1
|
Liang R, Zhang X, Wu S, Liu J, Zhai Y, Lin C, Wang Z, Zhang Y, Chen H, Zhu R. Deubiquitination of DNM1L by USP3 triggers the development and metastasis of gallbladder carcinoma. Biol Direct 2025; 20:47. [PMID: 40197257 PMCID: PMC11974142 DOI: 10.1186/s13062-025-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Patients diagnosed with gallbladder carcinoma (GBC) accompanied by hepatic metastasis exhibit unfavorable prognoses generally. Mitochondrial dysfunction promotes cellular transformation and cancer cell survival implicating its importance in cancer development. Previous studies have indicated that dynamin 1 like (DNM1L) is a key mediator of mitochondrial fission. However, whether DNM1L regulates mitochondrial homeostasis in GBC remains unknown. METHODS The morphological changes of mitochondria were investigated by transmission electron microscopy and mitoTracker red staining. Co-immunoprecipitation assay was performed to detect the interaction of ubiquitin-specific protease-3 (USP3) and DNM1L. The cell-derived xenograft and liver metastasis tumor models were established to validate the function of DNM1L in vivo. The metabolomics data from transcriptomics/metabolomics were analyzed to identify the differentially expressed genes/metabolites of DNM1L in GBC. RESULTS DNM1L exhibited a marked upregulation in clinical GBC tissues compared to the adjacent tissues, and it promoted proliferation, invasiveness, and migration capability of GBC cells by inducing mitochondrial dysfunction. Mice subcutaneously injected with DNM1L overexpression cells exhibited elevated intrahepatic metastatic nodules within their livers. USP3, a deubiquitinating enzyme, was demonstrated to directly interact with DNM1L and it specifically cleaved the K48-linked polyubiquitin chains to deubiquitinate and stabilize DNM1L. By integrating two omics, we found several altered pathways and speculated that DNM1L disturbed DNA synthesis and glycine, serine, threonine, and pyrimidine metabolism pathways. CONCLUSION Our findings suggest that DNM1L is a promising clinical target for GBC treatment and that focusing on DNM1L may provide new insights into GBC strategy.
Collapse
Affiliation(s)
- Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunpeng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaojie Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenya Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Chen
- Department of Lung Transplantation and Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Association between mitochondrial DNA copy number and production traits in pigs. J Anim Breed Genet 2025; 142:170-183. [PMID: 39189093 PMCID: PMC11812088 DOI: 10.1111/jbg.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Mitochondria are essential organelles in the regulation of cellular energetic metabolism. Mitochondrial DNA copy number (mtDNA_CN) can be used as a proxy for mitochondria number, size, and activity. The aims of our study are to evaluate the effect of mtDNA_CN and mitochondrial haploblocks on production traits in pigs, and to identify the genetic background of this cellular phenotype. We collected performance data of 234 pigs and extracted DNA from skeletal muscle. Whole-genome sequencing data was used to determine mtDNA_CN. We found positive correlations of muscle mtDNA_CN with backfat thickness at 207 d (+0.14; p-value = 0.07) and negative correlations with carcase loin thickness (-0.14; p-value = 0.03). Pigs with mtDNA_CN values below the lower quartile had greater loin thickness (+4.1 mm; p-value = 0.01) and lower backfat thickness (-1.1 mm; p-value = 0.08), which resulted in greater carcase lean percentage (+2.4%; p-value = 0.04), than pigs with mtDNA_CN values above the upper quartile. These results support the hypothesis that a reduction of mitochondrial activity is associated with greater feed efficiency. Higher mtDNA_CN was also positively correlated with higher meat ultimate pH (+0.19; p-value <0.01) but we did not observe significant difference for meat ultimate pH between the two groups with extreme mtDNA_CN. We found no association of the most frequent mitochondrial haploblocks with mtDNA_CN or the production traits, but several genomic regions that harbour potential candidate genes with functions related to mitochondrial biogenesis and homeostasis were associated with mtDNA_CN. These regions provide new insights into the genetic background of this cellular phenotype but it is still uncertain if such associations translate into noticeable effects on the production traits.
