1
|
Namwan N, Senawong G, Phaosiri C, Kumboonma P, Somsakeesit LO, Samankul A, Leerat C, Senawong T. Synergistic Anti-Cancer Activities of Curcumin Derivative CU17 Combined with Gemcitabine Against A549 Non-Small-Cell Lung Cancer Cells. Pharmaceutics 2025; 17:158. [PMID: 40006525 PMCID: PMC11858881 DOI: 10.3390/pharmaceutics17020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Recently, the curcumin derivative CU17 possessing HDAC inhibitory activity has been shown to synergistically enhance the anti-proliferative activity of Gem against lung cancer cells. Nevertheless, the mechanism(s) underlying the synergistic anti-cancer effect remains to be investigated. This study aimed to investigate the mechanisms that underpin the anti-cancer activity of the combined Gem and CU17 against NSCLC A549 cells both in vitro and in mouse xenograft models. CU17 was successfully synthesized and subsequently investigated for its combination effects with Gem on inductions of cell cycle arrest and apoptosis in A549 cells. The combination treatment substantially decreased cell survival through S phase prolongation and G2/M phase cell cycle arrest via up-regulating the expressions of p21 and p53 proteins. Additionally, CU17 potentiated the apoptotic effect of Gem in A549 cells by increasing the Bax/Bcl-2 ratio. The co-treatment resulted in an up-regulation of pERK1/2 and Ac-H3 expression. An in vivo study demonstrated that CU17 significantly improved the anti-cancer effect of Gem in nude mice utilizing A549 cell xenografts. The hematoxylin and eosin (H&E) staining results indicated that CU17 decreased the toxicity of Gem to the liver, kidneys, and spleen. Overall, CU17 enhanced the effectiveness of Gem while decreasing its toxicity. This compound shows promise as a chemosensitizer for NSCLC treatment with Gem.
Collapse
Affiliation(s)
- Narissara Namwan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Chanokbhorn Phaosiri
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand;
| | - La-or Somsakeesit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen 40000, Thailand;
| | - Arunta Samankul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Chadaporn Leerat
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| |
Collapse
|
2
|
Kim HH, Lee SY, Lee DH. Apoptosis of Pancreatic Cancer Cells after Co-Treatment with Eugenol and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Cancers (Basel) 2024; 16:3092. [PMID: 39272950 PMCID: PMC11394607 DOI: 10.3390/cancers16173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic cancer is a refractory cancer with limited treatment options. Various cancer types are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Eugenol, the main component of clove oil, exhibits anticancer, anti-inflammatory, and antioxidant effects. However, no studies have reported that eugenol increases TRAIL sensitivity by upregulating death receptor (DR) expression. Here, we aimed to investigate eugenol as a potent TRAIL sensitizer. Increased apoptosis and inhibition of cell proliferation was observed in pancreatic cancer cells treated with eugenol and TRAIL compared with those treated with eugenol alone. Eugenol upregulated the expression of DR5, inhibited the FLICE-inhibitory protein (FLIP), an anti-apoptotic protein, and increased p53, a tumor suppressor protein. In addition, eugenol induced the generation of reactive oxygen species (ROS) and caused endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) knockdown using siRNA decreased the expression of DR5 and reduced the combined effects of eugenol and TRAIL. These results demonstrate that eugenol enhances TRAIL-induced apoptosis by upregulating DR5 through the ROS-mediated ER stress-CHOP pathway, which enhances ER stress by inducing p53 and downregulating FLIP expression. This suggests that eugenol has the potential to treat pancreatic cancer by increasing cell sensitivity to TRAIL.
