1
|
Shah MA, Abuzar SM, Ilyas K, Qadees I, Bilal M, Yousaf R, Kassim RMT, Rasul A, Saleem U, Alves MS, Khan H, Blundell R, Jeandet P. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem Biol Interact 2023; 382:110634. [PMID: 37451663 DOI: 10.1016/j.cbi.2023.110634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Despite the existence of extensive clinical research and novel therapeutic treatments, cancer remains undefeated and the significant cause of death worldwide. Cancer is a disease in which growth of cells goes out of control, being also able to invade other parts of the body. Cellular division is strictly controlled by multiple checkpoints like G1/S and G2/M which, when dysregulated, lead to uncontrollable cell division. The current remedies which are being utilized to combat cancer are monoclonal antibodies, chemotherapy, cryoablation, and bone marrow transplant etc. and these have also been greatly disheartening because of their serious adverse effects like hypotension, neuropathy, necrosis, leukemia relapse and many more. Bioactive compounds derived from natural products have marked the history of the development of novel drug therapies against cancer among which ginsenosides have no peer as they target several signaling pathways, which when abnormally regulated, lead to cancer. Substantial research has reported that ginsenosides like Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 etc. can prevent and treat cancer by targeting different pathways and molecules by induction of autophagy, neutralizing ROS, induction of cancerous cell death by controlling the p53 pathway, modulation of miRNAs by decreasing Smad2 expression, regulating Bcl-2 expression by normalizing the NF-Kb pathway, inhibition of inflammatory pathways by decreasing the production of cytokines like IL-8, causing cell cycle arrest by restricting cyclin E1 and CDC2, and induction of apoptosis during malignancy by decreasing β-catenin levels etc. In this review, we have analyzed the anti-cancer therapeutic potential of various ginsenoside compounds in order to consider their possible use in new strategies in the fight against cancer.
Collapse
Affiliation(s)
| | - Syed Muhammad Abuzar
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Irtaza Qadees
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Momna Bilal
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | | | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida, MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection USC INRAe 1488 Department of Biology and Biochemistry, Faculty of Sciences, 51100, Reims, France.
| |
Collapse
|
2
|
Zhou F, Zhang Y, Sun J, Yang X. Characteristics of a novel cell line ZJU-0430 established from human gallbladder carcinoma. Cancer Cell Int 2019; 19:190. [PMID: 31367188 PMCID: PMC6647153 DOI: 10.1186/s12935-019-0911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Gallbladder cancer is the most common malignant neoplasm of the biliary tract, responsible for 80–95% of cases. Appropriate models are required for investigating the molecular pathogenesis of gallbladder cancer. Methods In this study, we aimed to establish a gallbladder cancer cell line from primary tumour. Single cell RNA sequencing, Light and electron microscopy, DNA content analysis, cytogenetic analysis, short tandem repeat (STR) DNA fingerprint analysis, immunophenotypic characterization, and xeno-transplantation were utilized to characterize the novel ZJU-0430 cell line in vitro and in vivo. Results The cell line showed multiple cell shapes and characteristic epithelial morphologies under the microscope, but no too much heterogeneity by scRNA-Seq, with a population doubling time (PDT) of 19.81 h, which was shorter than that for GBC-SD cells. An immunophenotypic analysis revealed that ZJU-0430 cells were positive for CD24, CD44, CD29 and CD133 expression, and partially positive for CD184, and CD326 expression, and negative for CD34, CD90, CD117, and CD338 expression, similar to the primary cancer cells. A pathological analysis confirmed the origination of cell line from gallbladder tumour. ZJU-0430 cells had higher migration, invasion and proliferation properties than GBC-SD cells in vitro, and showed in vivo tumorigenicity in nude mouse xenograft settings. Conclusions The results confirm the potential utility of ZJU-0430 cell line as a representative model of gallbladder cancer and suggest that it could be used in the in vitro and in vivo studies of gallbladder cancer pathogenesis and to develop new therapeutics. Electronic supplementary material The online version of this article (10.1186/s12935-019-0911-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Zhou
- 1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Yanhua Zhang
- 2Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jihong Sun
- 1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xiaoming Yang
- 1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,3Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA USA
| |
Collapse
|
3
|
Chai Y, Wang H, Zhou F. Establishment and characterization of a cell line HCS1220 from human liver metastasis of colon cancer. Cancer Cell Int 2018; 18:137. [PMID: 30214379 PMCID: PMC6131799 DOI: 10.1186/s12935-018-0630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background To establish one primary cell line of human liver metastasis of colon cancer. Methods HCS1220 cell line was derived from one liver metastasis of colon cancer patient's resected tumor sample. The characterization of the cell line was defined by karyotype analysis, short tandem repeat (STR) analysis and mycoplasma contamination. Subcutaneous injection 1 × 106 cells to four BALB/c nude mice, the viable tumors were developed and diagnosed (H&E staining). The expression of biomarkers CK20 and CDX2 for colon cancer were determined by immunocytochemistry assay. Results HCS1220 cell line can grow stably and continuously passage. During the grow process, the contact loss in the growth process and superimposed growth, which could be defined as proliferation of malignant tumor. Chromosome analysis revealed the cells derived from human female. The cells were not contaminated by mycoplasma. By immunohistochemistry, the cell line was proven to express the biomarkers of colon cancer CK20 and CDX2, while a-fetoprotein, hep-1 and glypican-3 were stained negative, which demonstrated that the HCS1220 cell line originating from the intestinal tissue. Conclusions HCS1220 cell line has the characteristics of primary human liver metastasis of colon cancer. The results of STR have genetically showed that cell line is original, which can provided cell materials for research in vitro and can also help for establishing the mechanism model of liver metastasis of colon cancer and preparing, screening and evaluating anti-tumor drugs.