Collapse
Affiliation(s)
- Eduard Molinero
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Joan Estany
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
3
|
Jo S, Oh JH, Lee EJ, Choi M, Lee J, Lee S, Kim TW, Sung CO, Chung SJ. Mitochondrial DNA Copy Number as a Potential Biomarker for the Severity of Motor Symptoms and Prognosis in Parkinson's Disease. Mov Disord 2025; 40:502-510. [PMID: 39760477 DOI: 10.1002/mds.30098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Mitochondrial function influences Parkinson's disease (PD) through the accumulation of pathogenic alpha-synuclein, oxidative stress, impaired autophagy, and neuroinflammation. The mitochondrial DNA copy number (mtDNA-CN), representing the number of mitochondrial DNA copies within a cell, serves as an easily assessable proxy for mitochondrial function. OBJECTIVE This study aimed to assess the diagnostic and prognostic capabilities of mtDNA-CN in PD. METHODS We assessed mtDNA-CN in blood samples using whole genome sequencing from 405 patients with PD and 200 healthy controls (HC). We examined the relationship between mtDNA-CN levels and motor symptom severity in PD, as well as their association with dementia development in patients with early-PD (within 3 years of diagnosis). RESULTS mtDNA-CN levels were significantly lower in patients with PD compared with HC (P = 1.1 × 10-5). A negative correlation was discovered between mtDNA-CN level and motor severity in PD (correlation coefficient = -0.20; P = 0.008). Among 210 patients with early-PD, Cox regression analysis demonstrated an association between lower mtDNA-CN levels and a higher risk of developing dementia (hazard ratio [HR] = 0.41, 95% confidence interval: 0.20-0.86, P = 0.02), even after adjusting for age and blood cell count (HR = 0.41, 95% confidence interval: 0.18-0.92, P = 0.03). However, mtDNA-CN levels did not significantly correlate with motor progression in PD. CONCLUSION Our findings suggest that blood mtDNA-CN may function as a diagnostic biomarker for PD and a prognostic marker for dementia in patients with PD. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Oh
- Bioinformatics Core Laboratory, Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Moongwan Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sangjin Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Bioinformatics Core Laboratory, Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
5
|
Walter NM, Yde Ohki CM, Smigielski L, Walitza S, Grünblatt E. Investigating the impact of omega-3 fatty acids on oxidative stress and pro-inflammatory cytokine release in iPSC-derived forebrain cortical neurons from ADHD patients. J Psychiatr Res 2025; 182:257-269. [PMID: 39826376 DOI: 10.1016/j.jpsychires.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
6
|
Michael R, Modirzadeh T, Issa TB, Jurney P. Label-Free Visualization and Segmentation of Endothelial Cell Mitochondria Using Holotomographic Microscopy and U-Net. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625487. [PMID: 39677762 PMCID: PMC11642764 DOI: 10.1101/2024.11.26.625487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding the physiological processes underlying age-related cardiovascular disease (CVD) requires examination of endothelial cell (EC) mitochondrial networks, because mitochondrial function and adenosine triphosphate production are crucial in EC metabolism, and consequently influence CVD progression. Although current biochemical assays and immunofluorescence microscopy can reveal how mitochondrial function influences cellular metabolism, they cannot achieve live observation and tracking changes in mitochondrial networks through fusion and fission events. Holotomographic microscopy (HTM) has emerged as a promising technique for real-time, label-free visualization of ECs and their organelles, such as mitochondria. This non-destructive, non-interfering live cell imaging method offers unprecedented opportunities to observe mitochondrial network dynamics. However, because existing image processing tools based on immunofluorescence microscopy techniques are incompatible with HTM images, a machine-learning model is required. Here, we developed a model using a U-net learner with a Resnet18 encoder to identify four classes within HTM images: mitochondrial networks, cell borders, ECs, and background. This method accurately identifies mitochondrial structures and positions. With high accuracy and similarity metrics, the output image successfully provides visualization of mitochondrial networks within HTM images of ECs. This approach enables the study of mitochondrial networks and their effects, and holds promise in advancing understanding of CVD mechanisms.