Collapse
Affiliation(s)
- Hyun Hee Kim
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung 25457, Republic of Korea
| | - Suk-Young Lee
- Department of Pathology, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Dae-Hee Lee
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung 25457, Republic of Korea
| |
Collapse
|
3
|
Esposito E, Ferrara F, Drechsler M, Bortolini O, Ragno D, Toldo S, Bondi A, Pecorelli A, Voltan R, Secchiero P, Zauli G, Valacchi G. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life (Basel) 2024; 14:155. [PMID: 38276284 PMCID: PMC10817472 DOI: 10.3390/life14010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Rebecca Voltan
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| |
Collapse
|
4
|
Romani A, Zauli E, Zauli G, AlMesfer S, Al-Swailem S, Voltan R. MDM2 inhibitors-mediated disruption of mitochondrial metabolism: A novel therapeutic strategy for retinoblastoma. Front Oncol 2022; 12:1000677. [PMID: 36338723 PMCID: PMC9632280 DOI: 10.3389/fonc.2022.1000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
MDM2 is the principal inhibitor of p53, and MDM2 inhibitors can disrupt the physical interaction between MDM2 and p53. The half-life of p53 is very short in normal cells and tissues, and an uncontrolled increase in p53 levels has potential harmful effects. It has been shown that p53 is frequently mutated in most cancers; however, p53 mutations are rare in retinoblastoma. Therefore, therapeutic strategies aimed at increasing the expression levels of wild-type p53 are attractive. In this minireview, we discuss the potential use of nutlin-3, the prototype small molecule inhibitor that disrupts the MDM2-p53 interaction, for the treatment of retinoblastoma. Although p53 has pleiotropic biological effects, the functions of p53 depend on its sub-cellular localization. In the nucleus, p53 induces the transcription of a vast array of genes, while in mitochondria, p53 regulates mitochondrial metabolism. This review also discusses the relative contribution of p53-mediated gene transcription and mitochondrial perturbation for retinoblastoma treatment.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
- *Correspondence: Rebecca Voltan,
| |
Collapse
|
5
|
de Bakker T, Journe F, Descamps G, Saussez S, Dragan T, Ghanem G, Krayem M, Van Gestel D. Restoring p53 Function in Head and Neck Squamous Cell Carcinoma to Improve Treatments. Front Oncol 2022; 11:799993. [PMID: 35071005 PMCID: PMC8770810 DOI: 10.3389/fonc.2021.799993] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
TP53 mutation is one of the most frequent genetic alterations in head and neck squamous cell carcinoma (HNSCC) and results in an accumulation of p53 protein in tumor cells. This makes p53 an attractive target to improve HNSCC therapy by restoring the tumor suppressor activity of this protein. Therapeutic strategies targeting p53 in HNSCC can be divided into three categories related to three subtypes encompassing WT p53, mutated p53 and HPV-positive HNSCC. First, compounds targeting degradation or direct inhibition of WT p53, such as PM2, RITA, nutlin-3 and CH1iB, achieve p53 reactivation by affecting p53 inhibitors such as MDM2 and MDMX/4 or by preventing the breakdown of p53 by inhibiting the proteasomal complex. Second, compounds that directly affect mutated p53 by binding it and restoring the WT conformation and transcriptional activity (PRIMA-1, APR-246, COTI-2, CP-31398). Third, treatments that specifically affect HPV+ cancer cells by targeting the viral enzymes E6/E7 which are responsible for the breakdown of p53 such as Ad-E6/E7-As and bortezomib. In this review, we describe and discuss p53 regulation and its targeting in combination with existing therapies for HNSCC through a new classification of such cancers based on p53 mutation status and HPV infection.
Collapse
Affiliation(s)
- Tycho de Bakker
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Géraldine Descamps
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Tatiana Dragan
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
7
|
Banhasasim-Tang Ameliorates Spatial Memory by Suppressing Oxidative Stress through Regulation of ERK/p38 Signaling in Hippocampus of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6970578. [PMID: 34900088 PMCID: PMC8660254 DOI: 10.1155/2021/6970578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.
Collapse
|
8
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
9
|
Tanshinone IIA Inhibits Osteosarcoma Growth through a Src Kinase-Dependent Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563691. [PMID: 34422073 PMCID: PMC8376467 DOI: 10.1155/2021/5563691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
Introduction Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.
