1
|
Elkhamisy FAA, Eesa AN, Elnady OM, Elnaghi KAEA, Foda AAM. Reduced expression of SOX11 in colorectal adenocarcinoma is associated with mucinous and signet ring cell types, poor survival, and lower ALK expression. Pathol Res Pract 2024; 260:155450. [PMID: 38986363 DOI: 10.1016/j.prp.2024.155450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mucinous and signet ring cell colorectal carcinoma (m/srCRC) are challenging colorectal adenocarcinoma (CRC) types with poor prognosis. This study aimed to investigate SOX11 and ALK immunohistochemical expression in the m/srCRC group, comparing the results to those of nonmucinous CRC (nmCRC) and studying their association with different clinicopathological CRC features to better understand their significance and role. Besides, the study assesses which marker has a better predictive value for clinical practice. METHODS Tissue microarrays were prepared from 150 CRC blocks distributed equally between the m/srCRC and nmCRC groups. SOX11 and ALK immunohistochemical expressions were compared between both groups. In addition, their association with CRC clinicopathological data and survival was investigated. The Receiver Operating Characteristic (ROC) Curve analysis examined the predictive ability of SOX11 and ALK IHC expression for CRC mortality. RESULTS Both SOX11 and ALK expression were significantly reduced in m/srCRC compared to nmCRC. SOX11 is significantly associated with other prognostic clinicopathological factors (tumor size, lymph node status, overall TNM stage, grade, lymphovascular and perineural invasion) and overall survival. SOX11 significantly positively correlates with ALK expression. Using the ROC analysis, SOX11 is superior to ALK in survival prediction. CONCLUSION SOX11 can be used as a prognostic marker and is a suggested therapeutic target in mucinous and signet ring cell colorectal carcinoma through upregulation modulation.
Collapse
Affiliation(s)
| | - Ahmed Naeem Eesa
- Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ola Mousa Elnady
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Mansoura University, Egypt
| | - Khaled Abd Elaziz Ahmed Elnaghi
- Oncology Centre, Medical Oncology unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Medical Oncology Department, Oncology Center King Abdullah Medical City, Makkah, Saudi Arabia
| | - Abd AlRahman Mohammad Foda
- Anatomic Pathology department, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
2
|
Huang JR, Li Y, Chen P, Wei JX, Yang X, Xu QQ, Chen JB. Effects of transcription factor SOX11 on the biological behavior of neuroblastoma cell and potential regulatory mechanism. Ann Surg Treat Res 2024; 106:284-295. [PMID: 38725807 PMCID: PMC11076950 DOI: 10.4174/astr.2024.106.5.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/23/2023] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose This study aimed to analyze the expression and prognosis of SRY-box transcription factor 11 (SOX11) in neuroblastoma (NB), as well as the biological function and potential regulatory mechanism of SOX11 in NB. Methods Public RNA sequencing was used to detect the expression level of SOX11. The Kaplan-Meier curve and hazard ratios (HR) were used to determine the prognostic value of SOX11 in NB. Functional analyses were performed using CCK8, wound healing assay, and transwell invasion assay. Finally, the potential target genes of SOX11 were predicted by Harmonizonme (Ma'ayan Laboratory) and Cistrome Data Browser (Cistrome Project) database to explore the potential molecular mechanism of SOX11 in NB. Results Compared with normal adrenal tissue, the expression of SOX11 in NB tissue was significantly upregulated. The Kaplan-Meier curve showed that high expression of SOX11 was associated with poor prognosis in children with NB (HR, 1.719; P = 0.049). SOX11 knockdown suppressed the migration capacity of SK-N-SH cells but did not affect proliferation and invasion capacity. Enhancer of zeste homolog 2 (EZH2) may be a potential downstream target gene for the transcription factor SOX11 to play a role in NB. Conclusion The transcription factor SOX11 was significantly upregulated in NB. SOX11 knockdown suppressed the migration capacity of NB cell SK-N-SH. SOX11 may promote the progression of NB by targeting EZH2.
Collapse
Affiliation(s)
- Jing-Ru Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ji-Xiu Wei
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiong-Qian Xu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Bo Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Turkarslan S, He Y, Hothi P, Murie C, Nicolas A, Kannan K, Park JH, Pan M, Awawda A, Cole ZD, Shapiro MA, Stuhlmiller TJ, Lee H, Patel AP, Cobbs C, Baliga NS. An atlas of causal and mechanistic drivers of interpatient heterogeneity in glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305380. [PMID: 38633778 PMCID: PMC11023657 DOI: 10.1101/2024.04.05.24305380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.