Collapse
Affiliation(s)
- Yi Chai
- 1The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Huan Wang
- 2Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu China
| | - Fang Zhou
- 2Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu China
| |
Collapse
|
4
|
Park HH, Choi SW, Lee GJ, Kim YD, Noh HJ, Oh SJ, Yoo I, Ha YJ, Koo GB, Hong SS, Kwon SW, Kim YS. A formulated red ginseng extract inhibits autophagic flux and sensitizes to doxorubicin-induced cell death. J Ginseng Res 2017; 43:86-94. [PMID: 30662297 PMCID: PMC6323173 DOI: 10.1016/j.jgr.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
Background Ginseng is believed to have antitumor activity. Autophagy is largely a prosurvival cellular process that is activated in response to cellular stressors, including cytotoxic chemotherapy; therefore, agents that inhibit autophagy can be used as chemosensitizers in cancer treatment. We examined the ability of Korean Red Ginseng extract (RGE) to prevent autophagic flux and to make hepatocellular carcinoma (HCC) cells become more sensitive to doxorubicin. Methods The cytotoxic effects of total RGE or its saponin fraction (RGS) on HCC cells were examined by the lactate dehydrogenase assay in a dose- or time-dependent manner. The effect of RGE or RGS on autophagy was measured by analyzing microtubule-associated protein 1A/1B-light chain (LC)3-II expression and LC3 puncta formation in HCC cells. Late-stage autophagy suppression was tested using tandem-labeled green fluorescent protein (GFP)-monomeric red fluorescent protein (mRFP)-LC3. Results RGE markedly increased the amount of LC3-II, but green and red puncta in tandem-labeled GFP-mRFP-LC3 remained colocalized over time, indicating that RGE inhibited autophagy at a late stage. Suppression of autophagy through knockdown of key ATG genes increased doxorubicin-induced cell death, suggesting that autophagy induced by doxorubicin has a protective function in HCC. Finally, RGE and RGS markedly sensitized HCC cells, (but not normal liver cells), to doxorubicin-induced cell death. Conclusion Our data suggest that inhibition of late-stage autophagic flux by RGE is important for its potentiation of doxorubicin-induced cancer cell death. Therapy combining RGE with doxorubicin could serve as an effective strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Han-Hee Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Seung-Won Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Dae Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun-Jin Noh
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Seung-Jae Oh
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Iseul Yoo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Yu-Jin Ha
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Gi-Bang Koo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Soon-Sun Hong
- College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
- Corresponding author. Department of Biochemistry, Ajou University School of Medicine San 5, Wonchon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.