Collapse
|
7
|
Fateh K, Mansoori F, Atashi A. The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs. Indian J Hematol Blood Transfus 2024; 40:638-646. [PMID: 39469179 PMCID: PMC11512953 DOI: 10.1007/s12288-024-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 10/30/2024] Open
Abstract
Over recent decades, UCB has been widely used as an excellent alternative source of HSCs for treating many hematologic disorders. Recent studies suggest using mesenchymal stroma cell co-cultures to increase the number of HSCs prior to transplantation. Considering the critical role of mitochondria in the cell's fate and the importance of the self-renewal capacity of HSCs in HSCT, we decided to investigate the mass/DNA copy number of mitochondria in HSCs while co-cultured with MSCs and alone after seven days. UCB units were collected from full-term deliveries. MSCs and HSCs were isolated from UCB and the purity of cells was confirmed by flow cytometry. The mtDNA-Copy Number of HSCs was calculated using prob-based real-time PCR. Furthermore, Mito Tracker Green dye measured the mass of mitochondria of HSCs. HSCs from MSC co-culture group showed significantly fewer mtDNA-CN compared to HSCs alone after seven days (p < 0.001). Besides, by comparing the two groups on day seven to HSCs on day zero, we observed a mild increase in the mitochondrial mass of HSCs alone compared to the MSC-HSC co-culture group (p < 0.05). Concerning previous studies that have proved the association between lower mass/DNA-copy number of mitochondria in CD34 + HSCs and lower metabolic activity along with higher quiescence maintenance, and by considering the results of this experiment, it seems that the MSC-HSC co-cultures might be associated with a higher expansion of HSCs as well as stemness maintenance leading to the improvement in engraftment. Nevertheless, further investigations are required to clarify the exact connection between lower mass/DNA-copy number of mitochondria and stemness maintenance in HSCs.
Collapse
Affiliation(s)
- Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansoori
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
8
|
Giuga M, Ferrito V, Calogero GS, Traina A, Bonsignore M, Sprovieri M, Pappalardo AM. Differential Cellular Response to Mercury in Non-Farmed Fish Species Based on Mitochondrial DNA Copy Number Variation Analysis. BIOLOGY 2024; 13:691. [PMID: 39336118 PMCID: PMC11429374 DOI: 10.3390/biology13090691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Mercury (Hg) pro-oxidant role on biological systems and its biogeochemical cycle represent a serious threat due to its persistence in marine environment. As the mitochondrial genome is exposed to reactive oxygen species (ROS), the aim of the present study is the validation of the variation in the number of mitochondrial DNA copies (mtDNAcn) as biomarker of oxidative stress in aquatic environment. During summer 2021, three selected fish species (Mullus barbatus, Diplodus annularis and Pagellus erythrinus) were collected in Augusta Bay, one of the most Mediterranean contaminated areas remarkable by past Hg inputs, and in a control area, both in the south-east of Sicily. The relative mtDNAcn was evaluated by qPCR on specimens of each species from both sites, characterized respectively by higher and lower Hg bioaccumulation. M. barbatus and P. erythrinus collected in Augusta showed a dramatic mtDNAcn reduction compared to their control groups while D. annularis showed an incredible mtDNAcn rising suggesting a higher resilience of this species. These results align with the mitochondrial dynamics of fission and fusion triggered by environmental toxicants. In conclusion, we suggest the implementation of the mtDNAcn variation as a valid tool for the early warning stress-related impacts in aquatic system.
