1
|
Guo R, Shi L, Chen Y, Lin C, Yin W. Exploring the roles of ncRNAs in prostate cancer via the PI3K/AKT/mTOR signaling pathway. Front Immunol 2025; 16:1525741. [PMID: 40170845 PMCID: PMC11959002 DOI: 10.3389/fimmu.2025.1525741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Although various treatment options are available for prostate cancer (PCa), including androgen deprivation therapy (ADT) and chemotherapy, these approaches have not achieved the desired results clinically, especially in the treatment of advanced chemotherapy-resistant PCa. The PI3K/AKT/mTOR (PAM) signaling pathway is a classical pathway that is aberrantly activated in cancer cells and promotes the tumorigenesis, metastasis, resistance to castration therapy, chemoresistance, and recurrence of PCa. Noncoding RNAs (ncRNAs) are a class of RNAs that do not encode proteins. However, some ncRNAs have recently been shown to be differentially expressed in tumor tissues compared with noncancerous tissues and play important roles at the transcription and posttranscription levels. Among the types of ncRNAs, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), and Piwi-interacting RNAs (piRNAs) can participate in the PAM pathway to regulate PCa growth, metastasis, angiogenesis, and tumor stemness. Therefore, ncRNA therapy that targets the PAM signaling pathway is expected to be a novel and effective approach for treating PCa. In this paper, we summarize the types of ncRNAs that are associated with the PAM pathway in PCa cells as well as the functions and clinical roles of these ncRNAs in PCa. We hope to provide novel and effective strategies for the clinical diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Rongwang Guo
- Nanchang University, 999 University Avenue, Honggutan District, Nanchang, China
| | - Liji Shi
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Yonghui Chen
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Canling Lin
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Weihua Yin
- Department of Oncology, Baoan Central Hospital of Shenzhen, Bao’ an District, Shenzhen, China
| |
Collapse
|
2
|
Lu MY, Hsieh PL, Chao SC, Fang CY, Ohiro Y, Liao YW, Yu CC, Chang MT. Targeting MetaLnc9/miR-143/FSCN1 axis inhibits oxidative stress and myofibroblast transdifferentiation in oral submucous fibrosis. J Dent Sci 2024; 19:1416-1425. [PMID: 39035266 PMCID: PMC11259661 DOI: 10.1016/j.jds.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Persistent activation of myofibroblasts is attributed to various dysregulated biological events conferring multiple types of fibrosis diseases, including oral submucous fibrosis (OSF). Although the significance of non-coding RNAs (ncRNAs) in the occurrence of fibrosis has been appreciated, the detailed mechanisms still have not been fully elucidated. The aim of this study was to identify key dysregulated ncRNAs and elucidate their pro-fibrotic mechanisms in promoting myofibroblast activation and the pathological development of OSF. Materials and methods Expression of non-coding RNAs and mRNAs in OSF cohort was determined using RNA sequencing and qRT-PCR. The molecular axis of pro-fibrotic ncRNAs were exploited via luciferase reporter activity assay and RNA expression rescue experiments. Functional assays, including collagen gel contraction, wound healing ability, cell migration, and reactive oxygen species (ROS) production, were conducted to assess the changes in the myofibroblastic phenotypes of primary human buccal mucosal fibroblasts. Results Herein, we found that long non-coding RNA MetaLnc9 was upregulated in OSF specimens and positively associated with several fibrosis markers. Silencing of MetaLnc9 diminished the features of activated myofibroblasts and the production of ROS. We not only showed that MetaLnc9 functioned as a competitive endogenous RNA of microRNA (miR)-143, but also demonstrated that the pro-fibrosis effect of MetaLnc9 on myofibroblast activities was mediated by suppression of miR-143. Moreover, our data showed that fascin actin-bundling protein 1 (FSCN1) was a direct target of miR-143 and positively related to MetaLnc9. Conclusion Upregulation of MetaLnc9 may enhance the activation of myofibroblasts by sponging miR-143 and titrating its inhibitory property on FSCN1.
Collapse
Affiliation(s)
- Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yoichi Ohiro
- Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Te Chang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
3
|
Tian W, Tan S, Wang J, Shen P, Qin Q, Zi D. Immune-related LncRNAs scores predicts chemotherapeutic responses and prognosis in cervical cancer patients. Discov Oncol 2024; 15:119. [PMID: 38615287 PMCID: PMC11016529 DOI: 10.1007/s12672-024-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) regulating the immune microenvironment of cancer is a hot spot. But little is known about the influence of the immune-related lncRNA (IRlncRs) on the chemotherapeutic responses and prognosis of cervical cancer (CC) patients. The purpose of the study was to identify an immune-related lncRNAs (IRlncRs)-based model for the prospective prediction of clinical outcomes in CC patients. METHODS CC patients' relevant data was acquired from The Cancer Genome Atlas (TCGA). Correlation analysis and Cox regression analyses were applied. A risk score formula was formulated. Prognostic factors were combined into a nomogram, while sensitivity for chemotherapy drugs was analyzed using the OncoPredict algorithm. RESULTS Eight optimal IRlncRs(ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1.) were incorporated in the IRlncRs model. The overall survival (OS) of the high-risk group of the model was inferior to those in the low-risk group. Further analysis demonstrated this eight-IRlncRs model as a useful prognostic marker. The Nomogram had a concordance index of survival prediction of 0.763(95% CI 0.746-0.780) and more robust predictive accuracy. Furthermore, patients in the low-risk group were found to be more sensitive to chemotherapy, including Paclitaxel, Rapamycin, Epirubicin, Vincristine, Docetaxel and Vinorelbine. CONCLUSIONS An eight-IRlncRs-based prediction model was identified that has the potential to be an important tool to predict chemotherapeutic responses and prognosis for CC patients.
Collapse
Affiliation(s)
- Weijie Tian
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Songsong Tan
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Jun Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Ping Shen
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Qingfen Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
4
|
Chang S, Zhuang Z, Jin C. MetaLnc9 facilitates osteogenesis of human bone marrow mesenchymal stem cells by activating the AKT pathway. Connect Tissue Res 2023; 64:532-542. [PMID: 37427853 DOI: 10.1080/03008207.2023.2232463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
AIM OF THE STUDY To investigate the role of MetaLnc9 in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS AND METHODS We used lentiviruses to knockdown or overexpress MetaLnc9 in hBMSCs. qRT-PCR was employed to determine the mRNA levels of osteogenic-related genes in transfected cells. ALP staining and activity assay, ARS staining and quantification were used to identify the degree of osteogenic differentiation. Ectopic bone formation was conducted to examine the osteogenesis of transfected cells in vivo. AKT pathway activator SC-79 and inhibitor LY294002 were used to validate the relationship between MetaLnc9 and AKT signaling pathway. RESULTS The expression of MetaLnc9 was significantly upregulated in the osteogenic differentiation of hBMSCs. MetaLnc9 knockdown inhibited the osteogenesis of hBMSCs, whereas overexpression of it promoted the osteogenic differentiation both in vitro and in vivo. Taking a deeper insight, we found that MetaLnc9 enhanced the osteogenic differentiation by activating AKT signaling. The inhibitor of AKT signaling LY294002 could reverse the positive effect on osteogenesis brought by MetaLnc9 overexpression, whereas the activator of AKT signaling SC-79 could reverse the negative effect caused by MetaLnc9 knockdown. CONCLUSION Our works uncovered a vital role of MetaLnc9 in osteogenesis via regulating the AKT signaling pathway. [Figure: see text].
Collapse
Affiliation(s)
- Sijia Chang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ziyao Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
5
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
6
|
He J, Wang Z, Wang Y, Liu F, Fu L, Jiang X, Wang P, Chen H, Hu M, Cai H. A systematic review and meta-analysis of long noncoding RNA 00963 expression and prognosis and clinicopathological characteristic in human cancers. Pathol Res Pract 2023; 242:154291. [PMID: 36696806 DOI: 10.1016/j.prp.2022.154291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous studies have indicated that the aberrant expression of LINC00963 is extensively present in various human tumors, and that dysregulation of LINC00963 is implicated in the initiation and progression of human cancers. In this meta-analysis, data from diverse malignancies were analyzed to determine whether LINC00963 expression levels were associated with clinical prognosis and immune infiltration in pan-cancer. MATERIALS AND METHODS The eligible studies were identified from several electronic databases from the inception to July 2022 through systematic research. LINC00963 expression and survival were estimated using pooled odds ratios and hazard ratios with 95% CI. We used the Kaplan-Meier method and COX analysis for survival analysis. In addition, Spearman's correlation analysis was used to uncover any correlation between LINC00963 and microsatellites instability (MSI), tumor mutational burden (TMB), DNA methyltransferases (DNMTs), immune checkpoint biomarkers, and the related genes of mismatch repair (MMR). RESULTS Our findings indicated that overexpression of LINC00963 was related to poor overall survival (OS) (HR =1.32, 95% CI, 1.09-1.59, P = 0.004). The TCGA database also found that abnormal expression of LINC00963 was linked to overall survival in various cancers. Moreover, there is an association between LINC00963 expression and MSI, TMB, and MMR in malignancies of various types. CONCLUSION The results of this study indicate that LINC00963 may serve as a prognostic biomarker and a therapeutic target for cancer. By using it, cancer diagnoses can be improved, treatment targets discovered, and prognostic questions improved.
