1
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
2
|
Guo C, Li Y, Yang R, Xie M, Chen X, Che Z, Wang Z, Zhong B, Luo Y, Leng XM. Astragaloside IV attenuates glucocorticoid-induced osteoclastogenesis and bone loss via the MAPK/NF-κB pathway. BMC Complement Med Ther 2025; 25:48. [PMID: 39934767 PMCID: PMC11818135 DOI: 10.1186/s12906-025-04793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is a bioactive saponin extracted from Radix Astragali, and it is reported to promote osteoblast differentiation while inhibiting osteoclastogenesis. However, the mechanism of AS-IV in glucocorticoid-induced osteoclastogenesis (GIO) remains undetermined. Herein, we examined the influence of AS-IV on GIO and bone loss. METHODS RAW264.7 cells were incubated with dexamethasone (Dex) alone or Dex and receptor activator of nuclear factor-B ligand (RANKL) (Dex and RANKL) for 2 days, and then treated with Dex or Dex and RANKL through AS-IV for the timeframes indicated. Following, mice were intraperitoneally administered with an intermediate-acting glucocorticoid, methylprednisolone (MP), or MP and AS-IV for 6 weeks. RESULTS AS-IV significantly decreased Dex-induced osteoclast nucleus and area, however, it did not impact the number of Dex-induced osteoclasts in RAW264.7 cells. AS-IV also significantly decreased the osteoclastic marker protein expressions in Dex-induced RAW264.7 cells with concentration of dose dependent fashion. Additionally, AS-IV promoted p38 phosphorylation (p-) and p-p65 translocation to the nucleus, while inhibiting phosphorylation of extracellular signal-regulated kinase (ERK) (p-ERK) and inhibitor of Nuclear factor κB (NF-κB) (p-IκB) levels. However, the AS-IV-mediated action on p-MAPK, p-NF-κB, and osteoclastic marker expressions were reversed by MAPK or IκB inhibitor in Dex-induced RAW264.7 cells. Furthermore, our in vivo evaluation revealed that AS-IV also attenuated the MP-mediated bone loss, and suppressed osteoclastogenesis. CONCLUSIONS This study demonstrates that AS-IV inhibits GIO and attenuates bone loss via the MAPK/NF-κB pathway. This also suggested that AS-IV could be a potential promising therapeutic agent for glucocorticoid-triggered bone loss.
Collapse
Affiliation(s)
- Chun Guo
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
- Department of Human Anatomy, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
| | - Yangyang Li
- Jiaozuo Center for Disease Control and Prevention, 500 Shijixi Road, Jiaozuo, 454150, Henan Province, China
| | - Ruijuan Yang
- First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan Province, China
| | - Mingzhang Xie
- First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan Province, China
| | - Xiangfeng Chen
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
| | - Zhiqun Che
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
| | - Zhixia Wang
- First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan Province, China
| | - Bin Zhong
- Department of Human Anatomy, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China.
| | - Yanhong Luo
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China.
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
3
|
Liu C, Duan G, Xu S, Li T, Sun X. Epimedin C alleviated osteoarthritis development by regulating chondrocyte Nrf2-mediated NLRP3 inflammasome axis. Heliyon 2024; 10:e40458. [PMID: 39687146 PMCID: PMC11648154 DOI: 10.1016/j.heliyon.2024.e40458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disorder globally. This study explored the therapeutic potential of Epimedin C (Epi C) in OA and its mechanisms. We isolated primary chondrocytes from mice and induced inflammatory damage using interleukin-1β (IL-1β) to evaluate Epi C's capacity to preserve cell viability and inhibit apoptosis, employing cell counting kit (CCK8) assays, EdU staining, and flow cytometry. Additionally, its anti-inflammatory effects were quantified using enzyme-linked immunosorbent assay (ELISA), Western blot, and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), alongside assessments of extracellular matrix (ECM) degradation. In vivo, OA was induced in mice through destabilization of the medial meniscus (DMM), followed by Epi C administration. Cartilage integrity was evaluated via micro-computed tomography (CT) and histology. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway involvement was investigated through siRNA knockdown and oxidative stress markers, while NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome expression was measured to establish Epi C's modulatory effect. Our study revealed that Epi C protected against IL-1β-induced chondrocyte damage by enhancing cell viability, reducing apoptosis, and dampening inflammatory responses. The in vivo studies demonstrated Epi C's role in preserving cartilage structure, activating nuclear factor erythroid 2-related factor 2 (Nrf2), and inhibiting NLRP3 expression in DMM-induced OA mice. Conclusively, our findings provide substantial evidence of Epi C's therapeutic efficacy in OA, primarily through its modulation of the Nrf2-mediated NLRP3 inflammasome pathway, offering novel insights into its management role in OA.