Collapse
|
4
|
Bahmad HF, Thiravialingam A, Sriganeshan K, Gonzalez J, Alvarez V, Ocejo S, Abreu AR, Avellan R, Arzola AH, Hachem S, Poppiti R. Clinical Significance of SOX10 Expression in Human Pathology. Curr Issues Mol Biol 2023; 45:10131-10158. [PMID: 38132479 PMCID: PMC10742133 DOI: 10.3390/cimb45120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The embryonic development of neural crest cells and subsequent tissue differentiation are intricately regulated by specific transcription factors. Among these, SOX10, a member of the SOX gene family, stands out. Located on chromosome 22q13, the SOX10 gene encodes a transcription factor crucial for the differentiation, migration, and maintenance of tissues derived from neural crest cells. It plays a pivotal role in developing various tissues, including the central and peripheral nervous systems, melanocytes, chondrocytes, and odontoblasts. Mutations in SOX10 have been associated with congenital disorders such as Waardenburg-Shah Syndrome, PCWH syndrome, and Kallman syndrome, underscoring its clinical significance. Furthermore, SOX10 is implicated in neural and neuroectodermal tumors, such as melanoma, malignant peripheral nerve sheath tumors (MPNSTs), and schwannomas, influencing processes like proliferation, migration, and differentiation. In mesenchymal tumors, SOX10 expression serves as a valuable marker for distinguishing between different tumor types. Additionally, SOX10 has been identified in various epithelial neoplasms, including breast, ovarian, salivary gland, nasopharyngeal, and bladder cancers, presenting itself as a potential diagnostic and prognostic marker. However, despite these associations, further research is imperative to elucidate its precise role in these malignancies.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Aran Thiravialingam
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Karthik Sriganeshan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Jeffrey Gonzalez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Veronica Alvarez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Stephanie Ocejo
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alvaro R. Abreu
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Rima Avellan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alejandro H. Arzola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Sun Q, Du J, Dong J, Pan S, Jin H, Han X, Zhang J. Systematic Investigation of the Multifaceted Role of SOX11 in Cancer. Cancers (Basel) 2022; 14:cancers14246103. [PMID: 36551589 PMCID: PMC9776339 DOI: 10.3390/cancers14246103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
SRY-box transcription factor 11 (SOX11), as a member of the SOX family, is a transcription factor involved in the regulation of specific biological processes and has recently been found to be a prognostic marker for certain cancers. However, the roles of SOX11 in cancer remain controversial. Our study aimed to explore the various aspects of SOX11 in pan-cancer. The expression of SOX11 was investigated by the Genotype Tissue-Expression (GTEX) dataset and the Cancer Genome Atlas (TCGA) database. The protein level of SOX11 in tumor tissues and tumor-adjacent tissues was verified by human pan-cancer tissue microarray. Additionally, we used TCGA pan-cancer data to analyze the correlations among SOX11 expression and survival outcomes, clinical features, stemness, microsatellite instability (MSI), tumor mutation burden (TMB), mismatch repair (MMR) related genes and the tumor immune microenvironment. Furthermore, the cBioPortal database was applied to investigate the gene alterations of SOX11. The main biological processes of SOX11 in cancers were analyzed by Gene Set Enrichment Analysis (GSEA). As a result, aberrant expression of SOX11 has been implicated in 27 kinds of cancer types. Aberrant SOX11 expression was closely associated with survival outcomes, stage, tumor recurrence, MSI, TMB and MMR-related genes. In addition, the most frequent alteration of the SOX11 genome was mutation. Our study also showed the correlations of SOX11 with the level of immune infiltration in various cancers. In summary, our findings underline the multifaceted role and prognostic value of SOX11 in pan-cancer.
Collapse
Affiliation(s)
- Qingqing Sun
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Du
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hongwei Jin
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Xinghua Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.H.); (J.Z.)