Collapse
Affiliation(s)
- Jin He
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhuo Wang
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yongfeng Wang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Fangyu Liu
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liangyin Fu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Xianglai Jiang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Pingan Wang
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huan Chen
- First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ming Hu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; First clinical medical college, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
7
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
8
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
9
|
LINC00963 promotes the malignancy and metastasis of lung adenocarcinoma by stabilizing Zeb1 and exosomes-induced M2 macrophage polarization. Mol Med 2023; 29:1. [PMID: 36604626 PMCID: PMC9817280 DOI: 10.1186/s10020-022-00598-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA 00963 (LINC00963) is an oncogenic lncRNA in human cancers. However, little is known on how it impacts the pathogenesis of lung adenocarcinoma (LUAD). METHODS Biological effects on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were examined by CCK-8, colony formation, EdU incorporation, transwell, and immunofluorescence assays, respectively. Macrophage polarization was evaluated by flow cytometry. Ubiquitination of Zeb1 was examined by co-immunoprecipitation. The location of LINC00963 in LUAD tissues and cell lines was tested by FISH assay. The LINC00963/HNRNPA2B1/Siah1 mRNA complex interaction was verified using RNA pull-down and immunoprecipitation assays. The exact roles of LINC00963 were further validated in metastasis and xenograft models. RESULTS Higher LINC00963 expression in LUAD patients positively correlated with shorter overall survival, higher stages, and metastasis. LINC00963 mainly localized in the cytoplasm and aggravated malignant phenotypes of LUAD cells in vitro and metastasis in vivo. Mechanistically, LINC00963 directly interacted HNRNPA2B1 protein to trigger the degradation of Siah1 mRNA, which inhibited the ubiquitination and degradation of Zeb1. Moreover, exosomal LINC00963 derived from LUAD cells induced M2 macrophage polarization and promoted LUAD growth and metastasis. CONCLUSION By stabilizing Zeb1 in cancer cells and delivering exosomes to induce M2 macrophage polarization, LINC00963 promoted the malignancy and metastasis of LUAD. Targeting LINC00963 may become a valuable therapeutic target for LUAD.
Collapse
|
10
|
Chang A, Wang P, Ren J. LINC00963 May Be Associated with a Poor Prognosis in Patients with Cervical Cancer. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e935070. [PMID: 35818328 PMCID: PMC9288127 DOI: 10.12659/msm.935070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Recently, the upregulation of LINC00963 expression has been reported in various cancer subtypes. LINC00963 expression can promote cancer cell invasion and metastasis. However, the clinical significance of LINC00963 in cervical and endocervical cancer (CESC) has remained relatively unexamined. Material/Methods We assessed the mRNA expression of LINC00963 in patients with CESC based on data acquired from The Cancer Genome Atlas (TCGA) to determine pathways involved in CESC pathogenesis with respect to LINC00963. We included 3 normal and 304 tumor samples in this study. Results The scatter plot and paired plot showed differences in LINC00963 expression between normal and tumor samples (P<0.01). Overall survival (OS) analysis revealed that CESC patients with high expression of LINC00963 demonstrated worse prognosis than CESC patients with low expression of LINC00963 (P<0.01). Multivariate analysis with the Cox proportional hazards model indicated that the expression of LINC00963 (HR 0.297; 95% CI 0.115–0.776; P=0.012) and primary therapy outcome (HR 0.162; 95% CI 0.059–0.446; P=0.001) were independent prognostic factors for patients with CESC. GSEA results showed that reactome biological oxidations, inflammasomes, apoptosis, toll-like receptor signaling pathway, JAK/STAT signaling pathway, and NF-κB activation were differentially enriched in CESC samples with the high LINC00963 expression phenotype. Conclusions Our results confirmed the association of significantly high levels of LINC00963 expression in CESC with several observed clinical features. LINC00963 may be a potentially useful prognostic molecular biomarker associated with poor survival in patients with CESC.
Collapse
Affiliation(s)
- Aimin Chang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ping Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jingjing Ren
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
11
|
Ma X, Yu S, Zhao B, Bai W, Cui Y, Ni J, Lyu Q, Zhao J. Development and Validation of a Novel Ferroptosis-Related LncRNA Signature for Predicting Prognosis and the Immune Landscape Features in Uveal Melanoma. Front Immunol 2022; 13:922315. [PMID: 35774794 PMCID: PMC9238413 DOI: 10.3389/fimmu.2022.922315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Background Ferroptosis is a newly iron-dependent mode of programmed cell death that is involved in a variety of malignancies. But no research has shown a link between ferroptosis-related long non-coding RNAs (FRLs) and uveal melanoma (UM). We aimed to develop a predictive model for UM and explore its potential function in relation to immune cell infiltration. Methods Identification of FRLs was performed using the Cancer Genome Atlas (TCGA) and FerrDb databases. To develop a prognostic FRLs signature, univariate Cox regression and least absolute shrinkage and selection operator (LASSO) were used in training cohort. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were used to assess the reliability of the risk model. The immunological functions of FRLs signature were determined using gene set enrichment analysis (GSEA). Immunological cell infiltration and immune treatment were studied using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. Finally, in vitro assays were carried out to confirm the biological roles of FRLs with known primer sequences (LINC00963, PPP1R14B.AS1, and ZNF667.AS1). Results A five-genes novel FRLs signature was identified. The mean risk score generated by this signature was used to create two risk groups. The high-risk score UM patients had a lower overall survival rate. The area under the curve (AUC) of ROC and K-M analysis further validated the strong prediction capacity of the prognostic signature. Immune cells such as memory CD8 T cells, M1 macrophages, monocytes, and B cells showed a substantial difference between the two groups. GSEA enrichment results showed that the FRLs signature was linked to certain immune pathways. Moreover, UM patients with high-risk scores were highly susceptible to several chemotherapy drugs, such as cisplatin, imatinib, bortezomib, and pazopanib. Finally, the experimental validation confirmed that knockdown of three identified lncRNA (LINC00963, PPP1R14B.AS1, and ZNF667.AS1) suppressed the invasive ability of tumor cells in vitro. Conclusion The five-FRLs (AC104129.1, AC136475.3, LINC00963, PPP1R14B.AS1, and ZNF667.AS1) signature has effects on clinical survival prediction and selection of immunotherapies for UM patients.
Collapse
Affiliation(s)
- Xiaochen Ma
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Sejie Yu
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Bin Zhao
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Bai
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jinglan Ni
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Qinghua Lyu
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Qinghua Lyu, ; Jun Zhao,
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Qinghua Lyu, ; Jun Zhao,
| |
Collapse
|
12
|
Xie Z, Zhong C, Shen J, Jia Y, Duan S. LINC00963: A potential cancer diagnostic and therapeutic target. Biomed Pharmacother 2022; 150:113019. [PMID: 35462329 DOI: 10.1016/j.biopha.2022.113019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Long intergenic noncoding RNA 00963 (LINC00963) is located on human chromosome 9q34.11. Aberrantly expressed LINC00963 often exerts oncogenic effects by regulating various cellular processes including proliferation, migration, invasion, EMT, and apoptosis. Overexpressed LINC00963 is associated with cancer clinicopathological features and poor cancer prognosis, and can be used in the diagnosis of hepatocellular carcinoma. LINC00963 can build a complex ceRNA network by competitively binding to 22 miRNAs in 14 cancers. LINC00963 can also directly regulate four downstream protein-coding genes. Specifically, LINC00963 promotes the transition of prostate cancer from an androgen-dependent mode to an androgen-independent mode by participating in the transactivation of EGFR. LINC00963 can bind EZH2 and inhibit p21 expression, thereby promoting glioma cell proliferation and invasion. In non-small cell lung cancer, LINC00963 can recruit NONO and CRTC, forming a positive feedback loop of LINC00963/NONO/CRTC/CREB/LINC00963, thereby promoting cancer cell metastasis. LINC00963 is involved in the PI3K/AKT signaling pathway, Wnt signaling pathway, AMPK signaling pathway, and MAPK signaling pathway. Furthermore, LINC00963 is associated with drug resistance in oral squamous cell carcinoma (cisplatin and 5-fluorouracil) and gastric cancer (oxaliplatin) and predicts neoadjuvant efficacy of taxane-anthracyclines in breast cancer. This work systematically reviewed the clinical value of abnormal expression of LINC00963 in various tumors, demonstrated the complex molecular mechanism of LINC00963, and provided directions for future related research.
Collapse
Affiliation(s)
- Zijun Xie
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chenming Zhong
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jinze Shen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yunhua Jia
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Giridharan M, Rupani V, Banerjee S. Signaling Pathways and Targeted Therapies for Stem Cells in Prostate Cancer. ACS Pharmacol Transl Sci 2022; 5:193-206. [PMID: 35434534 PMCID: PMC9003388 DOI: 10.1021/acsptsci.2c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the most frequently occurring cancers among men, and the current statistics show that it is the second leading cause of cancer-related deaths among men. Over the years, research in PCa treatment and therapies has made many advances. Despite these efforts, the standardized therapies such as radiation, chemotherapy, hormonal therapy and surgery are not considered completely effective in treating advanced and metastatic PCa. In most situations, fast-dividing tumor cells are targeted, leaving behind relatively slowly dividing, chemoresistant cells known as cancer stem cells. Therefore, following the seemingly successful treatments, the lingering quiescent cancer stem cells are able to renew themselves, undergo differentiation into mature tumor cells, and sufficiently reinitiate the disease, leading to cancer relapse. Thus, prostate cancer stem cells (PCSCs) have been reported to play a vital role in controlling the dynamics of tumorigenesis, progression, and resistance to therapies in PCa. However, the complete knowledge on the mechanisms regulating the stemness of PCSCs is still unclear. Thus, studying the stemness of PCSCs will allow for the development of more effective cancer therapies due to the durable response, resulting in a reduction in recurrences of cancer. In this Review, we will specifically describe the molecular mechanisms responsible for regulating the stemness of PCSCs. Furthermore, current developments in stem cell-specific therapeutic approaches along with future prospects will also be discussed.