Collapse
Affiliation(s)
| | | | - Shengjie Xu
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, Jiangsu Province, China
| | - Teng Li
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, Jiangsu Province, China
| | - Xin Sun
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Zhou L, Su P, Luo X, Zhong X, Liu Q, Su Y, Zeng C, Li G. Regorafenib Attenuates Osteoclasts Differentiation by Inhibiting the NF-κB, NFAT, ERK, and p38 Signaling Pathways. ACS OMEGA 2024; 9:33574-33593. [PMID: 39130575 PMCID: PMC11307286 DOI: 10.1021/acsomega.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Osteolytic diseases such as osteoporosis and neoplastic bone metastases are caused by the excessive activation of osteoclasts. Inhibiting the excessive activation of osteoclasts is a crucial strategy for treating osteolytic diseases. This study investigated the roles and mechanisms of regorafenib, a tyrosine kinase inhibitor, on osteoclasts and osteolytic diseases. We first identified the potential targets and mechanisms of regorafenib on osteoclast-related osteolytic diseases using network pharmacological analysis and molecular docking techniques. Then, we verified its role and mechanism on osteoclasts via cellular and animal experiments. Network pharmacology analysis identified 89 common targets shared by regorafenib and osteoclast-related osteolytic diseases. Enrichment analysis suggested that regorafenib may act on osteoclast-related osteolytic diseases by modulating targets such as AKT1, CASP3, MMP9, and MAPK3, regulating biological processes such as cell proliferation, apoptosis, and phosphorylation regulation, and influencing signaling pathways such as MAPK, PI3K/AKT, and osteoclast differentiation. The molecular docking results indicated that regorafenib and AKT1, CASP3, MMP9, MAPK3, and MAPK14 were stably docked. Cell experiments demonstrated that regorafenib significantly inhibited osteoclast differentiation and bone resorption in RAW 264.7 cells and bone marrow macrophages in a dose-dependent manner, with up to 50% reduction at 800 nM concentration without exhibiting cytotoxic effects. Furthermore, Western blot and RT-qPCR results demonstrated that regorafenib inhibited osteoclast differentiation by blocking the transduction of RANKL-induced NF-κB, p38, ERK, and NFAT signaling pathways. In vivo studies using an ovariectomized mouse model showed that regorafenib significantly improved bone volume fraction (BV/TV), bone surface to total volume (BS/TV), and number of trabeculae (TB.N), as well as reduced trabecular separation (Tb.Sp) compared to the OVX groups (P < 0.05). TRAcP staining results revealed a reduction in the number of osteoclasts with regorafenib treatment (P < 0.01). These results indicate that regorafenib exerts its protective effects against osteoclast-related osteolytic disease by inhibiting the RANKL-induced NF-κB, NFAT, ERK, and p38 signaling pathways. This study proves that regorafenib may serve as a potential therapeutic agent for osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Lin Zhou
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Peiru Su
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiangya Luo
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xuanli Zhong
- Department
of Endocrinology, The Affiliated Shunde
Hospital of Jinan University, Foshan 528305, Guangdong, China
| | - Qian Liu
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuangang Su
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chunping Zeng
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Ge Li
- Department
of Endocrinology, The Affiliated Shunde
Hospital of Jinan University, Foshan 528305, Guangdong, China
| |
Collapse
|
5
|
Lin Z, Zhou Z, Ye J, Wei J, Chen S, Zhou W, Bi Y, Zhou Z, Xie G, Yuan G, Yao G. Trifolirhizin protects ovariectomy-induced bone loss in mice by inhibiting osteoclast differentiation and bone resorption. Heliyon 2024; 10:e34250. [PMID: 39130482 PMCID: PMC11315080 DOI: 10.1016/j.heliyon.2024.e34250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Background Osteoporosis is a debilitating condition characterized by reduced bone density and microstructure, leading to increased susceptibility to fractures and increased mortality, particularly among older individuals. Despite the availability of drugs for osteoporosis treatment, the need for targeted and innovative agents with fewer adverse effects persists. Trifolirhizin, a natural pterostalin derived from the root of Sophora flavescens, has been previously studied for its effects on certain anticancer and antiinflammatory. The impact of trifolirhizin on the formation and function of osteoclasts remain unclear. Purpose Herein, the possible roles of trifolirhizin the formation and function of osteoclasts and the underlying mechanism were explored. Methods: Bone marrow-derived macrophages (BMMs) were employed to evaluate the roles of trifolirhizin on steoclastogenesis, bone absorption and the underlying mechanism in vitro. Bone loss model was established by ovariectomy(OVX) in mice in vivo. Results Trifolirhizin repressed osteoclastogenesis, bone resorption induced by receptor activator of nuclear factor kappa B ligand (RANKL) in vitro. Mechanistically, trifolirhizin inhibits RANKL-induced MAPK signal transduction and NFATc1 expression. Moreover, trifolirhizin inhibited osteoclast marker gene expression, including NFATc1, CTSK, MMP9, DC-STAMP, ACP5, and V-ATPase-D2. Additionally, trifolirhizin was found to protect against ovariectomy(OVX)-induced bone loss in mice. Conclusion Trifolirhizin can effectively inhibit osteoclast production and bone resorption activity. The results of our study provide evidence for trifolirhizin as a potential drug for the prevention and treatment of osteoporosis and other osteolytic diseases.