Collapse
|
10
|
Abo-Kadoum MA, Assad M, Uae M, Nzaou SAE, Gong Z, Moaaz A, Teweldebrhan S, Eltoukhy A, Xuefeng A, Chen Y, Xie J. Mycobacterium tuberculosis RKIP (Rv2140c) dephosphorylates ERK/NF-κB upstream signaling molecules to subvert macrophage innate immune response. INFECTION GENETICS AND EVOLUTION 2021; 94:105019. [PMID: 34333158 DOI: 10.1016/j.meegid.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) survival and virulence largely reside on its ability to manipulate the host immune response. We have previously shown that M. tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c regulates diverse phosphorylation events in M. smegmatis. However, its role during infection is unknown. In this report, we show that Rv2140c can mimic the mammalian RKIP function. Rv2140c inhibit the activation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) via decreasing the phosphorylation capacity of upstream mediators MEK1, ERK1/2, and IKKα/β, thus leading to a reduction in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. This effect can be reversed by RKIP inhibitor locostatin. Furthermore Rv2140c mediates apoptosis associated with activation of caspases cascades. This modulation enhances the intracellular survival of M. smegmatis within macrophage. We propose that Rv2140c is a multifunctional virulence factor and a promising novel anti-Tuberculosis drug target.
Collapse
Affiliation(s)
- M A Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch 71524, Egypt
| | - Mohammed Assad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Khartoum, Sudan
| | - Moure Uae
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Stech A E Nzaou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Asmaa Moaaz
- The state key laboratory of silkworm genome biology, Southwest University, Chongqing 400716, China
| | - Samson Teweldebrhan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch 71524, Egypt; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai Xuefeng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Dadong District, Shenyang City, Liaoning 110044, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
11
|
Zearalenone Induces Endothelial Cell Apoptosis through Activation of a Cytosolic Ca 2+/ERK1/2/p53/Caspase 3 Signaling Pathway. Toxins (Basel) 2021; 13:toxins13030187. [PMID: 33806711 PMCID: PMC8001463 DOI: 10.3390/toxins13030187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that has been reported to damage various types of cells/tissues, yet its effects on endothelial cells (ECs) have never been investigated. Therefore, this study investigates the potential effects of ZEN using bovine aortic ECs (BAECs). In this study, we found that ZEN induced apoptosis of BAECs through increased cleavage of caspase 3 and poly ADP-ribose polymerase (PARP). ZEN also increased phosphorylation of ERK1/2 and p53, and treatment with the ERK1/2 or p53 inhibitor reversed ZEN-induced EC apoptosis. Transfection of BAECs with small interfering RNA against ERK1/2 or p53 revealed ERK1/2 as an upstream target of p53 in ZEN-stimulated apoptosis. ZEN increased the production of reactive oxygen species (ROS), yet treatment with the antioxidant did not prevent EC apoptosis. Similarly, blocking of estrogen receptors by specific inhibitors also did not prevent ZEN-induced apoptosis. Finally, chelation of cytosolic calcium (Ca2+) using BAPTA-AM or inhibition of endoplasmic reticulum (ER) Ca2+ channel using 2-APB reversed ZEN-induced EC apoptosis, but not by inhibiting ER stress using 4-PBA. Together, our findings demonstrate that ZEN induces EC apoptosis through an ERK1/2/p53/caspase 3 signaling pathway activated by Ca2+ release from the ER, and this pathway is independent of ROS production and estrogen receptor activation.