Collapse
Affiliation(s)
- Madhuvanthi Giridharan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Vasu Rupani
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| |
Collapse
|
14
|
Growth arrest-specific 5 lncRNA as a valuable biomarker of chemoresistance in osteosarcoma. Anticancer Drugs 2022; 33:278-285. [PMID: 35045526 DOI: 10.1097/cad.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and teenagers, and it is characterised by drug resistance and high metastatic potential. Increasing studies have highlighted the critical roles of long noncoding RNAs (lncRNAs) as oncogenes or tumour suppressors as well as new biomarkers and therapeutic targets in osteosarcoma. The growth arrestspecific 5 (GAS5) lncRNA can function as a tumour suppressor in several cancers. The present study aimed to validate GAS5 and other chemoresistanceassociated lncRNAs as biomarkers in a cohort of primary osteosarcoma samples, to obtain predictive information on resistance or sensitivity to treatment. The GAS5 and a panel of lncRNAs related to chemoresistance [SNGH1, FOXD2-AS1, deleted in lymphocytic leukemia (DLEU2) and LINC00963] were evaluated in a cohort of osteosarcoma patients enrolled at the Careggi University Hospital. Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections and the expression levels of the lncRNAs were quantified by qPCR. A bioinformatic analysis on deposited RNA-seq data was performed to validate the qPCR results. Clustering analysis shows that GAS5 could be linked to the expression of isoforms 02 and 04 of the lncRNA DLEU2, whereas the DLEU2 isoform 08 is linked to the lncRNA LINC00963. We found that GAS5 is significantly increased in patients with a good prognosis and is expressed differently between chemosensitive and chemoresistant osteosarcoma patients. However, the results obtained are not concordant with the in-silico analysis performed on the TARGET osteosarcoma dataset. In the future, we would enlarge the case series, including different disease settings.
Collapse
|
15
|
|
16
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
17
|
Zhang R, Niu C, Guan Y, Wu J, Hu L. LINC00963 silencing inhibits the proliferation and migration of high glucose-induced retinal endothelial cells via targeting miR-27b. Exp Ther Med 2021; 22:1274. [PMID: 34594411 PMCID: PMC8456487 DOI: 10.3892/etm.2021.10709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The association between long intergenic non-protein-coding RNA 963 (LINC00963) and diabetes has not been fully elucidated. Therefore, the present study aimed to investigate the effect of the long non-coding RNA LINC00963 on diabetic retinopathy (DR), in order to provide a new therapeutic target for this condition. Human retinal capillary endothelial cells (HRECs) were induced with high concentrations of glucose to establish a DR model. The expression levels of LINC00963, cell viability, the protein expression levels of proliferating cell nuclear antigen (PCNA) and Ki67, and the migratory capacity of HRECs were determined using reverse transcription-quantitative PCR (RT-qPCR), Cell Counting Kit-8 assay, western blot analysis, and wound healing and Transwell assays, respectively. Furthermore, the Encyclopedia of RNA Interactomes database was used to predict the binding targets of LINC00963, and luciferase reporter assay was used to verify the direct binding of microRNA (miR)-27b to LINC00963. RT-qPCR was also utilized to measure the expression levels of miR-27b, PCNA and Ki67. The results demonstrated that LINC00963 silencing inhibited glucose-induced HREC proliferation and migration, and downregulated PCNA and Ki67 expression. Following transfection with miR-27b inhibitor, cell proliferation and migration were notably enhanced, and the protein expression levels of PCNA and Ki67 were increased. Taken together, the results of the present study suggested that the LINC00963/miR-27b axis may regulate the proliferation and migration of glucose-induced HRECs. Therefore, LINC00963 may be considered as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Rui Zhang
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| | - Chunhong Niu
- Department of Nursing, The Tianjin 4th Central Hospital, Tianjin 300140, P.R. China
| | - Yuhan Guan
- Department of Nursing, The Tianjin 4th Central Hospital, Tianjin 300140, P.R. China
| | - Jianhua Wu
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| | - Liping Hu
- Fundus Disease Department, Aier Eye Hospital of Wuhan University, Wuhan, Hubei 430063, P.R. China
| |
Collapse
|
18
|
Hegre SA, Samdal H, Klima A, Stovner EB, Nørsett KG, Liabakk NB, Olsen LC, Chawla K, Aas PA, Sætrom P. Joint changes in RNA, RNA polymerase II, and promoter activity through the cell cycle identify non-coding RNAs involved in proliferation. Sci Rep 2021; 11:18952. [PMID: 34556693 PMCID: PMC8460802 DOI: 10.1038/s41598-021-97909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
Proper regulation of the cell cycle is necessary for normal growth and development of all organisms. Conversely, altered cell cycle regulation often underlies proliferative diseases such as cancer. Long non-coding RNAs (lncRNAs) are recognized as important regulators of gene expression and are often found dysregulated in diseases, including cancers. However, identifying lncRNAs with cell cycle functions is challenging due to their often low and cell-type specific expression. We present a highly effective method that analyses changes in promoter activity, transcription, and RNA levels for identifying genes enriched for cell cycle functions. Specifically, by combining RNA sequencing with ChIP sequencing through the cell cycle of synchronized human keratinocytes, we identified 1009 genes with cell cycle-dependent expression and correlated changes in RNA polymerase II occupancy or promoter activity as measured by histone 3 lysine 4 trimethylation (H3K4me3). These genes were highly enriched for genes with known cell cycle functions and included 57 lncRNAs. We selected four of these lncRNAs-SNHG26, EMSLR, ZFAS1, and EPB41L4A-AS1-for further experimental validation and found that knockdown of each of the four lncRNAs affected cell cycle phase distributions and reduced proliferation in multiple cell lines. These results show that many genes with cell cycle functions have concomitant cell-cycle dependent changes in promoter activity, transcription, and RNA levels and support that our multi-omics method is well suited for identifying lncRNAs involved in the cell cycle.
Collapse
Affiliation(s)
- Siv Anita Hegre
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Helle Samdal
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Antonin Klima
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Endre B Stovner
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Kristin G Nørsett
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Lene Christin Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
19
|
Lv H, Zhou D, Liu G. LncRNA LINC00963 promotes colorectal cancer cell proliferation and metastasis by regulating miR‑1281 and TRIM65. Mol Med Rep 2021; 24:781. [PMID: 34498706 PMCID: PMC8436205 DOI: 10.3892/mmr.2021.12421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Reportedly, long-chain non-coding RNA LINC00963 features prominently in cancer biology. However, functional details of LINC00963 in colorectal cancer (CRC) remain to be elucidated. Reverse transcription-quantitative (RT-q)PCR was performed to examine LINC00963 and microRNA (miR)-1281 expression levels in 53 matched pairs of cancerous and non-cancerous tissues from patients with CRC. Tripartite motif-containing 65 (TRIM65) protein expression in CRC cells was detected via western blot analysis. Furthermore, LINC00963 overexpression plasmid, LINC00963 small interfering RNA, miR-1281 mimics or miR-1281 inhibitors were transfected into CRC cells, and Cell Counting Kit-8, colony formation and Transwell assays were adopted to study the effects of LINC00963 and miR-1281 on the malignant phenotypes of CRC cells. Bioinformatics analysis, dual-luciferase, RNA pull-down and immunoprecipitation assays, RT-qPCR and western blot analysis were performed to investigate the regulatory relationship between LINC00963, miR-1281 and TRIM65. LINC00963 was highly expressed in CRC tissues and cells, while miR-1281 was downregulated. Functionally, LINC00963 facilitated the proliferation, colony formation, migration and invasion of CRC cells, and increased the expression levels of Ki67, matrix metalloproteinase (MMP)2 and MMP9, while miR-1281 had the opposite biological functions. Mechanistically, LINC00963 sponged miR-1281 and repressed its expression in CRC cells, resulting in the upregulation of TRIM65. LINC00963 positively regulates TRIM65 in CRC progression by repressing miR-1281 expression, showing potential as a therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Haidong Lv
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Dixia Zhou
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoqing Liu
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
20
|
Sun M, Liu X, Xia L, Chen Y, Kuang L, Gu X, Li T. A nine-lncRNA signature predicts distant relapse-free survival of HER2-negative breast cancer patients receiving taxane and anthracycline-based neoadjuvant chemotherapy. Biochem Pharmacol 2021; 189:114285. [PMID: 33069665 DOI: 10.1016/j.bcp.2020.114285] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Multi-gene prognostic signatures of long non-coding RNAs (lncRNAs) provide new insights into mechanisms of HER2-negative breast cancer development and progression, and predict distant relapse-free survival (DRFS) of patients receiving taxane and anthracycline-based neoadjuvant chemotherapy. The aim of this study was to develop such a multi-lncRNAs signature. Optimal multiple candidate signature lncRNAs associated with DRFS were firstly identified by a univariate Cox proportional hazard regression survival analysis and a robust likelihood-based survival analysis of the GEO dataset GSE25055. A nine-lncRNA prognostic risk score model Risk Score = 0.0289 × EXPLOC100507388 - 0.0814 × EXPLINC00094 - 0.2422 × EXPSMG7-AS1 - 0.2433 × EXPPP14571 + 0.4690 × EXPASAP1-IT1 - 0.2483 × EXPLOC103344931 - 0.2464 × EXPFAM182A + 0.3349 × EXPHCG26 - 0.0216 × EXPLINC00963 was built according to the coefficients of multivariate survival analysis of the association between the candidate lncRNAs and survival. EXPlncRNA was the standardized log2-transformed expression level of the gene. According to this model, higher scores predicted lower survival probability. The area under Receiver operating characteristic (ROC) curve (AUC) was 0.777 to 0.823 from 1- to 7- year survival rate. The model and its individual lncRNAs differentiated survival probability between the higher scores (expression) and the lower scores (expression). The nine-lncRNA signature had the robust prognostic power compared with ER, PR, tumor size (T), lymph node invasion (N), TNM stage, pathologic response, chemosensitivity prediction and PAM50 signature. These results were consistent with those based on the GEO dataset GSE25065. The predictive nomograms integrating both the nine-lncRNA signature classifier and clinical-pathological risk factors were robust in predicting 1-, 3- and 5- year survival probabilities. These results supported that the nine-lncRNA signature was a robust and effective model in predicting DRFS of patients with HER2-negative breast cancer following taxane and anthracycline-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoxiao Liu
- Department of Oncology, Xinchang Hospital Affiliated to Wenzhou Medical University, 117 Gushan Middle Road, Xinchang County 312500, Zhejiang Province, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yuying Chen
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Li Kuang
- Department of Oncology, Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Tian Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710000, China.