Collapse
Affiliation(s)
- Marta Giuga
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Via De Marini 16, 16149 Genova, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Giada Santa Calogero
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Anna Traina
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Maria Bonsignore
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Via del Mare, 91021 Campobello di Mazara, Italy
| | - Mario Sprovieri
- National Research Council of Italy, Institute of Marine Sciences (ISMAR-CNR), Tesa 104-Arsenale, Castello 2737/F, 30122 Venezia, Italy
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| |
Collapse
|
9
|
Chen M, Deng S, Cao Y, Wang J, Zou F, Gu J, Mao F, Xue Y, Jiang Z, Cheng D, Huang N, Huang L, Cai K. Mitochondrial DNA Copy Number as a Biomarker for Guiding Adjuvant Chemotherapy in Stages II and III Colorectal Cancer Patients with Mismatch Repair Deficiency: Seeking Benefits and Avoiding Harms. Ann Surg Oncol 2024; 31:6320-6330. [PMID: 38985229 PMCID: PMC11300489 DOI: 10.1245/s10434-024-15759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status are conventionally perceived as unresponsive to adjuvant chemotherapy (ACT). The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA copy number (mtDNA-CN) expression. In light of previous findings indicating that the frequent truncating-mutation of TFAM affects the chemotherapy resistance of MSI CRC cells, this study aimed to explore the potential of mtDNA-CN as a predictive biomarker for ACT efficacy in dMMR CRC patients. METHODS Levels of MtDNA-CN were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) in a cohort of 308 CRC patients with dMMR comprising 180 stage II and 128 stage III patients. Clinicopathologic and therapeutic data were collected. The study examined the association between mtDNA-CN levels and prognosis, as well as the impact of ACT benefit on dMMR CRC patients. Subgroup analyses were performed based mainly on tumor stage and mtDNA-CN level. Kaplan-Meier and Cox regression models were used to evaluate the effect of mtDNA-CN on disease-free survival (DFS) and overall survival (OS). RESULTS A substantial reduction in mtDNA-CN expression was observed in tumor tissue, and higher mtDNA-CN levels were correlated with improved DFS (73.4% vs 85.7%; P = 0.0055) and OS (82.5% vs 90.3%; P = 0.0366) in dMMR CRC patients. Cox regression analysis identified high mtDNA-CN as an independent protective factor for DFS (hazard ratio [HR] 0.547; 95% confidence interval [CI] 0.321-0.934; P = 0.0270) and OS (HR 0.520; 95% CI 0.272-0.998; P = 0.0492). Notably, for dMMR CRC patients with elevated mtDNA-CN, ACT significantly improved DFS (74.6% vs 93.4%; P = 0.0015) and OS (81.0% vs 96.7%; P = 0.0017), including those with stage II or III disease. CONCLUSIONS The mtDNA-CN levels exhibited a correlation with the prognosis of stage II or III CRC patients with dMMR. Elevated mtDNA-CN emerges as a robust prognostic factor, indicating improved ACT outcomes for stages II and III CRC patients with dMMR. These findings suggest the potential utility of mtDNA-CN as a biomarker for guiding personalized ACT treatment in this population.
Collapse
Affiliation(s)
- Mian Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junnang Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Liu X, Li R, Xiu Z, Tang S, Duan Y. Toxicity mechanism of acrolein on energy metabolism disorder and apoptosis in human ovarian granulosa cells. Toxicology 2024; 506:153861. [PMID: 38866128 DOI: 10.1016/j.tox.2024.153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Acrolein (ACR), an unsaturated, highly reactive aldehyde, is a widespread environmental toxin. ACR exerts permanent and irreversible side effects on ovarian functions. Granulosa cells play a crucial role in supporting ovarian function. Thus, in this study, we investigated the toxicity effects of granulosa cells induced by ACR. Following treatment with varying ACR concentrations (0, 12.5, 25, 50, and 100 μM), we observed that ACR exposure induced reactive oxygen species accumulation, mitochondrial energy metabolism disorder, and apoptosis in KGN cells (a human ovarian granulosa cell line) in a dose-dependent manner. In addition, mitochondrial biogenesis in KGN cells displayed biphasic changes after ACR exposure, with activation at a low ACR dose (12.5 μM), but inhibition at higher ACR doses (≥50 μM). SIRT1/PGC-1α-mediated mitochondrial biogenesis is crucial for maintaining intracellular mitochondrial homeostasis and cellular function. The inhibition/activation of the SIRT1/PGC-1α pathway in KGN cells validated its role in ACR-induced damage. The results indicated that the inhibition of the SIRT1/PGC-1α pathway aggravated ACR-induced cell damage, whereas its activation partially counteracted ACR-induced cell damage. This study attempted to uncover a novel mechanism of ACR-induced ovarian toxicity so as to provide an effective treatment option for safeguarding female reproductive health from the adverse effects of ACR.