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.H.); (J.Z.)
| |
Collapse
|
6
|
Wang J, Wang Z, Lin W, Han Q, Yan H, Yao W, Dong R, Jia D, Dong K, Li K. LINC01296 promotes neuroblastoma tumorigenesis via the NCL-SOX11 regulatory complex. Mol Ther Oncolytics 2022; 24:834-848. [PMID: 35317520 PMCID: PMC8917274 DOI: 10.1016/j.omto.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Long non-coding RNA LINC01296 has been shown to predict the invasiveness and poor outcomes of patients with NB. Our study validated its prognostic value and investigated the biological function and potential mechanism of LINC01296 regulating NB. Results illuminated that LINC01296 expression was significantly correlated with unfavorable prognosis and malignant clinical features according to the public NB database. We identified that silencing LINC01296 repressed NB cell proliferation and migration and promoted apoptosis. Moreover, LINC01296 knockdown inhibited tumor growth in vivo. The opposite results were observed through the dCas9 Synergistic Activation Mediator System (dCas9/SAM) activating LINC01296. Mechanistically, we revealed that LINC01296 could directly bind to nucleolin (NCL), forming a complex that activated SRY-box transcription factor 11 (SOX11) gene transcription and accelerated tumor progression. In conclusion, our findings uncover a crucial role of the LINC01296-NCL-SOX11 complex in NB tumorigenesis and may serve as a prognostic biomarker and effective therapeutic target for NB.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Weihong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qilei Han
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Hanlei Yan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Deshui Jia
- Laboratory of Cancer Genomics and Biology, Department of Urology, and Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| |
Collapse
|
7
|
Ma Z, Chen G, Chen Y, Guo Z, Chai H, Tang Y, Zheng L, Wei K, Pan C, Ma Z, Xia Y, Zhang A. MiR-937-3p promotes metastasis and angiogenesis and is activated by MYC in lung adenocarcinoma. Cancer Cell Int 2022; 22:31. [PMID: 35033084 PMCID: PMC8761314 DOI: 10.1186/s12935-022-02453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is still one of the diseases with the highest mortality and morbidity, and lung adenocarcinoma (LUAD) accounts for more than half of all NSCLC cases in most countries. miRNA can be used as a potential biological marker and treatment for lung adenocarcinoma. However, the effect of miR-937-3p to the invasion and metastasis of LUAD cells is not clear. Methods miRNA microarray is used to analyze the expression of miRNA in lung adenocarcinoma tissue. Transwell migration, Wound-healing assay and Western blot analysis are used to analyze cell migration, invasion and epithelial-mesenchymal transition (EMT) capabilities. Tube formation is used to assess angiogenesis ability. In addition, dual luciferase reporter gene detection is used to identify the potential binding between miRNA and target mRNA. In vivo experiments were performed on male NOD/SCID nude mice by tail vein injection to establish a transplanted tumor model. The CHIP experiment is used to verify the transcription factors of miRNA. Result In our study, miR-937-3p was high-regulated in LUAD cell lines and tissues, and its expression level was related to tumor progression. We found that miR-937-3p high-expression has an effect on cell invasion and metastasis. In molecular mechanism, miR-937-3p causes SOX11 reduction by directly binding to the 3′-UTR of SOX11.In addition, MYC affects miR-937-3p transcription by binding to its promoter region. Conclusions Our research shows that miR-937-3p is mediated by MYC and can control the angiogenesis, invasion and metastasis of LUAD by regulating SOX11, thereby promoting the progress of LUAD. We speculate that miR-937-3p can be used as a therapeutic target and potential biomarker for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02453-w.
Collapse
Affiliation(s)
- Zijian Ma
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ganyi Chen
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yiqian Chen
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zizhang Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chai
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Tang
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Zheng
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ke Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunfeng Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhifei Ma
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Aiping Zhang
- Department of Thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China. .,Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210029, China.