Collapse
|
12
|
Roy S, Laroche-Clary A, Verbeke S, Derieppe MA, Italiano A. MDM2 Antagonists Induce a Paradoxical Activation of Erk1/2 through a P53-Dependent Mechanism in Dedifferentiated Liposarcomas: Implications for Combinatorial Strategies. Cancers (Basel) 2020; 12:cancers12082253. [PMID: 32806555 PMCID: PMC7465494 DOI: 10.3390/cancers12082253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
The MDM2 gene is amplified in dedifferentiated liposarcoma (DDLPS). Treatment with MDM2 antagonists is a promising strategy to treat DDLPS; however, drug resistance is a major limitation when these drugs are used as a single agent. This study examined the impact of MDM2 antagonists on the mitogen-activated protein kinase (MAPK) pathway in DDLPS and investigated the potential synergistic activity of a MAPK kinase (MEK) inhibitor in combination with MDM2 antagonists. We identified a synergistic effect and identified the mechanism behind it. Combination effects of MDM2 antagonists and a MEK inhibitor were analyzed in a patient-derived xenograft mouse model and in DDLPS and leiomyosarcoma cell lines using different cell proliferation assays and immunoblot analysis. MDM2 antagonist (RG7388)-resistant IB115 [P4] cells and p53-silenced DDLPS cells were also established to understand the importance of functional p53. We found that MDM2 antagonists induced an upregulation of phosphorylated extracellular signal-regulated kinase (p-ERK) in DDLPS cells. The upregulation of p-ERK occurred due to mitochondrial translocation of p53, which resulted in increased production of reactive oxygen species, causing the activation of receptor tyrosine kinases (RTKs). Activated RTKs led to the activation of the downstream MEK/ERK signaling pathway. Treatment with a MEK inhibitor resulted in decreased expression of p-ERK, causing significant anti-tumor synergy when combined with MDM2 antagonists. Our results provide a framework for designing clinical studies of combination therapies in DDLPS patients.
Collapse
Affiliation(s)
- Shomereeta Roy
- Sarcoma Unit, Institut Bergonié, 33000 Bordeaux, France; (S.R.); (A.L.-C.); (S.V.)
- University of Bordeaux, 33400 Talence, France
| | - Audrey Laroche-Clary
- Sarcoma Unit, Institut Bergonié, 33000 Bordeaux, France; (S.R.); (A.L.-C.); (S.V.)
- Sarcoma Unit, INSERM U1218, Institut Bergonié, 33000 Bordeaux, France
| | - Stephanie Verbeke
- Sarcoma Unit, Institut Bergonié, 33000 Bordeaux, France; (S.R.); (A.L.-C.); (S.V.)
- Sarcoma Unit, INSERM U1218, Institut Bergonié, 33000 Bordeaux, France
| | | | - Antoine Italiano
- Sarcoma Unit, Institut Bergonié, 33000 Bordeaux, France; (S.R.); (A.L.-C.); (S.V.)
- University of Bordeaux, 33400 Talence, France
- Sarcoma Unit, INSERM U1218, Institut Bergonié, 33000 Bordeaux, France
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
13
|
Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P, Li S. Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med 2020; 10:e41. [PMID: 32508052 PMCID: PMC7403727 DOI: 10.1002/ctm2.41] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are among the most prominent cells during the desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC). However, CAFs are heterogeneous and the precise origins are not fully elucidated. This study aimed to explore whether monocytes can transdifferentiate into fibroblasts in PDAC and evaluate the clinical significance of this event. METHODS CD14+ monocytes were freshly isolated from human peripheral blood. Immunofluorescence, reverse transcription-quantitative PCR, western blot, flow cytometry and enzyme-linked immunosorbent assay were used to detect the expression of αSMA, fibronectin, and other relevant molecules. In addition, latex beads with a mean particle size of 2.0 µm were used to assess the phagocytic capacity. Moreover, RNA sequencing (RNA-seq) was performed to identify the differences induced by H2 O2 and the underlying mechanisms. RESULTS Immunofluorescence identified αSMA and fibroblast-specific protein 1 expression by tumor-associated macrophages in PDAC. The in vitro experiment revealed that oxidative stress (H2 O2 or radiation) induced monocyte-to-myofibroblast transdifferentiation (MMT), as identified by upregulated αSMA expression at both the RNA and protein levels. In addition, compared with freshly isolated monocytes, human monocyte-derived macrophages increased fibronectin expression. RNA-seq analysis identified p53 activation and other signatures accompanying this transdifferentiation; however, the p53 stabilizer nutlin-3 induced αSMA expression through reactive oxygen species generation but not through the p53 transcription/mitochondria-dependent pathway, whereas the p38 inhibitor SB203580 could partially inhibit αSMA expression. Finally, MMT produced a unique subset of CAFs with reduced phagocytic capacity that could promote the proliferation of pancreatic cancer cells. CONCLUSIONS Oxidative stress in the tumor microenvironment could induce MMT in PDAC, thus inducing reactive stroma, modulating immunosuppression, and promoting tumor progression. Reducing oxidative stress may be a promising future therapeutic regimen.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Chaobin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xin Hua