| |
Collapse
|
5
|
Can Z, Lele S, Zhirui Z, Qiong P, Yuzhong C, Lingling L, Surong Z, Yiming S, Pei Z, Chenchen J, Liu H. 3-Bromopyruvate enhances TRAIL-induced apoptosis in human nasopharyngeal carcinoma cells through CHOP-dependent upregulation of TRAIL-R2. Anticancer Drugs 2017; 28:739-749. [PMID: 28471808 DOI: 10.1097/cad.0000000000000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Past reports have shown that the sensitivity of cancer cells to TRAIL-induced apoptosis is related to their expression of TRAIL-death receptors on the cell surface. However, the level of TRAIL-death receptors expression on cancer cells is always low. Our previous research showed that nasopharyngeal carcinoma (NPC) cells have a poor sensitivity to low doses of TRAIL. Here, we evaluated combined treatment with the energy inhibitor 3-bromopyruvate (3BP) and TRAIL as a method to produce an increased apoptotic response in NPC cells. The results showed that 3BP and TRAIL together produced higher cytotoxicity and increased TRAIL-R2 expression in NPC cells compared with the effects of either 3BP or TRAIL alone. These findings led us to hypothesize that 3BP may sensitize NPC cells to TRAIL. 3BP is a metabolic blocker that inhibits hexokinase II activity, suppresses ATP production, and induces endoplasmic reticulum (ER) stress. Our results showed that 3BP also activated AMP-activated protein kinase, which we found to play an important role in the induction of ER stress by 3BP. Furthermore, the induction of TRAIL-R2 expression and the sensitization of the NPC cells to TRAIL by 3BP were reduced when we inhibited the expression of CHOP. Taken together, our results showed that a low dose of 3BP sensitized NPC cells to TRAIL-induced apoptosis by the upregulation of CHOP, which was mediated by the activation of AMP-activated protein kinase and ER stress. The results showed that 3BP is a promising candidate agent for enhancing the therapeutic response to TRAIL in NPC.
Collapse
Affiliation(s)
- Zhou Can
- aFaculty of Pharmacy, Bengbu Medical College bDepartment of Pharmacy cDepartment of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College dDepartment of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China eSchool of Medicine and Public Health, Faculty of Health, Newcastle University, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Elmallah MI, Micheau O, Eid MAG, Hebishy AM, Abdelfattah MS. Marine actinomycete crude extracts with potent TRAIL-resistance overcoming activity against breast cancer cells. Oncol Rep 2017; 37:3635-3642. [DOI: 10.3892/or.2017.5595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/16/2017] [Indexed: 11/05/2022] Open
|
7
|
Kim TW. Ginseng for Liver Injury: Friend or Foe? MEDICINES (BASEL, SWITZERLAND) 2016; 3:E33. [PMID: 28930143 PMCID: PMC5456240 DOI: 10.3390/medicines3040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
Abstract
Panax sp., including Panax ginseng Meyer, Panax quiquifolius L., or Panax notoginseng (Burk.) FH Chen, have been used as functional foods or for traditional Chinese medicine for diabetes, inflammation, stress, aging, hepatic injury, and cancer. In recent decades, a number of both in vitro and in vivo experiments as well as human studies have been conducted to investigate the efficacy and safety of various types of ginseng samples and their components. Of these, the hepatoprotective and hepatotoxic effects of ginseng and their ginsenosides and polysaccharides are reviewed and summarized.
Collapse
Affiliation(s)
- Tae-Woo Kim
- Graduate School of Medicine, School of Medicine, CHA University, Seongnam-shi, Gyunggi-do 13488, Korea.
| |
Collapse
|
8
|
Fayyaz S, Yaylim I, Turan S, Kanwal S, Farooqi AA. Hepatocellular carcinoma: targeting of oncogenic signaling networks in TRAIL resistant cancer cells. Mol Biol Rep 2014; 41:6909-17. [PMID: 25037270 DOI: 10.1007/s11033-014-3577-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023]
Abstract
Apoptotic response in hepatocellular carcinoma (HCC) cells is impaired because of interconnectivity of proteins into complexes and signaling networks that are highly divergent in time and space. TNF-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive anticancer agent reported to selectively induce apoptosis in cancer cells. Although diametrically opposed roles of TRAIL are reported both as an inducer of apoptosis and regulator of metastasis, overwhelmingly accumulating experimental evidence highlighting apoptosis inducing activity of TRAIL is directing TRAIL into clinical trials. Insights from TRAIL mediated signaling in HCC research are catalyzing new lines of study that should not only explain molecular mechanisms of disease but also highlight emerging paradigms in restoration of TRAIL mediated apoptosis in resistant cancer cells. It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in vitro and in-vivo evidence indicates that phytonutrients have anticancer activity in rodent models of hepatocellular carcinoma. In this review we bring to limelight how phytonutrients restore apoptosis in hepatocellular carcinoma cells by rebalancing pro-apoptotic and anti-apoptotic proteins. Evidence has started to emerge, that reveals how phytonutrients target pharmacologically intractable proteins to suppress cancer. Target-based small-molecule discovery has entered into the mainstream research in the pharmaceutical industry and a better comprehension of the genetics of patients will be essential for identification of responders and non-responders.
Collapse
Affiliation(s)
- Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | | | | | | | | |
Collapse
|