| |
Collapse
|
21
|
Ahadi A. Functional roles of lncRNAs in the pathogenesis and progression of cancer. Genes Dis 2021; 8:424-437. [PMID: 34179307 PMCID: PMC8209321 DOI: 10.1016/j.gendis.2020.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as regulators of gene expression and pivotal transcriptional regulators in cancer cells via diverse mechanisms. lncRNAs involves a variety of pathological and biological activities, such as apoptosis, cell proliferation, metastasis, and invasion. By using microarray and RNA sequencing, it was identified that dysregulation of lncRNAs affects the tumorigenesis process. Taken together, these lncRNAs are putative biomarker and therapeutic target in human malignancies. In this review, I discuss the latest finding regarding the dysregulation of some important lncRNAs and their diverse mechanisms of these lncRNAs in the pathogenesis and progression of certain cancers; also, I summarize the possible roles of lncRNAs in clinical application for diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198396-3113, Iran
| |
Collapse
|
22
|
Kumar S, Prajapati KS, Singh AK, Kushwaha PP, Shuaib M, Gupta S. Long non-coding RNA regulating androgen receptor signaling in breast and prostate cancer. Cancer Lett 2021; 504:15-22. [PMID: 33556545 DOI: 10.1016/j.canlet.2020.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023]
Abstract
The human genome transcribe an array of RNAs that do not encode proteins and may act as mediators in the regulation of gene expression. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides of RNA transcripts that play important role in tumor development. Numerous lncRNAs have been characterized as functional transcripts associated with several biological processes and pathologic stages. Although the biological function and molecular mechanisms of lncRNAs remains to be explored, recent studies demonstrate aberrant expression of several lncRNAs linked with various human cancers. The present review summarizes the current knowledge of lncRNA expression patterns and mechanisms that contribute to carcinogenesis. In particular, we focus on lncRNAs regulating androgen receptor signaling pathways in prostate and breast cancer subtype having prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Shashank Kumar
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India.
| | - Kumari Sunita Prajapati
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Atul Kumar Singh
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Prem Prakash Kushwaha
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Zhao H, Dong H, Wang P, Zhu H. Long non-coding RNA SNHG17 enhances the aggressiveness of C4-2 human prostate cancer cells in association with β-catenin signaling. Oncol Lett 2021; 21:472. [PMID: 33907582 PMCID: PMC8063240 DOI: 10.3892/ol.2021.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Long non-coding (lnc) RNAs have emerged as important regulators of cancer development and progression. Several lncRNAs have been reported to be associated with prostate cancer (PCa); however, the involvement of lncRNA SNHG17 in PCa remains unclear. In the present study, the mRNA expression level of SNHG17 in 58 pairs of PCa tumor samples and adjacent non-tumor tissues, as well as in PCa tumor cell lines was analyzed. The regulatory effect of SNHG17 on the oncogenic phenotypes of the C4-2 tumor cell line was also investigated. The clinicopathological analysis revealed that SNHG17 mRNA expression level was increased in the PCa tumor samples, and its high expression levels were associated with poor patient outcomes, indicating that SNHG17 may act as a biomarker for the prognosis of PCa. SNHG17 mRNA expression level was also increased in different PCa tumor cell lines. Functionally, SNHG17 increased C4-2 tumor cell growth and aggressiveness by stimulating tumor cell proliferation, survival, invasion and resistance to chemotherapy. Furthermore, SNHG17 promoted in vivo tumor growth in a xenograft mouse model. Notably, the SNHG17-induced in vitro and in vivo oncogenic effects were associated with activation of the β-catenin pathway. The results from the present study revealed that lncRNA SNHG17 could be an important regulator in the oncogenic properties of human PCa and may; therefore, represent a potential PCa therapeutic target.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haijing Dong
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
24
|
Bai M, He C, Shi S, Wang M, Ma J, Yang P, Dong Y, Mou X, Han S. Linc00963 Promote Cell Proliferation and Tumor Growth in Castration-Resistant Prostate Cancer by Modulating miR-655/TRIM24 Axis. Front Oncol 2021; 11:636965. [PMID: 33643926 PMCID: PMC7905206 DOI: 10.3389/fonc.2021.636965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that both long intergenic non-coding RNA 00963 (Linc00963) and tripartite motif containing 24 (TRIM24) are activators of the PI3K/AKT pathway, and both are involved in the carcinogenesis and progression of prostate cancer. However, the regulatory mechanisms between Linc00963 and TRIM24 are still unclear. In this study, we aimed to elucidate the underlying relationship between Linc00963 and TRIM24 in castration-resistant prostate cancer (CRPC). We found that TRIM24, an established oncogene in CRPC, was positively correlated with Linc00963 in prostate cancer tissues. In addition, TRIM24 was positively regulated by Lin00963 in CRPC cells. Mechanistically, TRIM24 was the direct target of microRNA-655 (miR-655) in CRPC cells, and Linc00963 could competitively bind miR-655 and upregulate TRIM24 expression. Using gain- and loss-of- function assays and rescue assays, we identified that miR-655 inhibits TRIM24 expression and cell proliferation and colony forming ability in CRPC, and that Linc00963 promotes TRIM24 expression, cell proliferation, and colony forming ability of CRPC cells by directly suppressing miR-655 expression. We further identified that Linc00963 could promote tumor growth of CRPC cells by inhibiting miR-655 and upregulating TRIM24 axis in vivo. Taken together, our study reveals a new mechanism for the Linc00963/miR-655/TRIM24 competing endogenous RNA (ceRNA) network in accelerating cell proliferation in CRPC in vitro and in vivo, and suggests that Linc00963 could be considered a novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengjia Shi
- Department of Andrology, Assisted Reproductive Technology Center, Northwest Women's and Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiping Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Mou
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Ye J, Liu J, Tang T, Xin L, Bao X, Yan Y. LINC00963 affects the development of colorectal cancer via MiR-532-3p/HMGA2 axis. Cancer Cell Int 2021; 21:87. [PMID: 33536018 PMCID: PMC7860506 DOI: 10.1186/s12935-020-01706-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background LINC00963 is high-expressed in various carcinomas, but its expression and function in colorectal cancer (CRC) have not been explored. This study explored the role and mechanism of LINC00963 in CRC. Methods The expression of LINC00963 in CRC and its relationship with prognosis were examined by starBase and survival analysis. The effects of LINC00963, miR-532-3p and HMGA2 on the biological characteristics and EMT-related genes of CRC cells were studied by RT-qPCR, CCK-8, clone formation experiments, flow cytometry, scratch test, Transwell, and Western blot. Xenograft assay and immunohistochemistry were performed to verify the effect of LINC00963 on tumor growth. The correlation among LINC00963, miR-532-3p, and HMGA2 was analyzed by bioinformatics analysis, luciferase assay, and Pearson test. Results LINC00963 was high-expressed in CRC, and this was associated with poor prognosis of CRC. Silencing LINC00963 inhibited the activity, proliferation, migration, and invasion of CRC cells, MMP-3 and MMP-9 expressions, moreover, it also blocked cell cycle progression, and inhibited tumor growth and Ki67 expression. However, overexpression of LINC00963 showed the opposite effects to silencing LINC00963. LINC00963 targeted miR-532-3p to regulate HMGA2 expression. Down-regulation of miR-532-3p promoted cell proliferation, migration and invasion, and expressions of MMP-3 and MMP-9, and knockdown of HMGA2 reversed the effect of miR-532-3p inhibitor. Up-regulation of miR-532-3p inhibited the biological functions of CRC cells, and overexpression of HMGA2 reversed the miR-532-3p mimic effect. Conclusion LINC00963 affects the development of CRC through the miR-532-3p/HMGA2 axis.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Jidong Liu
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Tao Tang
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Le Xin
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Xing Bao
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China
| | - Yukuang Yan
- Department of General Surgery, Shenzhen Longgang Central Hospital, No.6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong, China.