Collapse
Affiliation(s)
- Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Shantou Central Hospital, Shantou, Guangdong, China
| | - Zhigao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jinfu Wei
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Orthopedics, The Sixth Affiliated Hospital,School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Shaozhe Chen
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Wenyun Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yonghao Bi
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zibin Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Gang Xie
- Shantou University Medical College, Shantou, Guangdong, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Yen CT, Livneh H, Huang HL, Lu MC, Chen WJ, Tsai TY. Decreased Risk of Osteoporosis Incident in Subjects Receiving Chinese Herbal Medicine for Sjögren syndrome Treatment: A Retrospective Cohort Study with a Nested Case-Control Analysis. Pharmaceuticals (Basel) 2024; 17:745. [PMID: 38931412 PMCID: PMC11207029 DOI: 10.3390/ph17060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Sjögren syndrome (SS) is a long-lasting inflammatory autoimmune disease that may cause diverse manifestations, particularly osteoporosis. Though usage of Chinese herbal medicine (CHM) can safely manage autoimmune disease and treatment-related symptoms, the relation between CHM use and osteoporosis risk in SS persons is not yet recognized. With that in mind, this population-level nested case-control study aimed to compare the risk of osteoporosis with and without CHM use. Potential subjects aged 20-70 years, diagnosed with SS between 2001 and 2010, were retrieved from a national health claims database. Those diagnosed with osteoporosis after SS were identified and randomly matched to those without osteoporosis. We capitalize on the conditional logistic regression to estimate osteoporosis risk following CHM use. A total of 1240 osteoporosis cases were detected and randomly matched to 1240 controls at a ratio of 1:1. Those receiving conventional care plus CHM had a substantially lower chance of osteoporosis than those without CHM. Prolonged use of CHM, especially for one year or more, markedly dwindled sequent osteoporosis risk by 71%. Integrating CHM into standard care may favor the improvement of bone function, but further well-designed randomized controlled trials to investigate the possible mechanism are needed.
Collapse
Affiliation(s)
- Chieh-Tsung Yen
- Department of Neurology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR 97207-0751, USA
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Center of Sports Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Tzung-Yi Tsai
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
7
|
Chang X, Deng J, Zhou F, Geng Z, Li X, Wang S. D-alanine suppressed osteoclastogenesis derived from bone marrow macrophages and downregulated ERK/p38 signalling pathways. Arch Oral Biol 2024; 161:105912. [PMID: 38382164 DOI: 10.1016/j.archoralbio.2024.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVES D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.
Collapse
Affiliation(s)
- Xiaochi Chang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Deng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China
| | - Fengyi Zhou
- School of Stomatology of Qingdao University, Qingdao, China; Department of Stomatology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Zhihao Geng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China; Institute of Stomatological Research, Shenzhen University, Shenzhen, China.
| | - Shuai Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
9
|
Zhang Y, Li X, Lang J, Li W, Huang D, Sun W, Yang L, Li W, Wang Y, Zhang L. Basic-helix-loop-helix family member e41 suppresses osteoclastogenesis and abnormal bone resorption disease via NFATc1. iScience 2024; 27:109059. [PMID: 38375236 PMCID: PMC10875115 DOI: 10.1016/j.isci.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Overactivation of osteoclasts due to altered osteoclastogenesis causes multiple bone metabolic diseases. However, how osteoclast differentiation is tightly regulated and involved in multiple pathophysiological states remains mystery. In this study, we noticed that the downregulation of BHLHE41 (basic-helix-loop-helix family member e41) was tightly associated with osteoclast differentiation and osteoporosis. Functionally, the upregulation or downregulation of BHLHE41 suppressed or promoted osteoclast differentiation, respectively, in vitro. A mechanism study indicated that the direct binding of BHLHE41 to the promoter region of NFATc1 that led to its downregulation. Notably, the inhibition of NFATc1 abrogated the enhanced osteoclast differentiation in BHLHE41-knockdown bone marrow macrophages (BMMs). Additionally, upregulation of BHLHE41 impeded bone destruction in OVX mice with osteoporosis. Therefore, our research reveals the mechanism by which BHLHE41 regulates osteoclast differentiation and bone resorption via NFATc1, and targeting BHLHE41 is a potential strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaoguang Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianlong Lang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenbo Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengke Huang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Weizong Sun