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Anna Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Hepatic SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Yize Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shuxin Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Fangting Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Jun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
14
|
Chen F, Zeng Y, Qi X, Chen Y, Ge Z, Jiang Z, Zhang X, Dong Y, Chen H, Yu Z. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2115-2127. [PMID: 29898423 DOI: 10.1016/j.nano.2018.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
We previously developed salinomycin (sali)-entrapped nanoparticles labeled with CD133 aptamers which could efficiently eliminate CD133+ osteosarcoma cancer stem cells (CSCs). However, sufficient evidences suggest that the simultaneous targeting both CSCs and cancer cells is pivotal in achieving preferable cancer therapeutic efficacy, due to the spontaneous conversion between cancer cells and CSCs. We hereby constructed sali-entrapped lipid-polymer nanoparticles labeled with CD133 and EGFR aptamers (CESP) to target both osteosarcoma cells and CSCs. The cytotoxicity of CESP in osteosarcoma cells and CSCs was superior to that of single targeting or nontargeted sali-loaded nanoparticles. Administration of CESP in vivo showed the best efficacy in inhibiting tumor growth than other controls in osteosarcoma-bearing mice. Thus, CESP was demonstrated to be capable of efficiently targeting both osteosarcoma CSCs and cancer cells, and it represents an effective potential approach to treat osteosarcoma.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Central Hospital of Minhang District, Shanghai, China
| | - Xiaoxia Qi
- The Wound Care Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yanchao Chen
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhe Ge
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zengxin Jiang
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xinchao Zhang
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yinmei Dong
- Center of Clinical and Translational Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Huaiwen Chen
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, China; Center of Clinical and Translational Medicine, Shanghai Changhai Hospital, Shanghai, China.
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget 2017; 7:17009-20. [PMID: 26958937 PMCID: PMC4941367 DOI: 10.18632/oncotarget.7927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/09/2016] [Indexed: 12/29/2022] Open
Abstract
Oroxylin A is a flavonoid extracted from the root of Scutellaria baicalensis Georgi. We previously demonstrated that oroxylin A induced apoptosis in human colon cancer cells via the mitochondrial pathway. In the present study, we investigated the underlying mechanisms responsible for the mitochondrial apoptotic pathway triggered by oroxylin A. p53 regulates mitochondrial survival, mitochondrial DNA integrity, and protection from oxidative stress. We determined that oroxylin A induces p53 mitochondrial translocation and inhibits SOD2 activity. Additionally, our studies demonstrate that oroxylin A promotes the formation and mitochondrial translocation of the p53-Recql4 complex in HCT-116 cells. Finally, we showed that oroxylin A triggers cytosolic p53 activation, thereby promoting apoptosis. Mitochondrial translocation of p53 was also validated in vivo. Thus, oroxylin A induces mitochondrial translocation of p53 and leads to mitochondrial dysfunction in human colon cancer cells.
Collapse
|
16
|
Way L, Faktor J, Dvorakova P, Nicholson J, Vojtesek B, Graham D, Ball KL, Hupp T. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3. Proteomics 2017; 16:2327-44. [PMID: 27273042 PMCID: PMC5026170 DOI: 10.1002/pmic.201500501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells.