| |
Collapse
|
26
|
Wu Y, Cong L, Chen W, Wang X, Qiu F. lncRNA LINC00963 downregulation regulates colorectal cancer tumorigenesis and progression via the miR‑10b/FGF13 axis. Mol Med Rep 2021; 23:211. [PMID: 33495804 PMCID: PMC7830939 DOI: 10.3892/mmr.2021.11850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a key role in different types of cancer, including colorectal cancer (CRC). The exact roles and mechanisms underlying lncRNA00963 [long intergenic non‑protein coding RNA 963 (LINC00963)] in CRC are not completely understood. The present study aimed to identify the effects and mechanisms underlying LINC00963 in CRC. Firstly, the LINC00963 expression was detected using reverse transcription‑quantitative PCR and the results demonstrated that LINC00963 expression levels were significantly increased in CRC tissues and cell lines compared with healthy tissues and HpoEpiC cells, respectively. Online database analysis indicated that high levels of LINC00963 were associated with low survival rates. The results of functional experiments, such as CCK‑8 assay, colony formation assay, wound healing assay and Transwell invasion assay, indicated that LINC00963 knockdown significantly inhibited CRC cell proliferation, colony formation, migration and invasion compared with the small interfering RNA (si)‑negative control (NC) group. Furthermore, the luciferase reporter indicated that LINC00963 competitively regulated microRNA (miR)‑10b by targeting fibroblast growth factor 13 (FGF13). Compared with si‑NC, LINC00963 knockdown decreased the expression levels of FGF13, vimentin and N‑cadherin, and increased the expression of E‑cadherin as detecting by western blotting. miR‑10b inhibitors partly attenuated si‑LINC00963‑induced inhibition of CRC cell proliferation, migration and invasion. Collectively, the results of the present study suggested a potential role of the LINC00963/miR-10b/FGF13 axis in the tumorigenesis and progression of CRC, indicating a novel lncRNA-based diagnostic or therapeutic target for CRC.
Collapse
Affiliation(s)
- Yujin Wu
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Longling Cong
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Wenjian Chen
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Xuechuan Wang
- Department of Gastroenterology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Fanghua Qiu
- Department of Hospital Infection Control, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| |
Collapse
|
27
|
Guo X, Qin Y, Wang L, Dong S, Yan Y, Bian X, Zhao C. A competing endogenous RNA network reveals key lncRNAs associated with sepsis. Mol Genet Genomic Med 2021; 9:e1557. [PMID: 33237630 PMCID: PMC7963432 DOI: 10.1002/mgg3.1557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/17/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study set out to determine key lncRNAs correlated with sepsis via constructing competing endogenous RNA (ceRNA) network. METHODS Three septic patients and three healthy controls were recruited to obtain lncRNA profiles in this current study. Combined with the mRNA profiles by RNA-sequencing, an integrated analysis of mRNA expression profiles downloaded from GEO was performed to obtain the differentially expressed mRNAs (DEmRNAs). Based on differentially expressed lncRNAs (DElncRNAs) and DEmRNAs acquired in this present study and differentially expressed miRNAs (DEmiRNAs) acquired in previous study, a ceRNA network was constructed. Furthermore, LINC00963 was validated in THP-1 cells by performing loss of function assays. RESULTS In this analysis, a total of 290 DEmRNAs and 46 DElncRNAs were detected in sepsis. Parkinson's disease, Oxidative phosphorylation and Cardiac muscle contraction were significantly enriched KEGG pathways in sepsis. XPO1, CUL4A, and NEDD8 were three hub proteins of sepsis-specific PPI network. A ceRNA network, which contained 16 DElncRNA-DEmiRNA pairs and 82 DEmiRNA-DEmRNA pairs, involving 5 lncRNAs, 10 miRNAs, and 60 mRNAs, was obtained. The function experiments indicated that knockdown of LINC00963 could promote cell proliferation, reduce cytokine expression, and suppress inflammasome activation and phagocytosis in LPS-induced THP-1 cells. CONCLUSION This study determined key lncRNAs involved in sepsis, which may contribute to the development for novel treatment strategy of sepsis.
Collapse
Affiliation(s)
- Xuan Guo
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yanjun Qin
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lili Wang
- Department of CardiologyHebei General HospitalShijiazhuangChina
| | - Shimin Dong
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan Yan
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaohua Bian
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Caiyan Zhao
- Department of Infectious DiseaseThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
28
|
Shen C, Yang C, Xia B, You M. Long non-coding RNAs: Emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer Lett 2020; 500:244-252. [PMID: 33242560 DOI: 10.1016/j.canlet.2020.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of tumor cells critical for tumor development. Their unique abilities, such as self-renewal, have resulted in tumor resistance to various cancer treatments, including traditional chemotherapy and latest immunotherapy. CSCs-targeting therapy is a promising treatment to overcome the therapeutic resistances to different tumors. However, despite their significance, the regulatory mechanism generating therapy-resistant CSCs is still obscure. Long non-coding RNAs (lncRNAs) are key regulators in various biological processes, including cell proliferation, apoptosis, migration, and invasion. Recent studies have revealed that lncRNAs play an important role in the therapeutic resistance of CSCs. Here we summarize the latest studies on the regulatory role of lncRNAs in sustaining the stemness of CSCs, and discuss the associated mechanisms behind these behavior changes in CSCs-related chemo- and immune-resistance. Future research implications are also discussed, shedding light on the potential CSCs-targeted strategies to break through the resistance of current therapies.
Collapse
Affiliation(s)
- Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Anhui, 230038, China
| | - Chuan Yang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, 610041, China
| | - Bing Xia
- Department of Radiation Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
29
|
Zuo W, Zhou K, Deng M, Lin Q, Yin Q, Zhang C, Zhou J, Song Y. LINC00963 facilitates acute myeloid leukemia development by modulating miR-608/MMP-15. Aging (Albany NY) 2020; 12:18970-18981. [PMID: 33012724 PMCID: PMC7732318 DOI: 10.18632/aging.103252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023]
Abstract
Despite continuous improvements of AML therapy, the prognosis of AML patients remains unsatisfactory. Recently, lncRNAs have been reported to participate in the development of AML. Our data demonstrated that MMP15 and LINC00963 were upregulated and miR-608 was decreased in AML cells (THP-1, HL-60, HEL and MOLM-13) compared to HS-5 cells. RT-qPCR results showed that LINC00963 levels were higher in the serum and bone marrow of AML cases than in controls. Moreover, overexpression of LINC00963 promoted AML cell growth and EMT progression in both THP-1 and HL-60 cells. Furthermore, miR-608 levels were downregulated in the serum and bone marrow of AML cases compared with controls, and Pearson's correlation analysis indicated that LINC00963 was negatively correlated with miR-608 in the serum and bone marrow of AML samples. In addition, we demonstrated that LINC00963 sponged miR-608 expression and that MMP-15 was a target of miR-608 in AML cells. Finally, rescue experiments indicated that ectopic expression of LINC00963 accelerated cell growth and EMT development by modulating MMP-15. These data demonstrated that LINC00963 acted as an oncogene and may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Mei Deng
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Qingsong Yin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Chunlei Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Jian Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| |
Collapse
|
30
|
Cui R, Liu C, Lin P, Xie H, Wang W, Zhao J, Jiang S, Shi J, Yu X. LncRNA AC245100.4 binds HSP90 to promote the proliferation of prostate cancer. Epigenomics 2020; 12:1257-1271. [PMID: 32811161 DOI: 10.2217/epi-2020-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role and mechanisms of AC245100.4 in prostate cancer. Materials & methods: The expression and location of AC245100.4 were examined using real-time PCR and in situ hybridization. Cell Counting Kit-8, clone formation, flow cytometry and in vivo assays were conducted to determine the role of AC245100.4. RNA antisense purification with mass spectrometry and RNA immunoprecipitation were performed to identify proteins that bind to AC245100.4. Western blotting was performed to quantify the expression of protein. Results: AC245100.4 expression was upregulated in prostate cancer and mainly located in the cytoplasm. Knockdown of AC245100.4 inhibited proliferation of prostate cancer. Mechanistically, AC245100.4 bound to HSP90 and altered its chaperone function, increased the stability of IκB kinase and activated the NFκB signaling pathway. Conclusion: AC245100.4 promotes the proliferation of prostate cancer via binding of HSP90.
Collapse
Affiliation(s)
- Rongjun Cui
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China.,Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, PR China
| | - Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Hui Xie
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, 150086, PR China
| | - Wei Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Jiabin Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, PR China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Jie Shi
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| |
Collapse
|
31
|
LINC00963 Promotes Cancer Stemness, Metastasis, and Drug Resistance in Head and Neck Carcinomas via ABCB5 Regulation. Cancers (Basel) 2020; 12:cancers12051073. [PMID: 32357409 PMCID: PMC7281373 DOI: 10.3390/cancers12051073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023] Open
Abstract
Accumulating studies have indicated that long non-coding RNAs (lncRNAs) participate in the regulation of cancer stem cells (CSCs), which are crucial in tumor initiation, metastasis, relapse, and therapy resistance. In the current study, RT-PCR analysis was employed to evaluate the expression of LINC00963 in tumor tissues and oral CSCs. Stemness phenotypes and the expression of CSCs markers in oral cancer cells transfected with sh-LINC00963 were examined. Our results showed that the expression of the lncRNA LINC00963 was up-regulated in oral cancer tissues and CSCs. We found that the downregulation of LINC00963 inhibited CSC hallmarks, such as migration, invasion and colony formation capacity. Moreover, suppression of LINC00963 reduced the activity of stemness marker ALDH1, the percentage of self-renewal, chemoresistance and the expression of multidrug-resistance transporter ABCB5. Most importantly, we demonstrated that knockdown of LINC00963 decreased self-renewal, invasion and colony formation ability via ABCB5. Analysis of TCGA (the Cancer Genome Atlas) datasets suggested that the level of LINC00963 was positively correlated with the expression of the cancer stemness markers (Sox2 and CD44) and drug resistance markers (ABCG2 and ABCB5). Altogether, our results showed that suppression of LINC00963 may be beneficial to inhibit chemoresistance and cancer relapse in oral cancer patients.