Collapse
Affiliation(s)
- Xueping Liu
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Rongxia Li
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Gynecology Medicine, The Second Hospital of Hebei Medicine University, Shijiazhuang, Hebei Province 050004, China
| | - Zi Xiu
- College of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Siling Tang
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Hebei Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, Hebei Province 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, Hebei Province 050091, China.
| |
Collapse
|
11
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Zakic T, Kalezic A, Drvendzija Z, Udicki M, Ivkovic Kapicl T, Srdic Galic B, Korac A, Jankovic A, Korac B. Breast Cancer: Mitochondria-Centered Metabolic Alterations in Tumor and Associated Adipose Tissue. Cells 2024; 13:155. [PMID: 38247846 PMCID: PMC10814287 DOI: 10.3390/cells13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The close cooperation between breast cancer and cancer-associated adipose tissue (CAAT) shapes the malignant phenotype, but the role of mitochondrial metabolic reprogramming and obesity in breast cancer remains undecided, especially in premenopausal women. Here, we examined mitochondrial metabolic dynamics in paired biopsies of malignant versus benign breast tumor tissue and CAAT in normal-weight and overweight/obese premenopausal women. Lower protein level of pyruvate dehydrogenase and citrate synthase in malignant tumor tissue indicated decreased carbon flux from glucose into the Krebs cycle, whereas the trend was just the opposite in malignant CAAT. Simultaneously, stimulated lipolysis in CAAT of obese women was followed by upregulated β-oxidation, as well as fatty acid synthesis enzymes in both tumor tissue and CAAT of women with malignant tumors, corroborating their physical association. Further, protein level of electron transport chain complexes was generally increased in tumor tissue and CAAT from women with malignant tumors, respective to obesity. Preserved mitochondrial structure in malignant tumor tissue was also observed. However, mitochondrial DNA copy number and protein levels of PGC-1α were dependent on both malignancy and obesity in tumor tissue and CAAT. In conclusion, metabolic cooperation between breast cancer and CAAT in premenopausal women involves obesity-related, synchronized changes in mitochondrial metabolism.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Zorka Drvendzija
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Mirjana Udicki
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Tatjana Ivkovic Kapicl
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
- Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia;
| | - Biljana Srdic Galic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Aleksandra Korac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
13
|
Woronzow V, Möhner J, Remane D, Zischler H. Generation of somatic de novo structural variation as a hallmark of cellular senescence in human lung fibroblasts. Front Cell Dev Biol 2023; 11:1274807. [PMID: 38152346 PMCID: PMC10751365 DOI: 10.3389/fcell.2023.1274807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cellular senescence is characterized by replication arrest in response to stress stimuli. Senescent cells accumulate in aging tissues and can trigger organ-specific and possibly systemic dysfunction. Although senescent cell populations are heterogeneous, a key feature is that they exhibit epigenetic changes. Epigenetic changes such as loss of repressive constitutive heterochromatin could lead to subsequent LINE-1 derepression, a phenomenon often described in the context of senescence or somatic evolution. LINE-1 elements decode the retroposition machinery and reverse transcription generates cDNA from autonomous and non-autonomous TEs that can potentially reintegrate into genomes and cause structural variants. Another feature of cellular senescence is mitochondrial dysfunction caused by mitochondrial damage. In combination with impaired mitophagy, which is characteristic of senescent cells, this could lead to cytosolic mtDNA accumulation and, as a genomic consequence, integrations of mtDNA into nuclear DNA (nDNA), resulting in mitochondrial pseudogenes called numts. Thus, both phenomena could cause structural variants in aging genomes that go beyond epigenetic changes. We therefore compared proliferating and senescent IMR-90 cells in terms of somatic de novo numts and integrations of a non-autonomous composite retrotransposons - the so-called SVA elements-that hijack the retropositional machinery of LINE-1. We applied a subtractive and kinetic enrichment technique using proliferating cell DNA as a driver and senescent genomes as a tester for the detection of nuclear flanks of de novo SVA integrations. Coupled with deep sequencing we obtained a genomic readout for SVA retrotransposition possibly linked to cellular senescence in the IMR-90 model. Furthermore, we compared the genomes of proliferative and senescent IMR-90 cells by deep sequencing or after enrichment of nuclear DNA using AluScan technology. A total of 1,695 de novo SVA integrations were detected in senescent IMR-90 cells, of which 333 were unique. Moreover, we identified a total of 81 de novo numts with perfect identity to both mtDNA and nuclear hg38 flanks. In summary, we present evidence for possible age-dependent structural genomic changes by paralogization that go beyond epigenetic modifications. We hypothesize, that the structural variants we observe potentially impact processes associated with replicative aging of IMR-90 cells.