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Li Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenhui Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yi Wang
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
10
|
Sharma V, Sinha ES, Singh J. Investigation of in-vitro Anti-Cancer and Apoptotic Potential of Garlic-Derived Nanovesicles against Prostate and Cervical Cancer Cell Lines. Asian Pac J Cancer Prev 2024; 25:575-585. [PMID: 38415544 PMCID: PMC11077101 DOI: 10.31557/apjcp.2024.25.2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE Investigate the anti-cancerous potential of garlic-derived nanovesicles (GDNVs), exploring their cytotoxic effects on HeLa and PC-3 cell lines, and elucidate the underlying mechanisms, including apoptosis induction and inhibition of epithelial-mesenchymal transition (EMT). METHODS GDNVs were isolated using differential centrifugation and ultracentrifugation. Characterization was performed through dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM), and Fourier-transform infrared spectroscopy (FTIR). Cytotoxicity assessments on HeLa and PC-3 cell lines using MTT assay. Apoptosis induction was evaluated through nuclear morphology changes and quantification of apoptotic cells using DAPI and PI/annexin V analysis. Western blot of apoptosis-related proteins (bcl-2, bax, caspase-3) was analysed. Anti-metastatic potential was assessed using wound healing assay and EMT transition inhibition. RESULTS Garlic-derived nanovesicles (GDNVs), characterized by a size of 134.2 nm, demonstrated a substantial and dose- as well as time-dependent anti-proliferative impact on HeLa and PC-3 cell lines. The induction of apoptosis was unequivocally established through discernible modifications in nuclear morphology. The apoptotic cell count in HeLa and PC-3 cells increased by 42.4 ± 4.2% and 38.2 ± 3.2%, respectively. Comprehensive Western blot demonstrated alterations in the expression of key apoptotic regulators, namely bcl-2, bax, and caspase-3, providing robust evidence for the initiation of apoptosis. Furthermore, GDNVs exerted a significant inhibitory effect (p < 0.001) on the migratory potential of both HeLa and PC-3 cells. Moreover, there was a discernible association between GDNVs and the suppression of Epithelial-Mesenchymal Transition (EMT), emphasizing their role in impeding the metastatic potential of these cancer cell lines. CONCLUSION This study establishes, for the first time, the anti-cancerous potential of GDNVs. The observed dose- and time-dependent anti-proliferative effects, selective cytotoxicity, apoptosis induction, and anti-migratory potential highlight GDNVs as a promising candidate for cancer treatment.
Collapse
Affiliation(s)
| | | | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Wahyuningtyas ED, Triwardhani A, Ardani IGAW, Surboyo MDC. The Effect of Grape Seed Extract on the Alveolar, Jaw, and Skeletal Bone Remodeling: A Scoping Review. Eur J Dent 2024; 18:73-85. [PMID: 37311556 PMCID: PMC10959605 DOI: 10.1055/s-0043-1768975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Herbal medicine has an important part in promoting and maintaining human health. One of them was grape seed extract (GSE). Various potentials of GSE in human health have been explored, and its potential for maintaining bone health is promising. Some initial research has provided evidence that the GSE was able to affect bone remodeling (bone resorption and bone formation). This scoping review analyzed and discussed all the reports on the effect of GSE on bone healing and bone remodeling in animals in the alveolar bone, jaw bone, and skeletal bone. The further purpose is to give an opportunity to research and development of supplementation of GSE for humans.The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines were used to compose this scoping review through database on Scopus, PubMed, Science Direct, Web of Science, Embase, and manual search until December 2022. The inclusion criteria were a study that analyzed the effect of supplementation GSE on all bones.All included study was in vivo study with supplementation of GSE. The supplementation of GSE affects the alveolar bone, jaw bones, and skeletal bone by promoting bone formation and inhibiting bone resorption by suppressing inflammation, apoptosis pathways, and osteoclastogenesis. It not only supports bone remodeling in bone inflammation, osteonecrosis, osteoporosis, and arthritis but also the GSE increases bone health by increasing the density and mineral deposition in trabecula and cortical bone.The supplementation of GSE supports bone remodeling by interfering with the inflammation process and bone formation not only by preventing bone resorption but also by maintaining bone density.