Collapse
|
32
|
Corona RI, Seo JH, Lin X, Hazelett DJ, Reddy J, Fonseca MAS, Abassi F, Lin YG, Mhawech-Fauceglia PY, Shah SP, Huntsman DG, Gusev A, Karlan BY, Berman BP, Freedman ML, Gayther SA, Lawrenson K. Non-coding somatic mutations converge on the PAX8 pathway in ovarian cancer. Nat Commun 2020; 11:2020. [PMID: 32332753 PMCID: PMC7181647 DOI: 10.1038/s41467-020-15951-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
The functional consequences of somatic non-coding mutations in ovarian cancer (OC) are unknown. To identify regulatory elements (RE) and genes perturbed by acquired non-coding variants, here we establish epigenomic and transcriptomic landscapes of primary OCs using H3K27ac ChIP-seq and RNA-seq, and then integrate these with whole genome sequencing data from 232 OCs. We identify 25 frequently mutated regulatory elements, including an enhancer at 6p22.1 which associates with differential expression of ZSCAN16 (P = 6.6 × 10-4) and ZSCAN12 (P = 0.02). CRISPR/Cas9 knockout of this enhancer induces downregulation of both genes. Globally, there is an enrichment of single nucleotide variants in active binding sites for TEAD4 (P = 6 × 10-11) and its binding partner PAX8 (P = 2×10-10), a known lineage-specific transcription factor in OC. In addition, the collection of cis REs associated with PAX8 comprise the most frequently mutated set of enhancers in OC (P = 0.003). These data indicate that non-coding somatic mutations disrupt the PAX8 transcriptional network during OC development.
Collapse
Affiliation(s)
- Rosario I Corona
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xianzhi Lin
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Dennis J Hazelett
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Marcos A S Fonseca
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Forough Abassi
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Yvonne G Lin
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Sohrab P Shah
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- McGraw/Patterson Center for Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beth Y Karlan
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
| | - Simon A Gayther
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA.
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Kate Lawrenson
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA.
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Bai M, Lei Y, Wang M, Ma J, Yang P, Mou X, Dong Y, Han S. Long Non-coding RNA SNHG17 Promotes Cell Proliferation and Invasion in Castration-Resistant Prostate Cancer by Targeting the miR-144/CD51 Axis. Front Genet 2020; 11:274. [PMID: 32351538 PMCID: PMC7174785 DOI: 10.3389/fgene.2020.00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Previously, we found that the expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) was up-regulated in castration-resistant prostate cancer (CRPC) cells compared to that in hormone sensitive prostate cancer (HSPC) cells. Moreover, we found that CD51 was up-regulated in prostate cancer cells and promoted the carcinogenesis and progression of prostate cancer. However, the regulatory mechanism of SNHG17 and CD51 in the development of CRPC remains unclear. In the current study, we aimed to elucidate the expressions, functions, and underlying mechanism of SNHG17 and CD51 in CRPC. Our results further confirmed that both SNHG17 and CD51 were up-regulated in CRPC tissues and cells. In addition, we found that SNHG17 expression was positively correlated with CD51 expression in prostate cancer. Mechanically, SNHG17 functioned as a competing endogenous RNA (ceRNA) to up-regulate CD51 expression through competitively sponging microRNA-144 (miR-144), and CD51 was identified as a direct downstream target of miR-144 in CRPC. Functionally, down-regulation of SNHG17 or up-regulation of miR-144 inhibited the proliferation, migration, and invasion of CRPC cells, whereas up-regulation of SNHG17 and down-regulation of miR-144 promoted the proliferation, migration and invasion of CRPC cells in vitro and in vivo. Using gain and loss-of function assay and rescue assay, we showed that miR-144 inhibited cell proliferation, migration and invasion by directly inhibiting CD51 expression, and SNHG17 promoted cell proliferation, migration and invasion by directly enhancing CD51 expression in CRPC cells. Taken together, our study reveals the role of the SNHG17/miR-144/CD51 axis in accelerating CRPC cell proliferation and invasion, and suggests that SNHG17 may serve as a novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yutiantian Lei
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Mou
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yiping Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Xie LB, Chen B, Liao X, Chen YF, Yang R, He SR, Pei LJ, Jiang R. LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway. J Cell Mol Med 2020; 24:5555-5564. [PMID: 32270599 PMCID: PMC7214170 DOI: 10.1111/jcmm.15211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of long non‐coding RNAs (lncRNAs) in kidney diseases has been gradually discovered in recent years. LINC00963, as an lncRNA, was found to be involved in chronic renal failure. However, the role and molecular mechanisms of LINC00963 engaged in acute kidney injury (AKI) were still unclear. In this study, we established rat AKI models by ischaemia and reperfusion (I/R) treatment. Urea and creatinine levels were determined, and histological features of kidney tissues were examined following HE staining. CCK8 assay was chosen to assess the viability of hypoxia‐induced HK‐2 cells. Dual‐luciferase reporter gene assays were performed to verify the target relationship between LINC00963 and microRNA. The mRNA and protein levels were assayed by RT‐qPCR and Western blot, respectively. Annexin V‐FITC/PI and TUNEL staining were used to evaluate apoptosis. LINC00963 was highly expressed in the cell and rat models, and miR‐128‐3p was predicted and then verified as a target gene of LINC00963. Knockdown of LINC00963 reduced acute renal injury both in vitro and in vivo. LINC00963 activated the JAK2/STAT1 pathway to aggravate renal I/R injury. LINC00963 could target miR‐128‐3p to reduce G1 arrest and apoptosis through JAK2/STAT1 pathway to promote the progression of AKI.
Collapse
Affiliation(s)
- Li-Bo Xie
- Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xue Liao
- College of Clinical Medicine, Southwest Medical University School of Clinical Medical Sciences, Luzhou, China
| | - Yi-Feng Chen
- College of Clinical Medicine, Southwest Medical University School of Clinical Medical Sciences, Luzhou, China
| | - Rui Yang
- College of Clinical Medicine, Southwest Medical University School of Clinical Medical Sciences, Luzhou, China
| | - Si-Rong He
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li-Jun Pei
- Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Ye F, Xu R, Ge Y, Zheng Y, Liu X, Deng P, Xu X. LINC00963 Confers Oncogenic Properties in Glioma by Regulating the miR-506/BCAT1 Axis. Cancer Manag Res 2020; 12:2339-2351. [PMID: 32273770 PMCID: PMC7108718 DOI: 10.2147/cmar.s246332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glioma is a prevalent disease of the central nervous system with a high incidence and mortality rate. Many long noncoding RNAs (lncRNAs) have been determined to be critical regulators of glioma oncogenesis. However, the function and mechanism of LINC00963 in glioma have not been fully elucidated. Methods The expression level of RNA was determined by qRT-PCR, and the protein level was determined by Western blot analysis. A luciferase activity assay was conducted to verify the interaction between miRNA and lncRNA or the target gene. The proliferation, cell cycle distribution, invasion, and migration were evaluated by MTT, EdU, flow cytometry, wound-healing and Transwell invasion assays, respectively. In vivo tumor growth was evaluated in a xenograft nude mouse model. Results We found that LINC00963 was upregulated in glioma cells and tissues and associated with the poor prognosis of patients with glioma. Ectopic expression of LINC00963 promoted cell proliferation, cell cycle progression, migration, and invasion in vitro and tumorigenesis in vivo. Mechanistically, the results of luciferase activity and RNA pulldown assays validated that LINC00963 could act as a molecular sponge of miR-506. Reciprocal repression was found between LINC00963 and miR-506. In addition, BCAT1 was identified as a target of miR-506, and both the mRNA and protein levels of BCAT1 were reduced by miR-506. In tumor tissues, the expression of BCAT1 was negatively and positively correlated with miR-506 and LINC00963 expression, respectively. The reintroduction of BCAT1 in glioma cells abolished the tumor suppressive function of miR-506 by promoting cell viability and motility. The upregulated LINC00963 and BCAT1 were associated with the aggressive phenotypes of tumors. Conclusion Our data revealed that LINC00963 confers oncogenic function in the progression of glioma and that the LINC00963/miR-506/BCAT1 axis may be a novel mechanism and therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Feng Ye
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Ronghua Xu
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Yuanhong Ge
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Yi Zheng
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Xiaowei Liu
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Pingfu Deng
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| | - Xuejun Xu
- Department of Neurosurgery, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610021, People's Republic of China
| |
Collapse
|
36
|
Wu Z, Wang W, Wang Y, Wang X, Sun S, Yao Y, Zhang Y, Ren Z. Long noncoding RNA LINC00963 promotes breast cancer progression by functioning as a molecular sponge for microRNA-625 and thereby upregulating HMGA1. Cell Cycle 2020; 19:610-624. [PMID: 32052688 PMCID: PMC7100992 DOI: 10.1080/15384101.2020.1728024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extensive research has shown that LINC00963 is aberrantly expressed in human cancers, and that dysregulation of LINC00963 is implicated in the initiation and progression of human cancers. The expression and functions of LINC00963 in breast cancer are still unclear. Our aims were to measure the expression of LINC00963 in breast cancer, determine its effects on malignant behaviors of tumor cells, and uncover the molecular events underlying the actions of LINC00963 in breast cancer. Herein, LINC00963 was found to be overexpressed in breast cancer samples, and its overexpression was correlated with lymph node metastasis, TNM stage and differentiation grade. Patients with breast cancer harboring higher LINC00963 expression showed shorter overall survival than did the patients with lower LINC00963 expression. Functional experiments revealed that depletion of LINC00963 inhibited breast cancer cell proliferation, migration, and invasion and facilitated apoptosis in vitro and impaired tumor growth in vivo. Mechanism investigation revealed that LINC00963 can interact with microRNA-625 (miR-625). LINC00963 worked as a competitive endogenous RNA for miR-625 to weaken the suppressive effect of miR-625 on high mobility group AT-hook 1 (HMGA1) in breast cancer cells. Furthermore, miR-625 inhibition and HMGA1 restoration both abrogated the effects of LINC00963 silencing on breast cancer cells. Our findings indicate that the LINC00963-miR-625-HMGA1 pathway plays an important role in the malignancy of breast cancer in vitro and in vivo. Hence, targeting this pathway may be a novel strategy against breast cancer.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Wei Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Shanping Sun