Collapse
Affiliation(s)
- Luke Way
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petra Dvorakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Judith Nicholson
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Kathryn L Ball
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK. .,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
17
|
Deryabin PI, Borodkina AV, Nikolsky NN, Burova EB. The relationship between p53/p21/Rb and MAPK signaling pathways in human endometrium-derived stem cells under oxidative stress. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16030056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Harajly M, Zalzali H, Nawaz Z, Ghayad SE, Ghamloush F, Basma H, Zainedin S, Rabeh W, Jabbour M, Tawil A, Badro DA, Evan GI, Saab R. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells. Mol Cell Biol 2016; 36:438-51. [PMID: 26598601 PMCID: PMC4719431 DOI: 10.1128/mcb.00747-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/23/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19(Arf) expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors.
Collapse
Affiliation(s)
- Mohamad Harajly
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Zafar Nawaz
- Cytogenetics and Molecular Cytogenetic Laboratory, Hamad General Hospital, Doha, Qatar
| | - Sandra E Ghayad
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Farah Ghamloush
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hussein Basma
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samiha Zainedin
- Cytogenetics and Molecular Cytogenetic Laboratory, Hamad General Hospital, Doha, Qatar
| | - Wissam Rabeh
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mark Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Danielle A Badro
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
19
|
Laroche A, Tran-Cong K, Chaire V, Lagarde P, Hostein I, Coindre JM, Chibon F, Neuville A, Lesluyes T, Lucchesi C, Italiano A. Heterogeneous Mechanisms of Secondary Resistance and Clonal Selection in Sarcoma during Treatment with Nutlin. PLoS One 2015; 10:e0137794. [PMID: 26427052 PMCID: PMC4591276 DOI: 10.1371/journal.pone.0137794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/21/2015] [Indexed: 01/11/2023] Open
Abstract
Nutlin inhibits TP53-MDM2 interaction and is under investigation in soft-tissue sarcomas (STS) and other malignancies. Molecular mechanisms of secondary resistance to nutlin in STS are unknown. We performed whole-transcriptome sequencing (RNA-seq) on three pretreatment and secondary resistant STS cell lines selected based on their high primary sensitivity to nutlin. Our data identified a subset of cancer gene mutations and ploidy variations that were positively selected following treatment, including TP53 mutations in 2 out of 3 resistant cell lines. Further, secondary resistance to nutlin was associated with deregulation of apoptosis-related genes and marked productive autophagy, the inhibition of which resulted in significant restoration of nutlin-induced cell death. Collectively, our findings argue that secondary resistance to nutlin in STS involved heterogeneous mechanisms resulting from clonal evolution and several biological pathways. Alternative dosing regimens and combination with other targeted agents are needed to achieve successful development of nutlin in the clinical setting.
Collapse
Affiliation(s)
- Audrey Laroche
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - Kevin Tran-Cong
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - Vanessa Chaire
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - Pauline Lagarde
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | | | - Jean-Michel Coindre
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
- Pathology Department, Institut Bergonié, Bordeaux, France
| | - Frederic Chibon
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - Agnes Neuville
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
- Pathology Department, Institut Bergonié, Bordeaux, France
| | - Tom Lesluyes
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - Carlo Lucchesi
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - Antoine Italiano
- INSERM U916, Institut Bergonié, Bordeaux, France
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| |
Collapse
|
20
|
Zubbair Malik M, Ali S, Alam MJ, Ishrat R, Brojen Singh RK. Dynamics of p53 and Wnt cross talk. Comput Biol Chem 2015; 59 Pt B:55-66. [PMID: 26375870 DOI: 10.1016/j.compbiolchem.2015.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/07/2015] [Accepted: 07/27/2015] [Indexed: 01/10/2023]
Abstract
We present the mechanism of interaction of Wnt network module, which is responsible for periodic somitogenesis, with p53 regulatory network, which is one of the main regulators of various cellular functions, and switching of various oscillating states by investigating p53-Wnt model. The variation in Nutlin concentration in p53 regulating network drives the Wnt network module to different states, stabilized, damped and sustain oscillation states, and even to cycle arrest. Similarly, the change in Axin2 concentration in Wnt could able to modulate the p53 dynamics at these states. We then solve the set of coupled ordinary differential equations of the model using quasi steady state approximation. We, further, demonstrate the change of p53 and GSK3 interaction rate, due to hypothetical catalytic reaction or external stimuli, can able to regulate the dynamics of the two network modules, and even can control their dynamics to protect the system from cycle arrest (apoptosis).