| |
Collapse
|
8
|
Yu L, Dong Y, Xue J, Xu S, Wang G, Kuang D, Duan Y. SOX11 is a sensitive and specific marker for pulmonary high-grade neuroendocrine tumors. Diagn Pathol 2022; 17:2. [PMID: 34996493 PMCID: PMC8742448 DOI: 10.1186/s13000-021-01186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synaptophysin (SYN), chromogranin A (CGA), CD56 and insulinoma-associated protein 1 (INSM1) are proposed neuroendocrine (NE) markers used for diagnosis of pulmonary NE tumors. These NE markers have been identified in subsets of non-NE tumors requiring differential diagnosis, thus we sought to explore new NE markers. METHODS We evaluated the immunohistochemical expression of SOX11, a transcription factor involved in neurogenesis, in pulmonary NE tumors and large cell carcinomas (LCCs). RESULTS We found that SOX11 showed a sensitivity similar to INSM1 and CGA, and less than SYN and CD56 in small cell lung carcinomas (SCLCs) and large cell neuroendocrine carcinomas (LCNECs). While SOX11 is more specific than the other four markers for diagnosis of high-grade neuroendocrine carcinomas (HG-NECs) because 1) None of LCCs (0/63), the most challenging non-NE tumor type for differential diagnosis due to overlapped morphology with LCNECs displayed SOX11 positivity. While expression of at least one of SYN, CGA, CD56 or INSM1 was identified in approximately 60% (18/30) of LCCs. 2) SOX11 was only expressed in 1 of 37 carcinoid tumors in contrast to diffuse expression of SYN, CGA, CD56 and INSM1. In HG-NECs, we noticed that SOX11 was a good complementary marker for SCLC diagnosis as it was positive in 7 of 18 SYN-/CGA-/CD56- SCLCs and 3 of 8 SYN-/CGA-/CD56-/INSM1- SCLCs, and SOX11 positivity in 4 of 6 SYN-/CGA-/CD56- cases previously diagnosed as LCCs with NE morphology provides additional evidence of NE differentiation for reclassification into LCNECs, which was further confirmed by electromicroscopical identification of neurosecretory granules. We also found SOX11 expression cannot predict the prognosis in patients with HG-NECs. CONCLUSIONS Therefore, SOX11 is a useful complementary transcriptional NE marker for diagnosis and differential diagnosis of SCLC and LCNEC.
Collapse
Affiliation(s)
- Lu Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yuting Dong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jin Xue
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China. .,Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China. .,Department of Pathology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
9
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|
10
|
Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer. Semin Cancer Biol 2020; 67:3-11. [DOI: 10.1016/j.semcancer.2020.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
|
11
|
Li L, Yin X, Meng H, Hu J, Yu Z, Xu J. Increased Progastrin-Releasing Peptide Expression is Associated with Progression in Gastric Cancer Patients. Yonsei Med J 2020; 61:15-19. [PMID: 31887795 PMCID: PMC6938777 DOI: 10.3349/ymj.2020.61.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The purpose of this study was to assess the diagnostic and prognostic value of serum progastrin-releasing peptide (ProGRP) in patients with gastric cancer (GC). MATERIALS AND METHODS A total of 150 patients with GC (89 males and 61 females) were recruited, including those with stage I (n=28), stage II (n=33), stage III (n=50), and stage IV (n=39) disease; 50 healthy controls and 66 patients with benign gastric diseases were also enrolled. Levels of serum ProGRP, carcinoembryonic antigen (CEA), and carbohydrate antigen 72-4 (CA72-4) were measured in all subjects. RESULTS Serum ProGRP levels were significantly higher in GC patients than in controls (p<0.001), and ProGRP was significantly correlated with tumor size, tumor node metastasis stage, differentiation, invasion depth, and lymph node metastasis (p< 0.005). ProGRP levels were significantly decreased after chemotherapy (p<0.001). Receiver operating characteristic curves revealed a sensitivity and specificity for serum ProGRP in GC of 85.9% and 81.2%, respectively. ProGRP levels were positively correlated with CA72-4 and CEA (r=0.792 and 0.688, p<0.05, respectively). Combined detection of ProGRP, CEA, and CA72-4 showed the best diagnostic power for GC. CONCLUSION ProGRP may be useful as a potential biomarker for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Li Li
- Department of Clinical Laboratory, Binhai County People's Hospital, Jiangsu, China.