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yumin Yao
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yang Zhang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Zhongxi Ren
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
37
|
Liu W, Yang YJ, An Q. LINC00963 Promotes Ovarian Cancer Proliferation, Migration and EMT via the miR-378g / CHI3L1 Axis. Cancer Manag Res 2020; 12:463-473. [PMID: 32021459 PMCID: PMC6982455 DOI: 10.2147/cmar.s229083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNAs) are involved in the development and progression of numerous tumors. Nevertheless, their role in ovarian cancer (OC) needs further study. METHODS A pivotal lncRNA that modulated OC to metastasize was determined in this research, and its potential mechanism was inquired by qRT-PCR, CCK-8, EdU, Transwell assay, wound healing assay and Western blot assay. RESULTS In our study, the GSE119054 microarray was analyzed, and LINC00963 showed a significant higher level in ovarian cancer tissues compared with controls. So LINC00963 was selected as research object. It was discovered that LINC00963 displayed a close relationship with unfavorable prognosis, and it was prominently raised in OC tissues of patients with lymph node metastasis. What's more, LINC00963 downregulation in OC cells inhibited cell migration and invasion and inverted EMT triggered by TGF-β1. LINC00963 downregulation also inhibited tumorigenesis in nude mice. In addition, results show that LINC00963 is a cytoplasmic lncRNA that shares the miRNA response elements (MREs) of miR-378g with CHI3L1, which is confirmed by a luciferase reporter assay and AGO2-dependent RNA immunoprecipitation (RIP). CONCLUSION On the whole, our results demonstrate an explicit oncogenic role of LINC00963 in ovarian cancer tumorigenesis via competition with miR-378g, suggesting a new regulatory mechanism of LINC00963 and providing a potential therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Liu
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yu-Jia Yang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qiang An
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
38
|
Zhang N, Zeng X, Sun C, Guo H, Wang T, Wei L, Zhang Y, Zhao J, Ma X. LncRNA LINC00963 Promotes Tumorigenesis and Radioresistance in Breast Cancer by Sponging miR-324-3p and Inducing ACK1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:871-881. [PMID: 31751910 PMCID: PMC6881674 DOI: 10.1016/j.omtn.2019.09.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Upregulation of long non-coding RNA LINC00963 has been observed in several cancer types. In this study, we analyzed the clinical and biological significance of LINC00963 in breast cancer. The key microRNA (miR) mediating the action of LINC00963 was identified. We show that LINC00963 upregulation is correlated with aggressive parameters of breast cancer. Silencing of LINC00963 suppresses the proliferation and tumorigenesis of breast cancer cells, whereas LINC00963 overexpression exerts an opposite effect. Knockdown of LINC00963 enhances DNA damage and oxidative stress and sensitizes breast cancer cells to radiation. Mechanistically, LINC00963 antagonizes the repressive activity of miR-324-3p on ACK1 expression. Clinically, there is a negative correlation between miR-324-3p and LINC00963 expression in breast cancer tissues. Overexpression of LINC00963 or ACK1 rescues the inhibitory effects of miR-324-3p on breast cancer cell proliferation and radiosensitivity. In addition, knockdown of ACK1 attenuates LINC00963-dependent breast cancer growth and tumorigenesis. Taken together, LINC00963 promotes tumorigenesis and radioresistance in breast cancer through interplay with miR-324-3p and derepression of ACK1. LINC00963 may represent a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Xue Zeng
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong Guo
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tianlu Wang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Linlin Wei
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yaotian Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jiaming Zhao
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xinchi Ma
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
39
|
Xu YH, Deng JL, Wang G, Zhu YS. Long non-coding RNAs in prostate cancer: Functional roles and clinical implications. Cancer Lett 2019; 464:37-55. [PMID: 31465841 DOI: 10.1016/j.canlet.2019.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNA transcripts longer than 200 nucleotides that do not encode proteins. LncRNAs have been documented to exhibit aberrant expression in various types of cancer, including prostate cancer. Currently, screening for prostate cancer results in overdiagnosis. The consequent overtreatment of patients with indolent disease in the clinic is due to the lack of appropriately sensitive and specific biomarkers. Thus, the identification of lncRNAs as novel biomarkers and therapeutic targets for prostate cancer is promising. In the present review, we attempt to summarize the current knowledge of lncRNA expression patterns and mechanisms in prostate cancer. In particular, we focus on lncRNAs regulated by the androgen receptor and the specific molecular mechanism of lncRNAs in prostate cancer to provide a potential clinical therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Yun-Hua Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Yuan-Shan Zhu
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Li W, Wang S, Xu J, Mao G, Tian G, Yang J. Inferring Latent Disease-lncRNA Associations by Faster Matrix Completion on a Heterogeneous Network. Front Genet 2019; 10:769. [PMID: 31572428 PMCID: PMC6749816 DOI: 10.3389/fgene.2019.00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022] Open
Abstract
Current studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in a variety of fundamental biological processes related to complex human diseases. The prediction of latent disease-lncRNA associations can help to understand the pathogenesis of complex human diseases at the level of lncRNA, which also contributes to the detection of disease biomarkers, and the diagnosis, treatment, prognosis and prevention of disease. Nevertheless, it is still a challenging and urgent task to accurately identify latent disease-lncRNA association. Discovering latent links on the basis of biological experiments is time-consuming and wasteful, necessitating the development of computational prediction models. In this study, a computational prediction model has been remodeled as a matrix completion framework of the recommendation system by completing the unknown items in the rating matrix. A novel method named faster randomized matrix completion for latent disease-lncRNA association prediction (FRMCLDA) has been proposed by virtue of improved randomized partial SVD (rSVD-BKI) on a heterogeneous bilayer network. First, the correlated data source and experimentally validated information of diseases and lncRNAs are integrated to construct a heterogeneous bilayer network. Next, the integrated heterogeneous bilayer network can be formalized as a comprehensive adjacency matrix which includes lncRNA similarity matrix, disease similarity matrix, and disease-lncRNA association matrix where the uncertain disease-lncRNA associations are referred to as blank items. Then, a matrix approximate to the original adjacency matrix has been designed with predicted scores to retrieve the blank items. The construction of the approximate matrix could be equivalently resolved by the nuclear norm minimization. Finally, a faster singular value thresholding algorithm with a randomized partial SVD combing a new sub-space reuse technique has been utilized to complete the adjacency matrix. The results of leave-one-out cross-validation (LOOCV) experiments and 5-fold cross-validation (5-fold CV) experiments on three different benchmark databases have confirmed the availability and adaptability of FRMCLDA in inferring latent relationships of disease-lncRNA pairs, and in inferring lncRNAs correlated with novel diseases without any prior interaction information. Additionally, case studies have shown that FRMCLDA is able to effectively predict latent lncRNAs correlated with three widespread malignancies: prostate cancer, colon cancer, and gastric cancer.
Collapse
Affiliation(s)
- Wen Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shulin Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Guo Mao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | | |
Collapse
|
41
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
42
|
Mirhosseini SA, Sarfi M, Samavarchi Tehrani S, Mirazakhani M, Maniati M, Amani J. Modulation of cancer cell signaling by long noncoding RNAs. J Cell Biochem 2019; 120:12224-12246. [PMID: 31069841 DOI: 10.1002/jcb.28847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Cellular signaling pathways play a very important role in almost all molecular processes in the cell, and are generally composed of a complex set of cascades in which enzymes and proteins play a key role. These signaling pathways include different types of cellular signaling classified based on their receptors and effector proteins such as enzyme-linked receptors, cytokine receptors, and G-protein-coupled receptors each of which is subdivided into different classes. Signaling pathways are tightly controlled by different mechanisms mostly thorough inhibiting/activating their receptors or effector proteins. In the last two decades, our knowledge of molecular biology has changed dramatically and today we know that more than 85% of the human genome expresses noncoding RNAs most of which are crucial in the cellular and molecular mechanisms of cells. One of these noncoding RNAs are long noncoding RNAs (lncRNA) containing more than 200 nucleotides. LncRNAs participate in the progression of cancer growth through several mechanism including signaling pathways. In this review, we summarize some of the most important of lncRNAs and their effect on important signaling pathways.
Collapse
Affiliation(s)
- Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Long Noncoding RNAs in the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1318795. [PMID: 30911342 PMCID: PMC6398004 DOI: 10.1155/2019/1318795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 12/25/2022]
Abstract
Oxidative stress takes responsibility for various diseases, such as chronic obstructive pulmonary disease (COPD), Alzheimer's disease (AD), and cardiovascular disease; nevertheless, there is still a lack of specific biomarkers for the guidance of diagnosis and treatment of oxidative stress-related diseases. In recent years, growing studies have documented that oxidative stress has crucial correlations with long noncoding RNAs (lncRNAs), which have been identified as important transcriptions involving the process of oxidative stress, inflammation, etc. and been regarded as the potential specific biomarkers. In this paper, we review links between oxidative stress and lncRNAs, highlight lncRNAs that refer to oxidative stress, and conclude that lncRNAs have played a negative or positive role in the oxidation/antioxidant system, which may be helpful for the further investigation of specific biomarkers of oxidative stress-related diseases.