Collapse
Affiliation(s)
- Md Zubbair Malik
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Md Jahoor Alam
- College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail, Kingdom of Saudi Arabia; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
21
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015; 35:600-4. [DOI: 10.3109/10799893.2015.1030412] [Citation(s) in RCA: 902] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Sullivan KD, Palaniappan VV, Espinosa JM. ATM regulates cell fate choice upon p53 activation by modulating mitochondrial turnover and ROS levels. Cell Cycle 2015; 14:56-63. [PMID: 25483068 PMCID: PMC4614823 DOI: 10.4161/15384101.2014.973330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022] Open
Abstract
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - Vignesh V Palaniappan
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| |
Collapse
|
23
|
Lee SY, Choi HC, Choe YJ, Shin SJ, Lee SH, Kim HS. Nutlin-3 induces BCL2A1 expression by activating ELK1 through the mitochondrial p53-ROS-ERK1/2 pathway. Int J Oncol 2014; 45:675-82. [PMID: 24867259 DOI: 10.3892/ijo.2014.2463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/07/2014] [Indexed: 11/06/2022] Open
Abstract
Nutlin-3 which occupies the p53 binding pocket in HDM2, has been reported to activate apoptosis through both the transcriptional activity-dependent and -independent programs of p53. Transcription-independent apoptosis by nutlin-3 is triggered by p53 which is translocated to mitochondria. However, we previously demonstrated that the nutlin-3-induced mitochondrial translocation of p53 stimulates ERK1/2 activation, an anti-apoptosis signal, via mitochondrial ROS generation. We report on how nutlin-3-stimulated ERK1/2 activity inhibits p53-induced apoptosis. Among the anti-apoptotic BCL2 family proteins, BCL2A1 expression was increased by nutlin-3 at both the mRNA and protein levels, and this increase was prevented by the inhibition of ERK1/2. TEMPO, a ROS scavenger, and PFT-μ , a blocker of the mitochondrial translocation of p53, also inhibited BCL2A1 expression as well as ERK1/2 phosphorylation. In addition, nutlin-3 stimulated phosphorylation of ELK1, which was prevented by all compounds that inhibited nutlin-3-induced ERK1/2 such as U0126, PFT-μ and TEMPO. Moreover, an increase in BCL2A1 expression was weakened by the knockdown of ELK1. Finally, nutlin-3-induced apoptosis was found to be potentiated by the knockdown of BCL2A1, as demonstrated by an increase of in hypo-diploidic cells and Annexin V-positive cells. Parallel to the increase in apoptotic cells, the knockdown of BCL2A1 augmented the cleavage of poly(ADP-ribose) polymerase-1. It is noteworthy that the augmented levels of apoptosis induced by the knockdown of BCL2A1 were comparable to those of apoptosis induced by U0126. Collectively, these results suggest that nutlin-3-activated ERK1/2 may stimulate the transcription of BCL2A1 via the activation of ELK1, and BCL2A1 expression may contribute to the inhibitory effect of ERK1/2 on nutlin-3-induced apoptosis, thereby constituting a negative feedback loop of p53-induced apoptosis.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Hyun Chul Choi
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Yun-Jeong Choe
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Sug Hyung Lee
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
24
|
Ohnishi T, Bandow K, Kakimoto K, Kusuyama J, Matsuguchi T. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages. PLoS One 2014; 9:e87229. [PMID: 24504121 PMCID: PMC3913600 DOI: 10.1371/journal.pone.0087229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/26/2013] [Indexed: 01/18/2023] Open
Abstract
N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.