| | - Xiaodong Yin
- Department of Medical Oncology, Binhai County People's Hospital, Jiangsu, China
| | - Hai Meng
- Department of Gastroenterology, Binhai County People's Hospital, Jiangsu, China
| | - Juanyu Hu
- Department of Clinical Laboratory, Binhai County Second Hospital, Jiangsu, China
| | - Zhengqing Yu
- Department of Clinical Laboratory, Binhai County People's Hospital, Jiangsu, China
| | - Jianyong Xu
- Department of Clinical Laboratory, Binhai County People's Hospital, Jiangsu, China
| |
Collapse
|
12
|
Liu Z, Chen JY, Zhong Y, Xie L, Li JS. lncRNA MEG3 inhibits the growth of hepatocellular carcinoma cells by sponging miR-9-5p to upregulate SOX11. ACTA ACUST UNITED AC 2019; 52:e8631. [PMID: 31531526 PMCID: PMC6753855 DOI: 10.1590/1414-431x20198631] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
The long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3), a tumor suppressor, is critical for the carcinogenesis and progression of different cancers, including hepatocellular carcinoma (HCC). To date, the roles of lncRNA MEG3 in HCC are not well illustrated. Therefore, this study used western blot and qRT-PCR to evaluate the expression of MEG3, miR-9-5p, and Sex determining Region Y-related HMG-box 11 (SOX11) in HCC tissues and cell lines. RNA pull-down and luciferase reporter assay were used to evaluate these molecular interactions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry detected the viability and apoptosis of HCC cells, respectively. The results showed that MEG3 and SOX11 were poorly expressed but miR-9-5p was highly expressed in HCC. The expression levels of these molecules suggested a negative correlation between MEG3 and miR-9-5p and a positive correlation with SOX11, confirmed by Pearson's correlation analysis and biology experiments. Furthermore, MEG3 could combine with miR-9-5p, and SOX11 was a direct target of miR-9-5p. Moreover, MEG3 over-expression promoted cell apoptosis and growth inhibition in HCC cells through sponging miR-9-5p to up-regulate SOX11. Therefore, the interactions among MEG3, miR-9-5p, and SOX11 might offer a novel insight for understanding HCC pathogeny and provide potential diagnostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jian Yu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Liang Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jian Shui Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Yang Z, Jiang S, Lu C, Ji T, Yang W, Li T, Lv J, Hu W, Yang Y, Jin Z. SOX11: friend or foe in tumor prevention and carcinogenesis? Ther Adv Med Oncol 2019; 11:1758835919853449. [PMID: 31210798 PMCID: PMC6547177 DOI: 10.1177/1758835919853449] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) is an essential member of the SOX transcription factors and has been highlighted as an important regulator in embryogenesis. SOX11 studies have only recently shifted focus from its role in embryogenesis and development to its function in disease. In particular, the role of SOX11 in carcinogenesis has become of major interest in the field. SOX11 expression is elevated in a wide variety of tumors. In many cancers, dysfunctional expression of SOX11 has been correlated with increased cancer cell survival, inhibited cell differentiation, and tumor progression through the induction of metastasis and angiogenesis. Nevertheless, in a limited number of malignancies, SOX11 has also been identified to function as a tumor suppressor. Herein, we review the correlation between the expression of SOX11 and tumor behaviors. We also summarize the mechanisms underlying the regulation of SOX11 expression and activity in pathological conditions. In particular, we focus on the pathological processes of cancer targeted by SOX11 and discuss whether SOX11 is protective or detrimental during tumor progression. Moreover, SOX11 is highlighted as a clinical biomarker for the diagnosis and prognosis of various human cancer. The information reviewed here should assist in future experimental designs and emphasize the potential of SOX11 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Wei Hu
- Department of Immunology, The Fourth Military
Medical University, Xi’an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, 127 Changle West Road,
Xi’an 710032, China
| |
Collapse
|
14
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
15
|