Collapse
Affiliation(s)
- Valentina Woronzow
- Division of Anthropology, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonas Möhner
- Division of Anthropology, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel Remane
- Division of Anthropology, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- HOX Life Science GmbH, Frankfurt, Hessen, Germany
| | - Hans Zischler
- Division of Anthropology, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Al-Awadhi R, Alroomy M, Al-Waheeb S, Alwehaidah MS. Altered mitochondrial DNA copy number in cervical exfoliated cells among high‑risk HPV‑positive and HPV‑negative women. Exp Ther Med 2023; 26:521. [PMID: 37854504 PMCID: PMC10580246 DOI: 10.3892/etm.2023.12220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/16/2023] [Indexed: 10/20/2023] Open
Abstract
The majority of cervical cancer cases are due to human papillomavirus (HPV) infection. However, certain cases of cervical cancer are not caused by HPV. Recent studies have shown a link between altered mitochondrial DNA (mtDNA) copy number, an indicative measure of mitochondrial dysfunction, and cervical cancer in women who test positive for HPV. However, the role of the mtDNA copy number in HPV-negative cervical cancer has remained elusive. In the present study, the mtDNA copy number was determined using quantitative PCR as the ratio between mtDNA and nuclear DNA in 287 ThinPrep cervical samples, including 143 cases with cervical abnormalities and 144 control subjects with high-risk (hr)-HPV positive or HPV-negative status. In an overall analysis of cases categorized based on the cytology diagnosis into squamous cervical carcinoma/high-grade squamous intraepithelial lesions (SCC/HSIL), low-grade squamous intraepithelial lesions (LSIL) and normal controls, the mtDNA copy number was significantly higher in all cases compared to the controls and a higher mtDNA copy number was observed in SCC/HSIL compared to LSIL cases. In the stratification analyses based on hr-HPV positive and HPV-negative status, an increased mtDNA copy number was observed in the cases compared with the controls regardless of their HPV status (P<0.05). When cases with cervical abnormalities were categorized based on histological diagnosis into cervical intraepithelial neoplasia (CIN)2/CIN3 and CIN1, an overall analysis indicated an increased mtDNA copy number in CIN2/CIN3 compared to CIN1 (P=0.01). Stratification analyses of these cases based on HPV status revealed a higher mtDNA copy number in CIN2/CIN3 compared to CIN1 regardless of HPV infection (P<0.05). These results showed that an elevated mtDNA copy number in subjects with cervical abnormalities was not influenced by the HPV status and suggested the possibility of its role in the progression of cervical cancer. The increased mtDNA copy number may be an adaptive response mechanism to compensate for mtDNA oxidative stress and energy deficiency, possibly induced by HPV infection and other environmental exposures.