Collapse
|
44
|
Saad MH, Rumschlag M, Guerra MH, Savonen CL, Jaster AM, Olson PD, Alazizi A, Luca F, Pique-Regi R, Schmidt CJ, Bannon MJ. Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. Sci Rep 2019; 9:1534. [PMID: 30733491 PMCID: PMC6367337 DOI: 10.1038/s41598-018-38209-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.
Collapse
Affiliation(s)
- Manal H Saad
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Matthew Rumschlag
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Michael H Guerra
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Candace L Savonen
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Alaina M Jaster
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Philip D Olson
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Adnan Alazizi
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Francesca Luca
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Roger Pique-Regi
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- University of Michigan School of Medicine, Department of Pathology, Detroit, MI, 48109, USA
| | - Michael J Bannon
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA.
| |
Collapse
|
45
|
Chen W, Zhou ZQ, Ren YQ, Zhang L, Sun LN, Man YL, Wang ZK. Effects of long non-coding RNA LINC00667 on renal tubular epithelial cell proliferation, apoptosis and renal fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in chronic renal failure. Cell Signal 2019; 54:102-114. [DOI: 10.1016/j.cellsig.2018.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
|
46
|
Das R, Feng FY, Selth LA. Long non-coding RNAs in prostate cancer: Biological and clinical implications. Mol Cell Endocrinol 2019; 480:142-152. [PMID: 30391670 DOI: 10.1016/j.mce.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is a major health issue in the Western world. Current clinical imperatives for this disease include better stratification of indolent versus aggressive disease to enable improved patient management, as well as the identification of more effective therapies for the prevention and treatment of metastatic and therapy-resistant PCa. The advent of next-generation transcriptomics led to the identification of an important class of molecules, long non-coding RNAs (lncRNAs). LncRNAs have critical functions in normal physiology, but their dysregulation has also been implicated in the development and progression of a variety of cancers, including PCa. Importantly, a subset of lncRNAs are highly prostate-specific, suggesting potential for utility as both biomarkers and therapeutic targets. In this review, we summarise the biology of lncRNAs and their mechanisms of action in the development and progression of prostate cancer. Additionally, we cast a critical eye over the potential for this class of molecules to impact on clinical practice.
Collapse
Affiliation(s)
- Rajdeep Das
- Department of Radiation Oncology, University of California San Francisco, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA.
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA; Department of Urology, University of California San Francisco, USA
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
47
|
Zhan F, Shen J, Wang R, Wang L, Dai Y, Zhang Y, Huang X. Role of exosomal small RNA in prostate cancer metastasis. Cancer Manag Res 2018; 10:4029-4038. [PMID: 30319287 PMCID: PMC6167994 DOI: 10.2147/cmar.s170610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men worldwide. When the disease becomes metastatic, limited treatment strategies exist, and metastatic disease prognoses are difficult to predict. Recently, evidence has emerged, which indicates that small RNAs are detectable in patient fluids, and exosomal small RNA ectopic expression is correlated with the development, progression, and metastasis of human PCa; however, the role of small RNAs in PCa is only partially understood. In this review, we discuss the research status regarding circulating exosomal small RNAs and applications using these small RNAs in PCa particularly looking at metastatic disease. Exosomal small RNAs could be used as potential biomarkers for the early diagnosis, micrometastasis detection, and prognosis of PCa.
Collapse
Affiliation(s)
- Fei Zhan
- Department of Gastrointestinal Medical Oncology, Tumor Hospital of Harbin Medical University, Harbin 150081, China,
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Ruitao Wang
- Department of Internal Medicine, Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Liang Wang
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Dai
- Department of Radiation Oncology, University of Florida, Gainesville, FL, 32610, USA
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Tumor Hospital of Harbin Medical University, Harbin 150081, China,
| | - Xiaoyi Huang
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin 150081, China,
- Center of Translational Medicine, Harbin Medical University, Harbin 150086, China,
| |
Collapse
|
48
|
Jiao H, Jiang S, Wang H, Li Y, Zhang W. Upregulation of LINC00963 facilitates melanoma progression through miR-608/NACC1 pathway and predicts poor prognosis. Biochem Biophys Res Commun 2018; 504:34-39. [DOI: 10.1016/j.bbrc.2018.08.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
|
49
|
Vacca A, Itoh M, Kawaji H, Arner E, Lassmann T, Daub CO, Carninci P, Forrest ARR, Hayashizaki Y, Aitken S, Semple CA. Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli. Open Biol 2018; 8:180011. [PMID: 30089658 PMCID: PMC6119861 DOI: 10.1098/rsob.180011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/15/2023] Open
Abstract
The promoters of immediate early genes (IEGs) are rapidly activated in response to an external stimulus. These genes, also known as primary response genes, have been identified in a range of cell types, under diverse extracellular signals and using varying experimental protocols. Whereas genomic dissection on a case-by-case basis has not resulted in a comprehensive catalogue of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE (cap analysis of gene expression) time course datasets reveals successive waves of promoter activation in IEGs, recapitulating known relationships between cell types and stimuli: we obtain a set of 57 (42 protein-coding) candidate IEGs possessing promoters that consistently drive a rapid but transient increase in expression over time. These genes show significant enrichment for known IEGs reported previously, pathways associated with the immediate early response, and include a number of non-coding RNAs with roles in proliferation and differentiation. Surprisingly, we also find strong conservation of the ordering of activation for these genes, such that 77 pairwise promoter activation orderings are conserved. Using the leverage of comprehensive CAGE time series data across cell types, we also document the extensive alternative promoter usage by such genes, which is likely to have been a barrier to their discovery until now. The common activation ordering of the core set of early-responding genes we identify may indicate conserved underlying regulatory mechanisms. By contrast, the considerably larger number of transiently activated genes that are specific to each cell type and stimulus illustrates the breadth of the primary response.
Collapse
Affiliation(s)
- Annalaura Vacca
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2F Main Research Building, 2-1 Hirosawa, Wako, Japan
| | - Hideya Kawaji
- RIKEN Advanced Center for Computing and Communication, RIKEN Yokohama Campus, Yokohama 230-0045, Japan
| | - Erik Arner
- RIKEN Center for Life Sciences Technologies, RIKEN Yokohama Campus, Yokohama 230-0045, Japan
| | - Timo Lassmann
- Telethon Kids Institute, The University of Western Australia, Roberts Road, Subiaco, Western Australia, Australia
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Piero Carninci
- RIKEN Center for Life Sciences Technologies, RIKEN Yokohama Campus, Yokohama 230-0045, Japan
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, Western Australia 6009, Australia
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2F Main Research Building, 2-1 Hirosawa, Wako, Japan
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
50
|
Fei Q, Bai X, Lin J, Meng H, Yang Y, Guo A. Identification of aberrantly expressed long non-coding RNAs in postmenopausal osteoporosis. Int J Mol Med 2018; 41:3537-3550. [PMID: 29568943 PMCID: PMC5881766 DOI: 10.3892/ijmm.2018.3575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/14/2018] [Indexed: 01/03/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common skeletal disorder in postmenopausal women. The present study aimed to identify the key long non‑coding RNAs (lncRNAs) in PMOP through RNA sequencing. RNA sequencing was performed to obtain the expression profile of lncRNAs and mRNAs in blood samples of patients with PMOP and normal controls (NCs). Following the identification of differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs), the DElncRNA-DEmRNA co‑expression network was constructed. A search was performed for the DEGs transcribed within a 100‑kb window upstream or downstream of DElncRNAs, which served as nearby DEmRNAs of DElncRNAs. Functional annotation of the DEmRNAs co‑expressed with DElncRNAs was performed. The GSE56815 dataset was used to verify the expression of selected DEmRNAs and DElncRNAs. Three blood samples from patients with PMOP and two blood samples from NCs were used for RNA sequencing. Compared with the NC group, a total of 185 DEmRNAs and 51 DElncRNAs were obtained in PMOP. A total of 3,057 co‑expression DElncRNA‑DEmRNA pairs and 97 DElncRNA‑nearby DEmRNA pairs were obtained. Six DEmRNAs [diacylglycerol O‑acyltransferase 2, potassium voltage‑gated channel subfamily S member 1, peptidase inhibitor 3, secretory leukocyte peptidase inhibitor, galectin‑related protein and alkaline phosphatase, liver/bone/kidney (ALPL)] were nearby co‑expressed genes of four DElncRNAs, including LOC105376834, LOC101929866, LOC105374771 and LOC100506113. Three PMOP-associated DEmRNAs, including ALPL, suppressor of cytokine signaling 3 and adrenomedullin, were co‑expressed with the hub DElncRNAs (LINC00963, LOC105378415, LOC105377067, HCG27, LOC101928143 and LINC01094) of the positively and negatively co‑expressed DElncRNA‑DEmRNA interaction network. The expression of selected DEmRNAs and DElncRNAs was consistent with the RNA‑sequencing results. In conclusion, the present study identified the key DEmRNAs and DElncRNAs in PMOP, which may provide clues for understanding the mechanism and developing novel biomarkers for PMOP.
Collapse
Affiliation(s)
- Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaodong Bai
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hai Meng
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|