Liu Z, Zhong Y, Chen YJ, Chen H. SOX11 regulates apoptosis and cell cycle in hepatocellular carcinoma via Wnt/β-catenin signaling pathway. Biotechnol Appl Biochem 2018; 66:240-246. [PMID: 30517979 DOI: 10.1002/bab.1718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality. Identifying key molecules involved in the regulation of HCC development is of great clinical significance. SOX11 is a transcription factor belonging to group C of Sry-related high mobility group box family whose abnormal expression is frequently seen in many kinds of human cancers. Here, we noted that the expression of SOX11 was decreased in human HCC tumors compared with that in matched normal tissues. Overexpression of SOX11 promoted growth inhibition and apoptosis in HCC cell line HuH-7. Mechanistically, SOX11 enhanced the expression of nemo-like kinase and the phosphorylation of TCF4, thereby blunting the activation of oncogenic Wnt/β-catenin signaling pathway in HuH-7 cells. Finally, SOX11 was also found to sensitize HuH-7 cells to chemotherapy drugs cisplatin and 5-fluorouraci. Therefore, our study identifies SOX11 as a potential tumor suppressor in HCC and may hopefully be beneficial for the clinical diagnosis or treatment of HCC.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Yu Jian Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Hui Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
16
|
Sun H, Zhou H, Zhang Y, Chen J, Han X, Huang D, Ren X, Jia Y, Fan Q, Tian W, Zhao Y. Aberrant methylation of FAT4 and SOX11 in peripheral blood leukocytes and their association with gastric cancer risk. J Cancer 2018; 9:2275-2283. [PMID: 30026822 PMCID: PMC6036714 DOI: 10.7150/jca.24797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/31/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Aberrant DNA methylation, especially tumor suppressor gene hypermethylation, is a well-recognized biomarker of initial tumorogenesis stages. FAT4 and SOX11 are putative tumor suppressor genes and can be down-regulated by hypermethylation in various cancers tissues. However, in peripheral blood leukocytes, the association between these two genes methylation status, as well as the effects of gene-environment interactions, and gastric cancer (GC) risk remain unclear. Methods: A hospital-based case-control study including 375 cases and 394 controls was conducted. Peripheral blood leukocytes DNA methylation status were detected by methylation-sensitive high-resolution melting (MS-HRM) assay. Logistic regression was adopted to analyze the relationship of FAT4 and SOX11 methylation with GC susceptibility. Results: Positive methylation (Pm) and total positive methylation (Tpm) of FAT4 were significantly increased the risk of GC (OR = 2.204, 95% CI: 1.168-4.159, P = 0.015; OR = 1.583, 95% CI: 1.031-2.430, P = 0.036, respectively). Compared with controls, cases exhibited higher SOX11 Pm frequencies with OR of 2.530 (95% CI: 1.289-4.969, P = 0.007). Nonetheless, no statistically significant association between SOX11 Tpm and GC risk was observed. Additionally, interactions between FAT4 Tpm and increased consumption of freshwater fish (≥1 times/week) displayed an antagonistic effect on GC (OR = 0.328, 95% CI: 0.142-0.762, P = 0.009), and high salt intake interacted with SOX11 Tpm also showed statistically significant (OR = 0.490, 95% CI: 0.242-0.995, P = 0.048). Conclusions:FAT4 aberrant methylation in peripheral blood leukocytes and gene-environment interactions were associated with the risk of GC, while SOX11 was controversial and needed to be more investigated.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yan Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Jie Chen
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Di Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yunhe Jia
- Department of Colorectal Cancer Surgery, The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qing Fan
- Xiangfang Center for Disease Control and Prevention, Harbin 150081, Heilongjiang Province, P. R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
17
|
Xu L, Chen J, Lin W, Chen J, Chen Z. Melanoma differentiation-associated gene-7 suppresses human gastric cancer cell invasion and migration. Oncol Lett 2018; 14:7139-7144. [PMID: 29344144 PMCID: PMC5754905 DOI: 10.3892/ol.2017.7086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/27/2017] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer in the world. Patients with gastric cancer often respond poorly to conventional chemotherapies, therefore more comprehensive therapy is required. Melanoma differentiation-associated gene-7 (MDA-7), also termed interleukin-24, is a potent tumor suppressor gene. Numerous studies have demonstrated that MDA-7 suppresses the growth and induces the apoptosis of cancer cells. In the present study, the MDA-7 gene was transfected into human gastric cancer AGS cells using adenovirus. Transwell and wound healing assays were performed to evaluate AGS cell invasion and migration, respectively. Western blotting was used to detect the expression of epithelial (E)-cadherin, cluster of differentiation (CD)44 and matrix metalloproteinase (MMP)-2 and MMP-9 proteins. A recombinant virus package was successfully constructed, and it was verified using western blotting that exogenous MDA-7 was highly expressed in the AGS cells. MDA-7 overexpression inhibited invasion and migration, decreased CD44, MMP-2 and MMP-9 expression, and increased epithelial (E-)cadherin expression in the AGS cells. Results of the present study revealed that MDA-7 inhibits gastric cancer invasion and metastasis by inhibiting CD44, MMP-2 and MMP-9 expression and by promoting E-cadherin expression.