Collapse
Affiliation(s)
- Rana Al-Awadhi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah 90805, Kuwait
| | - Moody Alroomy
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah 90805, Kuwait
| | - Salah Al-Waheeb
- Cytology Laboratory, Maternity Hospital and Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait University, Jabriyah 90805, Kuwait
- Department of Pathology, Faculty of Medicine, Kuwait University, Jabriyah 90805, Kuwait
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah 90805, Kuwait
| |
Collapse
|
15
|
Zhong Y, Zeng K, Adnan A, Li YZ, Hou XK, Pan Y, Li A, Zhu XM, Lv P, Du Z, Yang Y, Yao J. Discrimination of monozygotic twins using mtDNA heteroplasmy through probe capture enrichment and massively parallel sequencing. Int J Legal Med 2023; 137:1337-1345. [PMID: 37270462 DOI: 10.1007/s00414-023-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Differentiating between monozygotic (MZ) twins remains difficult because they have the same genetic makeup. Applying the traditional STR genotyping approach cannot differentiate one from the other. Heteroplasmy refers to the presence of two or more different mtDNA copies within a single cell and this phenomenon is common in humans. The levels of heteroplasmy cannot change dramatically during transmission in the female germ line but increase or decrease during germ-line transmission and in somatic tissues during life. As massively parallel sequencing (MPS) technology has advanced, it has shown the extraordinary quantity of mtDNA heteroplasmy in humans. In this study, a probe hybridization technique was used to obtain mtDNA and then MPS was performed with an average sequencing depth of above 4000. The results showed us that all ten pairs of MZ twins were clearly differentiated with the minor heteroplasmy threshold at 1.0%, 0.5%, and 0.1%, respectively. Finally, we used a probe that targeted mtDNA to boost sequencing depth without interfering with nuclear DNA and this technique can be used in forensic genetics to differentiate the MZ twins.
Collapse
Affiliation(s)
- Yang Zhong
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Kuo Zeng
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Atif Adnan
- Department of Forensic Sciences, College of Criminal Justice, Naif University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Yu-Zhang Li
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ang Li
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China.
- China Medical University Center of Forensic Investigation, Chengdu, China.
| |
Collapse
|
16
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
17
|
Campolo J, Borghini A, Parolini M, Mercuri A, Turchi S, Andreassi MG. Clinical and Biological Predictors of Cancer Incidence and Mortality in Patients with Stable Coronary Artery Disease. Int J Mol Sci 2023; 24:11091. [PMID: 37446269 DOI: 10.3390/ijms241311091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Clinical and epidemiological evidence has recently revealed a link between coronary artery disease (CAD) and cancer. Shared risk factors and common biological pathways are probably involved in both pathological conditions. The aim of this paper was to evaluate whether and which conventional risk factors and novel circulating biomarkers could predict cancer incidence and death in patients with CAD. The study included 750 CAD patients, who underwent blood sampling for the evaluation of systemic inflammatory indexes (NLR and SII) and specific biomarkers of oxidative damage (leukocyte telomere length (LTL), mitochondrial DNA copy number (mtDNAcn)). Study participants were followed up for a mean of 5.4 ± 1.2 years. Sixty-seven patients (8.9%) developed cancer during the follow-up time, and nineteen (2.5%) died of cancer. Cox multivariable analysis revealed that age (HR = 1.071; 95% CI: 1.034-1.109; p < 0.001), smoking habit (HR = 1.994; 95% CI: 1.140-3.488; p = 0.016), obesity (HR = 1.708; 95% CI: 1.022-2.854; p = 0.041) and SII (HR = 1.002; 95% CI: 1.001-1.003; p = 0.045) were associated with cancer incidence, while only age (HR = 1.132; 95% CI: 1.052-1.219; p = 0.001) was a predictor of cancer death. Patients with lung and gastrointestinal cancers had significantly higher median mtDNAcn levels than those without cancer. Our study suggests that aggressive risk factor modification and suppression of chronic inflammation may be essential to preventing cancer in CAD patients.
