inducing basal keratinocyte migration and EMT. Further studies on in-vivo wound models and in-vitro HaCaT cells revealed that MY-1 regulated cell migration and EMT through activating PI3K/AKT signaling. The parathyroid hormone type 1 receptor (PTHR1), the main receptor of PTH, was found to be the upstream of PI3K/AKT signaling, through interfering PTHR1 expression with a small interference RNA following detection of the PI3K/AKT activation. CONCLUSION Collectively, our study demonstrated that MY-1 accelerates skin wound re-epithelialization by inducing keratinocyte migration and EMT via PTHR1-PI3K/AKT axis activation. Video Abstract.
Collapse
Affiliation(s)
- Chunhao Zhou
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Donghua Guan
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
- Department of Emergency, Zengcheng Branch of Nanfang Hospital, Southern Medical University, No. 28 Chuangxin Avenue Yongning Street, Guangzhou, 511340, P. R. China
| | - Jialiang Guo
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Shangbo Niu
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Zhihai Cai
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Chengfu Li
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Chenghe Qin
- Department of Orthopaedics, Nanfang Hospital, Division of Orthopaedic Trauma, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China.
| | - Dehong Yang
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China.
| |
Collapse
|
7
|
Fei F, Yao H, Wang Y, Wei J. Graphene Oxide/RhPTH(1-34)/Polylactide Composite Nanofibrous Scaffold for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24065799. [PMID: 36982876 PMCID: PMC10058038 DOI: 10.3390/ijms24065799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Polylactide (PLA) is one of the most promising polymers that has been widely used for the repair of damaged tissues due to its biocompatibility and biodegradability. PLA composites with multiple properties, such as mechanical properties and osteogenesis, have been widely investigated. Herein, PLA/graphene oxide (GO)/parathyroid hormone (rhPTH(1-34)) nanofiber membranes were prepared using a solution electrospinning method. The tensile strength of the PLA/GO/rhPTH(1-34) membranes was 2.64 MPa, nearly 110% higher than that of a pure PLA sample (1.26 MPa). The biocompatibility and osteogenic differentiation test demonstrated that the addition of GO did not markedly affect the biocompatibility of PLA, and the alkaline phosphatase activity of PLA/GO/rhPTH(1-34) membranes was about 2.3-times that of PLA. These results imply that the PLA/GO/rhPTH(1-34) composite membrane may be a candidate material for bone tissue engineering.
Collapse
Affiliation(s)
- Fan Fei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yujiang Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| |
Collapse
|
8
|
Yi M, Yin Y, Sun J, Wang Z, Tang Q, Yang C. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice. Front Mol Biosci 2022; 9:965753. [PMID: 36188222 PMCID: PMC9522461 DOI: 10.3389/fmolb.2022.965753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
As clusters of peptides or steroids capable of high-efficiency information transmission, hormones have been substantiated to coordinate metabolism, growth, development, and other physiological processes, especially in bone physiology and repair metabolism. In recent years, the application of hormones for implant osseointegration has become a research hotspot. Herein, we provide a comprehensive overview of the relevant reports on endogenous hormones and their corresponding supplementary preparations to explore the association between hormones and the prognosis of implants. We also discuss the effects and mechanisms of insulin, parathyroid hormone, melatonin, vitamin D, and growth hormone on osseointegration at the molecular and body levels to provide a foothold and guide future research on the systemic conditions that affect the implantation process and expand the relative contraindications of the implant, and the pre-and post-operative precautions. This review shows that systemic hormones can regulate the osseointegration of oral implants through endogenous or exogenous drug-delivery methods.
Collapse
Affiliation(s)
- Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zeying Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
9
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Yoon HJ, Oh YL, Ko EJ, Kang A, Eo WK, Kim KH, Lee JY, Kim A, Chun S, Kim H, Ock MS, Cha HJ. Effects of thymosin β4-derived peptides on migration and invasion of ovarian cancer cells. Genes Genomics 2021; 43:987-993. [PMID: 34170491 DOI: 10.1007/s13258-021-01127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Thymosin β4 (Tβ4) is a highly conserved actin binding protein associated with the metastatic potential of tumor cells by stimulating cell migration. The role of Tβ4 and its derived fragment peptides in migration of ovarian cancer cells has not been studied. OBJECTIVE To analyze the effects of Tβ4 and its derived fragment peptides on ovarian cancer cell migration and invasion, we applied Tβ4 and three Tβ4-derived synthetic peptides to SKOV3 ovarian cancer cells. METHOD The migration and invasion of SKOV3 cells treated with Tβ4(1-43), Tβ4(1-15), Tβ4(12-26), Tβ4(23-), and untreated control were analyzed by in vitro migration and invasion assay with transwell plate. Cell proliferation assay was conducted to identify the effect of Tβ4 and its derived peptide on SKOV3 cell proliferation. The expression of Tβ4 related proteins related with cell proliferation was analyzed by Western blot after treatment with Tβ4 and its derived peptides. RESULTS Cell migration and invasion were significantly increased in Tβ4 peptide-treated SKOV3 cells compared with untreated control. All three Tβ4-derived fragment peptides including those without an actin binding site significantly stimulated migration and invasion of SKOV3 cells. Tβ4 and its derived peptide significantly stimulated SKOV3 cell proliferation and up-regulated the expression of RACK-1 protein. CONCLUSIONS The Tβ4 peptide and all of its derived fragment peptides including those without an actin binding motif stimulate migration and invasion of SKOV3 ovarian cancer cells. All peptides significantly increased RACK-1 expression and cell proliferation of SKOV3 cells. These results suggest that Tβ4 stimulates migration and invasion of SKOV3 cells by stimulation of cell proliferation through up-regulation of RACK-1 protein.
Collapse
Affiliation(s)
- Hyung Joon Yoon
- Department of Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, South Korea
| | - Young Lim Oh
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, South Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Ahyun Kang
- Department of Biochemistry, Kosin University College of Medicine, Busan, South Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital, Busan, South Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, South Korea
| | - Ari Kim
- Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, North Chicago, IL, USA
| | - Sungwook Chun
- Department of Obstetrics and Gynecology, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Hallym University Medical Center, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| |
Collapse
|