Collapse
Affiliation(s)
- Li Xu
- Department of Physiology, Basic Medical College of Putian University, Putian, Fujian 351100, P.R. China
| | - Jinyan Chen
- Institute for Immunology, Academy of Medical Sciences of Fujian, Fuzhou, Fujian 350001, P.R. China
| | - Wei Lin
- Department of Physiology, Basic Medical College of Putian University, Putian, Fujian 351100, P.R. China.,Department of General Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Jinkun Chen
- Department of General Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Zhiwei Chen
- Department of General Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| |
Collapse
|
18
|
The SOX11 transcription factor is a critical regulator of basal-like breast cancer growth, invasion, and basal-like gene expression. Oncotarget 2017; 7:13106-21. [PMID: 26894864 PMCID: PMC4914345 DOI: 10.18632/oncotarget.7437] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/03/2023] Open
Abstract
Basal-like breast cancers (BLBCs) are aggressive breast cancers associated with poor survival. Defining the key drivers of BLBC growth will allow identification of molecules for targeted therapy. In this study, we performed a primary screen integrating multiple assays that compare transcription factor expression and activity in BLBC and non-BLBC at the RNA, DNA, and protein levels. This integrated screen identified 33 transcription factors that were elevated in BLBC in multiple assays comparing mRNA expression, DNA cis-element sequences, or protein DNA-binding activity. In a secondary screen to identify transcription factors critical for BLBC cell growth, 8 of the 33 candidate transcription factors (TFs) were found to be necessary for growth in at least two of three BLBC cell lines. Of these 8 transcription factors, SOX11 was the only transcription factor required for BLBC growth, but not for growth of non-BLBC cells. Our studies demonstrate that SOX11 is a critical regulator of multiple BLBC phenotypes, including growth, migration, invasion, and expression of signature BLBC genes. High SOX11 expression was also found to be an independent prognostic indicator of poor survival in women with breast cancer. These results identify SOX11 as a potential target for the treatment of BLBC, the most aggressive form of breast cancer.
Collapse
|
19
|
Wang L, Shen YF, Shi ZM, Shang XJ, Jin DL, Xi F. Overexpression miR-211-5p hinders the proliferation, migration, and invasion of thyroid tumor cells by downregulating SOX11. J Clin Lab Anal 2017; 32. [PMID: 28703321 DOI: 10.1002/jcla.22293] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study was aimed to investigate the relationship between miR-211-5p and SOX11, and the effects of their interaction on the proliferation, viability, and invasion of human thyroid cancer (TC) cells. METHODS We used quantitative real-time PCR (qRT-PCR) to determine the expression of miR-211-5p and SOX11mRNA in the thyroid tumorous and the adjacent tissues. The target relationship between miR-211-5p and SOX11 was confirmed using dual luciferase reporter gene assay. Flow cytometry, colony formation assay, Transwell assay, and MTT assay were performed to determine the cell-cycle progression, cell apoptosis, proliferation and invasion, respectively. In addition, the tumor formation assay in nude mice was done to assess the effect of miR-211-5p on TC development in vivo. RESULTS MiR-211-5p was underexpressed, whereas SOX11 was overexpressed in TC. The overexpression of miR-211-5p inhibited the expression of SOX11. The cell cycle was arrested and the proliferation as well as invasiveness was suppressed by exogenous miR-211-5p in TC cell line. The antitumor role of miR-211-5p was proved by the animal experiment. CONCLUSION MiR-211-5p affected the viability, proliferation and invasion of TC by negatively regulating SOX11 expression.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei Province, China
| | - Yan-Feng Shen
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, China
| | - Zhi-Min Shi
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei Province, China
| | - Xiao-Juan Shang
- Microscope Room, Medicine College of Hebei University of Engineering, Handan, Hebei Province, China
| | - Dong-Ling Jin
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei Province, China
| | - Feng Xi
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei Province, China
| |
Collapse
|
20
|
Li P, Hu Y, Yi J, Li J, Yang J, Wang J. Identification of potential biomarkers to differentially diagnose solid pseudopapillary tumors and pancreatic malignancies via a gene regulatory network. J Transl Med 2015; 13:361. [PMID: 26578390 PMCID: PMC4650856 DOI: 10.1186/s12967-015-0718-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/31/2015] [Indexed: 01/18/2023] Open
Abstract
Background Solid pseudopapillary neoplasms (SPN) are pancreatic tumors with low malignant potential and good prognosis. However, differential