Collapse
Affiliation(s)
| | - Ari Triwardhani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
12
|
Liu X, Zhou M, Tan J, Ma L, Tang H, He G, Tao X, Guo L, Kang X, Tang K, Bian X. Inhibition of CX3CL1 by treadmill training prevents osteoclast-induced fibrocartilage complex resorption during TBI healing. Front Immunol 2024; 14:1295163. [PMID: 38283363 PMCID: PMC10811130 DOI: 10.3389/fimmu.2023.1295163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The healing of tendon-bone injuries is very difficult, often resulting in poor biomechanical performance and unsatisfactory functional recovery. The tendon-bone insertion has a complex four distinct layers structure, and previous studies have often focused on promoting the regeneration of the fibrocartilage layer, neglecting the role of its bone end repair in tendon-bone healing. This study focuses on the role of treadmill training in promoting bone regeneration at the tendon-bone insertion and its related mechanisms. Methods After establishing the tendon-bone insertion injury model, the effect of treadmill training on tendon-bone healing was verified by Micro CT and HE staining; then the effect of CX3CL1 on osteoclast differentiation was verified by TRAP staining and cell culture; and finally the functional recovery of the mice was verified by biomechanical testing and behavioral test. Results Treadmill training suppresses the secretion of CX3CL1 and inhibits the differentiation of local osteoclasts after tendon-bone injury, ultimately reducing osteolysis and promoting tendon bone healing. Discussion Our research has found the interaction between treadmill training and the CX3CL1-C3CR1 axis, providing a certain theoretical basis for rehabilitation training.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mei Zhou
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang He
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xu Tao
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Jiang D, Guo J, Liu Y, Li W, Lu D. Glycolysis: an emerging regulator of osteoarthritis. Front Immunol 2024; 14:1327852. [PMID: 38264652 PMCID: PMC10803532 DOI: 10.3389/fimmu.2023.1327852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) has been a leading cause of disability in the elderly and there remains a lack of effective therapeutic approaches as the mechanisms of pathogenesis and progression have yet to be elucidated. As OA progresses, cellular metabolic profiles and energy production are altered, and emerging metabolic reprogramming highlights the importance of specific metabolic pathways in disease progression. As a crucial part of glucose metabolism, glycolysis bridges metabolic and inflammatory dysfunctions. Moreover, the glycolytic pathway is involved in different areas of metabolism and inflammation, and is associated with a variety of transcription factors. To date, it has not been fully elucidated whether the changes in the glycolytic pathway and its associated key enzymes are associated with the onset or progression of OA. This review summarizes the important role of glycolysis in mediating cellular metabolic reprogramming in OA and its role in inducing tissue inflammation and injury, with the aim of providing further insights into its pathological functions and proposing new targets for the treatment of OA.
Collapse
Affiliation(s)
- Dingming Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxin Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Linping District Nanyuan Street Community Health Center, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Yu T, Liu X, Jiang M, Li Y, Su H, Niu B. Cucumber seed polypeptides regulate RANKL-induced osteoclastogenesis through OPG/RANKL/RANK and NF-κB. In Vitro Cell Dev Biol Anim 2024; 60:54-66. [PMID: 38123756 PMCID: PMC10858069 DOI: 10.1007/s11626-023-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a common disease that endangers the health of elderly women. Cucumber seeds have shown excellent therapeutic effects on PMOP, but the mechanism of cucumber seed peptide (CSP) remains unclear. The expression levels of NF-κB and osteoclast-related genes were detected by RT-qPCR. The levels of apoptosis-related proteins were detected by Western blotting. Nuclear translocation of NF-κB p65 and osteoclast formation were detected by immunofluorescence and tartrate-resistant acid phosphatase (TRAP) staining, respectively. ELISA was used to detect the expression levels of OPG, M-CSF, and RANKL. Hematoxylin-eosin (H&E) and TRAP staining were used to observe the effects of CSP on bone formation. In RAW264.7 cells, CSP (0.4 mg/L, 4 mg/L, and 40 mg/L) effectively inhibited the expression of osteoclast-related genes (Cathepsin-K, MT1-MMP, MMP-9, and TRAP). TRAP-positive multinucleated giant cells gradually decreased. Furthermore, NF-κB pathway activation downstream of RANK was inhibited. In bone marrow stromal cells (BMSCs), the expression levels of M-CSF and RANKL gradually decreased, and OPG gradually increased with increasing CSP concentrations. Treatment of RAW264.7 cells with pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) prevented the formation of osteoclasts. Treatment with different concentrations of CSP effectively decreased the levels of RANKL and M-CSF in rat serum and increased the expression of OPG in the oophorectomy (OVX) rat model. Furthermore, different concentrations of CSP could ameliorate the loss of bone structure and inhibit the formation of osteoclasts in rats. CSP inhibits osteoclastogenesis by regulating the OPG/RANKL/RANK pathway and inhibiting the NF-kB pathway.
Collapse
Affiliation(s)
- Tao Yu
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Xiao Liu
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Meng Jiang
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yuanyue Li
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, KunmingYunnan, 650032, China
| | - Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, KunmingYunnan, 650032, China.