Collapse
Affiliation(s)
- Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
25
|
Choe YJ, Lee SY, Ko KW, Shin SJ, Kim HS. Nutlin-3 induces HO-1 expression by activating JNK in a transcription-independent manner of p53. Int J Oncol 2013; 44:761-8. [PMID: 24366007 DOI: 10.3892/ijo.2013.2227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/19/2013] [Indexed: 11/06/2022] Open
Abstract
A recent study reported that p53 can induce HO-1 by directly binding to the putative p53 responsive element in the HO-1 promoter. In this study, we report that nutlin-3, a small molecule antagonist of HDM2, induces the transcription of HO-1 in a transcription-independent manner of p53. Nutlin-3 induced HO-1 expression at the level of transcription in human cancer cells such as U2OS and RKO cells. This induction of HO-1 did not occur in SAOS cells in which p53 was mutated and was prevented by knocking down the p53 protein using p53 siRNA transfection, but not by PFT-α, an inhibitor of the transcriptional activity of p53. Accompanying HO-1 expression, nutlin-3 stimulated the accumulation of ROS and the phosphorylation of MAPKs such as JNK, p38 MAPK and ERK1/2. Nutlin-3-induced HO-1 expression was suppressed by TEMPO, a ROS scavenger, and chemical inhibitors of JNK and p38 MAPK but not ERK1/2. In addition, nutlin‑3-induced phosphorylation of JNK but not p38 MAPK was inhibited by TEMPO. Notably, the levels of nutlin-3-induced ROS were correlated with the mitochondrial translocation of p53 and this induction was prevented by PFT-μ, an inhibitor of the mitochondrial translocation of p53. Consistent with the effect of the ROS scavenger and MAPK inhibitors, PFT-μ reduced HO-1 expression and the phosphorylation of JNK induced by nutlin-3. In the experiments of analyzing cell death, the knockdown of HO-1 augmented nutlin-3-induced apoptosis. Collectively, these results suggest that nutlin-3 induces HO-1 expression via the activation of both JNK which is dependent on ROS generated by p53 translocated to the mitochondria and p38 MAPK which appears to be stimulated by a ROS-independent mechanism, and this HO-1 induction may inhibit nutlin-3-induced apoptosis, constituting a negative feedback loop of p53-induced apoptosis.
Collapse
Affiliation(s)
- Yun-Jeong Choe
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Sun-Young Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Kyung Won Ko
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
26
|
Lee SY, Choe YJ, Park JY, Lee SS, Kim YH, Shin SJ, Chung YJ, Kim HS. Wilms' tumor gene 1 enhances nutlin-3-induced apoptosis. Oncol Rep 2013; 31:131-6. [PMID: 24190574 DOI: 10.3892/or.2013.2832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
Abstract
Nutlin-3, a human double minute 2 (HDM2) antagonist, induces cell cycle arrest or apoptosis by upregulating p53 in cancer cells. WT1, the product of Wilms' tumor gene 1, has been shown to interact with p53, but the effect of WT1 on nutlin-3-induced apoptosis has yet to be examined. To address this issue, we analyzed the inhibitory effect of nutlin-3 on cell growth as a function of Wt1 expression status using a Wt1-inducible U2OS cell line. In the absence of Wt1 expression, nutlin-3 induced cell cycle arrest with marginal cytotoxicity. Furthermore, upon Wt1 expression, nutlin-3 exerted a marked degree of cell death, as evidenced by the accumulation of hypo-diploid cells and LDH release. During cell death induction, cytochrome c was released into the cytosol, and caspase-9 and -3 were activated, suggesting that an intrinsic apoptotic pathway may be involved in this cell death. Consistent with this, z-VAD-Fmk, a pan-caspase inhibitor and the overexpression of BCL-XL attenuated the cell death. Nutlin-3 caused an increase in the mRNA levels of both BCL-XL and BAK, as well as their corresponding protein levels in mitochondria. In the presence of Wt1, nutlin-3-induced BCL-XL expression was attenuated while the expression of nutlin-3-induced BAK was potentiated. Collectively, these results suggest that WT1 potentiates nutlin-3-induced apoptosis by downregulating the expression of BCL-XL while upregulating that of BAK, which leads to the activation of an intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|