diagnosis between SPN and pancreatic malignancies including pancreatic neuroendocrine tumor (PanNET) and ductal adenocarcinoma (PDAC) is difficult. This study tried to identify candidate biomarkers for the distinction between SPN and the two malignant pancreatic tumors by examining the gene regulatory network of SPN. Methods The gene regulatory network for SPN was constructed by a co-expression model. Genes that have been reported to be correlated with SPN were used as the clues to hunt more SPN-related genes in the network according to a shortest path approach. By means of the K-nearest neighbor algorithm (KNN) classifier evaluated by the jackknife test, sets of genes to distinguish SPN and malignant pancreatic tumors were determined. Results We took a new strategy to identify candidate biomarkers for differentiating SPN from the two malignant pancreatic tumors PanNET and PDAC by analyzing shortest paths among SPN-related genes in the gene regulatory network. 43 new SPN-relevant genes were discovered, among which, we found hsa-miR-194 and hsa-miR-7 along with 7 transcription factors (TFs) such as SOX11, SMAD3 and SOX4 etc. could correctly differentiate SPN from PanNET, while hsa-miR-204 and 4 TFs such as SOX9, TCF7 and PPARD etc. were demonstrated as the potential markers for SPN versus PDAC. 14 genes were demonstrated to serve as the candidate biomarkers for distinguishing SPN from PanNET and PDAC when considering them as malignant pancreatic tumors together. Conclusion This study provides new candidate genes related to SPN and the potential biomarkers to differentiate SPN from PanNET and PDAC, which may help to diagnose patients with SPN in clinical setting. Furthermore, candidate biomarkers such as SOX11 and hsa-miR-204 which could cause cell proliferation but inhibit invasion or metastasis may be of importance in understanding the molecular mechanism of pancreatic oncogenesis and could be possible therapeutic targets for malignant pancreatic tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0718-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengping Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| | - Yuebing Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Jiao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| | - Jie Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
21
|
Li H, Yu B, Li J, Su L, Yan M, Zhang J, Li C, Zhu Z, Liu B. Characterization of differentially expressed genes involved in pathways associated with gastric cancer. PLoS One 2015; 10:e0125013. [PMID: 25928635 PMCID: PMC4415781 DOI: 10.1371/journal.pone.0125013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/06/2015] [Indexed: 12/24/2022] Open
Abstract
To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR) value was < 0.01, P-value was <0.01 and the fold change (FC) was >2. Subsequently, Gene Ontology (GO) categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.
Collapse
Affiliation(s)
- Hao Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Jun Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Aberrant SOX11 promoter methylation is associated with poor prognosis in gastric cancer. Cell Oncol (Dordr) 2015; 38:183-94. [PMID: 25801783 DOI: 10.1007/s13402-015-0219-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer mortality world-wide. In recent years, aberrant SOX11 expression has been observed in various solid and hematopoietic malignancies, including GC. In addition, it has been reported that SOX11 expression may serve as an independent prognostic factor for the survival of GC patients. Here, we assessed the SOX11 gene promoter methylation status in various GC cell lines and primary GC tissues, and evaluated its clinical significance. METHODS Five GC cell lines were used to assess SOX11 expression by qRT-PCR. The effect of SOX11 expression restoration after 5-aza-2'-deoxycytidine (5-Aza-dC) treatment on GC growth was evaluated in GC cell line MKN45. Subsequently, 89 paired GC-normal gastric tissues were evaluated for their SOX11 gene promoter methylation status using methylation-specific PCR (MSP), and 20 paired GC-normal gastric tissues were evaluated for their SOX11 expression in relation to SOX11 gene promoter methylation. GC patient survival was assessed by Kaplan-Meier analyses and a Cox proportional hazard model was employed for multivariate analyses. RESULTS Down-regulation of SOX11 mRNA expression was observed in both GC cell lines and primary GC tissues. MSP revealed hyper-methylation of the SOX11 gene promoter in 55.1% (49/89) of the primary GC tissues tested and in 7.9% (7/89) of its corresponding non-malignant tissues. The SOX11 gene promoter methylation status was found to be related to the depth of GC tumor invasion, Borrmann classification and GC differentiation status. Upon 5-Aza-dC treatment, SOX11 expression was found to be up-regulated in MKN45 cells, in conjunction with proliferation inhibition. SOX11 gene promoter hyper-methylation was found to be significantly associated with a poor prognosis and to serve as an independent marker for survival using multivariate Cox regression analysis. CONCLUSIONS Our results indicate that aberrant SOX11 gene promoter methylation may underlie its down-regulation in GC. SOX11 gene promoter hyper-methylation may serve as a biomarker to predict the clinical outcome of GC.
Collapse
|