| |
Collapse
|
15
|
Cao Z, Niu X, Wang M, Yu S, Wang M, Mu S, Liu C, Wang Y. Anemoside B4 attenuates RANKL-induced osteoclastogenesis by upregulating Nrf2 and dampens ovariectomy-induced bone loss. Biomed Pharmacother 2023; 167:115454. [PMID: 37688987 DOI: 10.1016/j.biopha.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Increased numbers and functional overactivity of osteoclasts are the pathological basis for bone loss diseases such as osteoporosis, which are characterized by cortical bone thinning, decreased trabecular bone quantity, and reduced bone mineral density. Effective inhibition of osteoclast formation and bone resorption are important means of treating such skeletal diseases. Anemoside B4 (AB4), the main active component of Pulsatilla chinensis, possesses a wide range of anti-inflammatory and immunoregulatory effects. However, its effect and mechanism in osteoclast differentiation remain unclear. In this study, we found through tartrate-resistant acidic phosphatase (TRAcP) staining and immunofluorescence staining that AB4 inhibited the differentiation, fusion, and bone-resorption functions of osteoclasts induced by receptor activator of nuclear factor κB ligand (RANKL) in vitro. Additionally, real time PCR (RT-qPCR) and western blot analysis showed AB4 downregulated the expression of osteoclast marker genes, including Nfatc1, Fos, and Ctsk, while upregulating Nrf2 expression. AB4 (5 mg/kg) alleviated bone loss in ovariectomized mice by inhibiting osteoclast formation. Furthermore, the knockout of Nrf2 weakened the inhibitory effects of AB4 on osteoclast formation and related gene expression. In summary, the results suggest AB4 can inhibit osteoclast differentiation and function by activating Nrf2 and indicate AB4 may be a candidate drug for osteoporosis.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Xuben Niu
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siwang Yu
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Mingkun Wang
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Silong Mu
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Liu
- Department of Orthopedic, The Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Yaxi Wang
- Department of Emergency, The Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| |
Collapse
|
16
|
Guo DY, Chen ZH, Fu YF, Li YY, Chen MN, Wu JJ, Yuan ZD, Ye JX, Li X, Yuan FL. Cilengitide inhibits osteoclast adhesion through blocking the α vβ 3-mediated FAK/Src signaling pathway. Heliyon 2023; 9:e17841. [PMID: 37539209 PMCID: PMC10395300 DOI: 10.1016/j.heliyon.2023.e17841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
The remodeling of actin cytoskeleton of osteoclasts on the bone matrix is essential for osteoclastic resorption activity. A specific regulator of the osteoclast cytoskeleton, integrin αvβ3, is known to provide a key role in the degradation of mineralized bone matrixes. Cilengitide is a potent inhibitor of integrins and is capable of affecting αvβ3 receptors, and has anti-tumor and anti-angiogenic and apoptosis-inducing effects. However, its function on osteoclasts is not fully understood. Here, the cilengitide role on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts was explored. Cells were cultured with varying concentrations of cilengitide (0,0.002,0.2 and 20 μM) for 7 days, followed by detected via Cell Counting Kit-8, staining for tartrate resistant acid phosphatase (TRAP), F-actin ring formation, bone resorption assays, adhesion assays, immunoblotting assays, and real-time fluorescent quantitative PCR. Results demonstrated that cilengitide effectively restrained the functionality and formation of osteoclasts in a concentration-dependent manner, without causing any cytotoxic effects. Mechanistically, cilengitide inhibited osteoclast-relevant genes expression; meanwhile, cilengitide downregulated the expression of key signaling molecules associated with the osteoclast cytoskeleton, including focal adhesion kinase (FAK), integrin αvβ3 and c-Src. Therefore, this results have confirmed that cilengitide regulates osteoclast activity by blocking the integrin αvβ3 signal pathway resulting in diminished adhesion and bone resorption of osteoclasts.
Collapse
Affiliation(s)
- Dan-yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhong-hua Chen
- Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, 236000, China
| | - Yi-fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yue-yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Meng-nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Jun-jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zheng-dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Feng-lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| |
Collapse
|
17
|
Wan J, Zhu Z, He Z, Wu H, Chen A, Zhu W, Cheng P. Stevioside protects primary articular chondrocytes against IL-1β-induced inflammation and catabolism by targeting integrin. Int Immunopharmacol 2023; 119:110261. [PMID: 37167638 DOI: 10.1016/j.intimp.2023.110261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Osteoarthritis (OA) is a common, progressive, and chronic disorder of the joints that is characterized by the inflammation and degradation of articular cartilage and is known to significantly impair quality of daily life. Stevioside (SVS) is a natural diterpenoid glycoside that has anti-inflammatory benefits. Hence, in the current research, it was hypothesized that SVS might exert anti-inflammatory effects on articular chondrocytes and alleviate cartilage degradation in mice with OA. The expression of inflammatory cytokines, like inducible nitric oxide synthase (iNOS), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in chondrocytes after interleukin-1β (IL-1β) exposure, was inhibited by the pretreatment of SVS. As well, SVS inhibited the reduction of collagen II and sry-box transcription factor 9 (SOX9) in chondrocytes stimulated by IL-1β and suppressed the expression of MMP3 and MMP13. Further, after treatment with SVS, cell cytometry, autophagy flux, and related protein expression showed diminished cell apoptosis and reduced autophagy impairment. Moreover, SVS blocked the activation of phosphoinositide-3-kinase/Akt/nuclear factor-kappa beta (PI3K/Akt/NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways stimulated by IL-1β. This resulted in decreased cellular inflammation. In vivo experiments with intra-articular injections of SVS in mice with the DMM mouse model demonstrated a decrease in cartilage degradation and an improvement in subchondral bone remodeling. After the integrin αVβ3-related knockdown using siRNA, a reversed effect was observed on the anti-inflammatory, anabolic promoting, catabolic blocking, and NF-κB and MAPK signaling pathway inhibition of SVS on chondrocytes treated with IL-1β. The above findings highlighted that SVS blocked IL-1β, triggered an inflammatory response in mice chondrocytes, and prevented cartilage degradation in vivo through integrin αVβ3. This suggested that SVS might serve as a novel therapeutic option for OA.