Collapse
Affiliation(s)
- Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | | | - Marina Parolini
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | | | | | | |
Collapse
|
18
|
Zhang T, Sun Y, Wei J, Zhao G, Hao W, Lv Z, Chen X, Liu Y, Wei F. Shorter telomere length in children with autism spectrum disorder is associated with oxidative stress. Front Psychiatry 2023; 14:1209638. [PMID: 37333916 PMCID: PMC10272824 DOI: 10.3389/fpsyt.2023.1209638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Objective Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder caused by a complex interaction between genetic and environmental risk factors. The balance between antioxidant capacity and oxidative stress (OS) induced free radicals may be crucial during the pathophysiological development of ASD. Methods In this study, 96 children with ASD who met the diagnostic and statistical manual of mental disorders were collected, and the number of children in the typical development (TD) group was matched by 1:1. Digital PCR (dPCR) for telomere length (TL) expression in ASD in peripheral blood leukocytes. Urine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) content were measured by tandem triple quadrupole mass spectrometry and corrected by urinary creatinine levels. The levels of superoxide dismutase (SOD), catalase (CAT), and capacity (AOC) were detected by kits. Results The TL of the ASD group was shorter than the TD group (p < 0.01) and had some accurate predictive significance for the identification of ASD (AUC = 0.632, 95% CI: 0.533-0.710, p = 0.002). Both 8-OHdG content and SOD activity in the ASD group were significantly higher than those in the TD group (p < 0.05). Shortened TL (Monofactor: 2.20 (1.22, 3.96), p = 0.009; Multifactor: 2.22 (1.22, 4.00), p = 0.008) and reduced CAT activity (Monofactor: 2.31 (1.28, 4.17), p = 0.006; Multifactor: 2.31 (1.28, 4.18), p = 0.006) are risk factors for the development of ASD, while reduced 8-OHdG content (Monofactor: 0.29 (0.14, 0.60), p = 0.001; Multifactor: 0.27 (0.13, 0.57), p = 0.001) and reduced SOD activity (Monofactor: 0.55 (0.31, 0.98), p = 0.042; Multifactor: 0.54 (0.30, 0.98), p = 0.042) are protective factors for the development of ASD. Conclusion In this study, TL and OS were significantly different between the ASD group and the TD group. As guanine-rich telomere sequences were likely damaged by oxygen free radicals, creating OS, which is a factor in the incidence and progression of ASDs. In conclusion, oxidative damage occurs in the bodies of children with ASD, which may lead to sustained disease progression and severe clinical manifestations. We assume that timely supplementation of antioxidants is very likely to be a potential treatment for early intervention in children with ASD. Identification and detection of OS-related biomarkers may contribute to early diagnosis and timely interventions in young patients with ASD.
Collapse
Affiliation(s)
- Tong Zhang
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanan Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Jing Wei
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Guoqiang Zhao
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Wenqi Hao
- The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhihai Lv
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Xiaohang Chen
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanan Liu
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Fengxiang Wei
- Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
19
|
Antarctic krill extracts enhance muscle regeneration and muscle function via mammalian target of rapamycin regulation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
20
|
Darvin P, Sasidharan Nair V. Editorial: Understanding mitochondrial dynamics and metabolic plasticity in cancer stem cells: Recent advances in cancer treatment and potential therapeutic approaches. Front Oncol 2023; 13:1155774. [PMID: 36998468 PMCID: PMC10043494 DOI: 10.3389/fonc.2023.1155774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Pramod Darvin
- Cancer Research Division, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- *Correspondence: Pramod Darvin, ; Varun Sasidharan Nair,
| | - Varun Sasidharan Nair
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Pramod Darvin, ; Varun Sasidharan Nair,
| |
Collapse
|
21
|
Gallo Cantafio ME, Torcasio R, Viglietto G, Amodio N. Non-Coding RNA-Dependent Regulation of Mitochondrial Dynamics in Cancer Pathophysiology. Noncoding RNA 2023; 9:ncrna9010016. [PMID: 36827549 PMCID: PMC9964195 DOI: 10.3390/ncrna9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondria are essential organelles which dynamically change their shape and number to adapt to various environmental signals in diverse physio-pathological contexts. Mitochondrial dynamics refers to the delicate balance between mitochondrial fission (or fragmentation) and fusion, that plays a pivotal role in maintaining mitochondrial homeostasis and quality control, impinging on other mitochondrial processes such as metabolism, apoptosis, mitophagy, and autophagy. In this review, we will discuss how dysregulated mitochondrial dynamics can affect different cancer hallmarks, significantly impacting tumor growth, survival, invasion, and chemoresistance. Special emphasis will be given to emerging non-coding RNA molecules targeting the main fusion/fission effectors, acting as novel relevant upstream regulators of the mitochondrial dynamics rheostat in a wide range of tumors.
Collapse
Affiliation(s)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
22
|
Paolini E, Longo M, Corsini A, Dongiovanni P. The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH. Int J Mol Sci 2023; 24:ijms24032331. [PMID: 36768654 PMCID: PMC9916898 DOI: 10.3390/ijms24032331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- IRCCS Multimedica, 20099 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5032-0296
| |
Collapse
|