Collapse
Affiliation(s)
- Junlai Wan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ziqing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
18
|
Kuang Z, Yang X, Cao Z, Li Y, Hu J, Hong X, Li B, Wu C, Qi Q, Liu X, Dai M. Surfactin suppresses osteoclastogenesis via the NF-κB signaling pathway, promotes osteogenic differentiation in vitro, and inhibits oestrogen deficiency-induced bone loss in vivo. Int Immunopharmacol 2023; 117:109884. [PMID: 36805201 DOI: 10.1016/j.intimp.2023.109884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Fractures caused by osteoporosis (OP) are one of the main causes of death in the elderly, bringing a heavy burden to the country and society. The imbalance between osteoblast-mediated osteogenesis and osteoclast-mediated bone resorption is an important cause of OP. Therefore, finding drugs that can regulate this dynamic balance can be an important way to treat osteoporosis. Surfactin is a highly effective biosurfactant derived from Bacillus subtilis and it has been proven to have various pharmacological effects in previous studies, but its effect on bone metabolism remains unknown. Here, we performed a study on the role and mechanism of Surfactin in inhibiting osteoclastogenesis and its possible mechanism as well as the role in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS We investigated the effect of Surfactin on osteoclast differentiation and osteogenic differentiation in vitro and in vivo. The effect of Surfactin on the activity of osteoclastogenesis and osteogenesis was verified by CCK-8 assay, quantitative Real-time polymerase chain reaction (qPCR) and Western blotting analysis were used to verify the effect of Surfactin on osteoclast and osteogenic differentiation-specific genes and proteins. The effect of Surfactin on TRAP、ALP activity and mineral deposition was verified by TRAP、ALP and ARS staining. We then used an ovariectomy-induced osteoporosis mice model to observe the effect of Surfactin in vivo. RESULTS Surfactin is noncytotoxic to BMMs, RAW264.7, and BMSCs. And it can effectively inhibit osteoclastogenesis and promote osteogenic differentiation. Moreover, we found that Surfactin can inhibit the differentiation of osteoclasts through the NF-κB signaling pathway. Surfactin can also alleviate bone loss in ovariectomy-induced osteoporosis mice. CONCLUSIONS Our results suggest that Surfactin can inhibit osteoclastogenesis through the NF-κB signaling pathway, promote the osteogenic differentiation of BMSCs, and also can effectively alleviate bone loss in ovariectomy-induced osteoporosis mice.
Collapse
Affiliation(s)
- Zhihui Kuang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Xiaowei Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Zhiyou Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Yanhua Li
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Bo Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Changjian Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Qihua Qi
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China.
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
19
|
Yan J, Feng G, Yang Y, Ding D, Ma L, Zhao X, Chen X, Wang H, Chen Z, Jin Q. Autophagy attenuates osteoarthritis in mice by inhibiting chondrocyte pyroptosis and improving subchondral bone remodeling. BIOMOLECULES AND BIOMEDICINE 2023; 23:77-88. [PMID: 35880352 PMCID: PMC9901906 DOI: 10.17305/bjbms.2022.7677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is an age-related degenerative disease characterized by cartilage degeneration and abnormal bone remodeling in the subchondral bone. Autophagy maintains cellular homeostasis by self-phagocytosis. However, the underlying mechanisms of autophagy on the pathological progression of OA are still unknown. This study assessed the effects of autophagy on cartilage and subchondral bone in a mouse OA model. A mouse OA model was induced using destabilization of the medial meniscus (DMM) surgery. Assessment was performed by histomorphology, microcomputed tomography (micro-CT), immunohistochemical, immunofluorescent, and tartrate-resistant acid phosphatase (TRAP) staining. Our data revealed that autophagy can significantly delay the pathological progression of OA by increasing the thickness of hyaline cartilage and decreasing the thickness of calcified cartilage, increasing the subchondral bone volume fraction and bone mineralization density, and decreasing trabecular separation in the early stages of OA (2 weeks), whereas the opposite is true in the late stages of OA (8 weeks). Mechanistically, activation of autophagy in cartilage increased the expression of type II collagen (Col II), decreased the expression of matrix metalloproteinase 13 (MMP 13) and decreased the pyroptosis mediated by NOD-like receptor protein 3 (NLRP3) inflammasome by decreasing the expression of NLRP3, caspase-1, gasdermin D (GSDMD), and IL-1β. In the subchondral bone, activation of autophagy decreased the generation of mature osteoclasts at the early stages of OA (2 weeks) mainly by reducing the receptor activator for nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio, while it decreased osteoblastogenesis by reducing Runt-related transcription factor 2 (Runx2) expression significantly in the late stages of OA (8 weeks). In conclusion, autophagy may delay the pathological progression of OA in mice by inhibiting chondrocyte pyroptosis and improving subchondral bone remodeling.
Collapse
Affiliation(s)
- Jiangbo Yan
- Clinical College, Ningxia Medical University, Yinchuan, China,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Gangning Feng
- Clinical College, Ningxia Medical University, Yinchuan, China
| | - Yong Yang
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Dong Ding
- Hand and Ankle Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xin Zhao
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xiaolei Chen
- Clinical College, Ningxia Medical University, Yinchuan, China,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Hui Wang
- Clinical College, Ningxia Medical University, Yinchuan, China
| | - Zhirong Chen
- Clinical College, Ningxia Medical University, Yinchuan, China,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China,Correspondence to Zhirong Chen: ; Qunhua Jin:
| | - Qunhua Jin
- Clinical College, Ningxia Medical University, Yinchuan, China,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China,Correspondence to Zhirong Chen: ; Qunhua Jin:
| |
Collapse
|
20
|
Elucidation of the Key Therapeutic Targets and Potential Mechanisms of Marmesine against Knee Osteoarthritis via Network Pharmacological Analysis and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8303493. [PMID: 36544567 PMCID: PMC9763014 DOI: 10.1155/2022/8303493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Background Marmesine, a major active ingredient isolated from Radix Angelicae biseratae (Duhuo), has been reported to have multiple pharmacological activities. However, its therapeutic effects against knee osteoarthritis (OA) remain poorly investigated. The present study is aimed at uncovering the core targets and signaling pathways of marmesine against osteoarthritis using a combined method of bioinformatics and network pharmacology. Methods We utilized SwissTargetPrediction and PharmMapper to collect the potential targets of marmesine. OA-related differentially expressed genes (DEGs) were identified from GSE98918 dataset. Then, the intersection genes between DEGs and candidate genes of marmesine were subjected to protein-protein interaction (PPI) network construction and functional enrichment analysis. The core targets were verified using the molecular docking technology. Results A total of 320 marmesine-related genes and 5649 DEGs and 60 ingredient-disease targets between them were identified. The results of functional enrichment analyses revealed that response to oxygen levels, neuroinflammatory response, PI3K-Akt signaling pathway, MAPK signaling pathway, FoxO signaling pathway, and osteoclast differentiation was identified as the potential mechanisms of marmesine against OA. EGFR, CASP3, MMP9, PPARG, and MAPK1 served as hub genes regulated by marmesine in the treatment of OA, and the molecular docking further verified the results. Conclusion Marmesine exerts the therapeutic effects against OA through multitarget and multipathways, in which EGFR, CASP3, MMP9, PPARG, and MAPK1 might be hub genes. Our research indicated that the combination of bioinformatics and network pharmacology could serve as an effective approach for investigating the potential mechanisms of natural product.
Collapse
|
21
|
Tereticornate A suppresses RANKL-induced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways. Biomed Pharmacother 2022; 151:113140. [PMID: 35605290 DOI: 10.1016/j.biopha.2022.113140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Excessive osteoclast differentiation and activation are closely associated with the development and progression of osteoporosis. Natural plant-derived compounds that can inhibit osteoclastogenesis are an efficient strategy for the prevention and treatment of osteoporosis. Tereticornate A (TA) is a natural terpene ester compound extracted from the leaves and branches of Eucalyptus gracilis, with antiviral, antibacterial, and anti-inflammatory activities. However, the effect of TA on osteoclastogenesis and the underlying molecular mechanism remain unclear. Based on the key role of the NF-κB pathway in the regulation of osteoclastogenesis and the observation that TA exhibits an anti-inflammatory effect by inhibiting NF-κB activity, we speculated that TA could exert anti-osteoclastogenesis activity. Herein, TA could inhibit the RANKL-induced osteoclast differentiation and formation of F-actin rings in RAW 264.7 cells. Mechanistically, TA downregulated the expression of c-Src and TRAF6, and also suppressed the RANKL-stimulated canonical RANK signaling pathways, including AKT, MAPK (p38, JNK, and ERK), and NF-κB; ultimately, downregulating the expression of NFATc1 and c-Fos, the key transcriptional factors required for the expression of genes (e.g., TRAP, cathepsin K, β-Integrin, MMP-9, ATP6V0D2, and DC-STAMP) that govern osteoclastogenesis. Our findings demonstrated that TA could effectively inhibit RANKL-induced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways. Thus, TA could serve as a novel osteoclastogenesis inhibitor and might have beneficial effects on bone health.
Collapse
|