1
|
Min Q, Chen X, Yifei G, Baifeng S, Zichuan W, Xiaolong S, Huajiang C, Wen Y, Yang L. FOXO3a overexpression ameliorates intervertebral disc degeneration by decreasing NLRP3-mediated pyroptosis. Int Immunopharmacol 2025; 144:113596. [PMID: 39579536 DOI: 10.1016/j.intimp.2024.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Qi Min
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Xu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Gu Yifei
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Sun Baifeng
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Wu Zichuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Shen Xiaolong
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Chen Huajiang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Yuan Wen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| | - Liu Yang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| |
Collapse
|
2
|
Guan G, Chen Y, Dong Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2025; 14:70. [PMID: 39857404 PMCID: PMC11763278 DOI: 10.3390/antiox14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS) refers to the production of a substantial amount of reactive oxygen species (ROS), leading to cellular and organ damage. This imbalance between oxidant and antioxidant activity contributes to various diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative conditions. The body's antioxidant system, mediated by various signaling pathways, includes the AMPK-SIRT1-FOXO pathway. In oxidative stress conditions, AMPK, an energy sensor, activates SIRT1, which in turn stimulates the FOXO transcription factor. This cascade enhances mitochondrial function, reduces mitochondrial damage, and mitigates OS-induced cellular injury. This review provides a comprehensive analysis of the biological roles, regulatory mechanisms, and functions of the AMPK-SIRT1-FOXO pathway in diseases influenced by OS, offering new insights and methods for understanding OS pathogenesis and its therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; (G.G.); (Y.C.)
| |
Collapse
|
3
|
Guo J, Wang J, Zhang P, Wen P, Zhang S, Dong X, Dong J. TRIM6 promotes glioma malignant progression by enhancing FOXO3A ubiquitination and degradation. Transl Oncol 2024; 46:101999. [PMID: 38759605 PMCID: PMC11127279 DOI: 10.1016/j.tranon.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE TRIM6, an E3 ubiquitin ligase with tripartite motif, directly targets protein substrates for degradation through ubiquitination. Studies have shown that TRIM6 plays a significant role in tumor development in various human malignancies. Thus, the aim of this study was to investigate the importance of TRIM6 and its associated mechanism in promoting the progression of glioma. METHODS The expression of TRIM6 and its prognostic value in glioma patients were collected from the TCGA and CGGA databases. The effects of TRIM6 on glioma were investigated in vitro by CCK8, colony formation, wound healing, and transwell assays. Co-IP and western blot analysis were used to detect the interaction between TRIM6 and FOXO3A. The effects of TRIM6 were verified in vivo in subcutaneously xenograft models, and tumor size, and immunohistochemical changes were observed. RESULTS Our analysis of TRIM6 expression in glioma tissues revealed a high level of expression, and the heightened expression of TRIM6 showed a positive correlation with the unfavorable prognosis among glioma/GBM patients. Through loss-of-function and gain-of-function experiments, we observed a profound impact on the proliferation, invasion, and migration abilities of glioma cells both in vitro and in vivo upon deletion of TRIM6. Conversely, the overexpression of TRIM6 intensified the malignant characteristics of glioma. Additionally, our findings revealed a significant interaction between TRIM6 and FOXO3A, wherein TRIM6 contributed to the destabilization of FOXO3A protein by promoting its ubiquitination and subsequent degradation. Experiments conducted in the rescue study affirmed that the promotion of glioma cell proliferation, invasion, and migration is facilitated by TRIM6 through the suppression of FOXO3A protein levels. CONCLUSIONS These observations imply that the TRIM6-FOXO3A axis could potentially serve as an innovative focus for intervening in glioma.
Collapse
Affiliation(s)
- Jingpeng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang, Anhui 236000, China
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Peng Zhang
- Department of Neurosurgery, The People's Hospital of Rugao, Nantong, Jiangsu 226500, China
| | - Ping Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shoudan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
4
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Recombinant human p53 adenovirus injection combined with Bortezomib inhibits proliferation and promotes apoptosis in multiple myeloma. Leuk Res 2023; 127:107041. [PMID: 36801701 DOI: 10.1016/j.leukres.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a B-cell malignancy characterized by abnormal proliferation of clonal plasma cells in the bone marrow, the incidence of which has further increased in recent years. In multiple myeloma, wild-type functional p53 is often inactivated or dysregulated. Therefore, this study aimed to investigate the role of p53 knockdown or overexpression in multiple myeloma and the therapeutic effect of recombinant adenovirus-p53 (rAd-p53) in combination with Bortezomib. METHODS SiRNA p53 and rAd-p53 were used to knock down and overexpress p53. RT-qPCR was used to detect gene expression, and western blotting (WB) was used to detect protein expression levels. We also constructed wild-type multiple myeloma cell line-MM1S cell xenograft tumor models and explored the effects of siRNA-p53, rAd-p53, and Bortezomib on multiple myeloma in vivo and in vitro. H&E staining and KI67 immunohistochemical staining were used to assess the anti-myeloma effects of recombinant adenovirus and Bortezomib in vivo. RESULTS The designed siRNA p53 effectively led to the knockdown of the p53 gene, while rAd-p53 could significantly achieve p53 overexpression. p53 gene inhibited MM1S cell proliferation and promoted apoptosis of wild-type multiple myeloma cell line MM1S. P53 gene inhibited tumor proliferation in vitro by promoting p21 expression and reducing cell cycle protein B1 expression of MM1S. P53 gene overexpression could inhibit tumor growth in vivo. Injection of rAd-p53 in tumor models inhibited tumor development through p21- and cyclin B1-mediated cell proliferation and apoptosis regulation. CONCLUSIONS We found that overexpression of p53 inhibits MM tumor cell survival and proliferation in vivo and in vitro. Furthermore, the combination of rAd-p53 and Bortezomib significantly improved the efficacy, which provides a new possibility for more effective treatment of MM.
Collapse
|
7
|
Hashimoto T, Urushihara Y, Murata Y, Fujishima Y, Hosoi Y. AMPK increases expression of ATM through transcriptional factor Sp1 and induces radioresistance under severe hypoxia in glioblastoma cell lines. Biochem Biophys Res Commun 2022; 590:82-88. [PMID: 34973534 DOI: 10.1016/j.bbrc.2021.12.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022]
Abstract
We have previously reported that severe hypoxia increases expression and activity of the DNA damage sensor ATM by activation of the key energy sensor AMPK. Here, to elucidate molecular mechanisms underlying increased expression and activity of ATM by AMPK under severe hypoxia, we investigated roles of transcriptional factors Sp1 and FoxO3a using human glioblastoma cell lines T98G and A172. Severe hypoxia increased expression of ATM, AMPKα and Sp1 but not that of FoxO3a. Knockdown of AMPKα suppressed expression of ATM and Sp1 and suppressed cellular radioresistance under severe hypoxia without affecting cell cycle distribution. Knockdown of Sp1 suppressed expression of ATM. These results suggest that increased expression and activity of AMPK under severe hypoxia induce cellular radioresistance through AMPK/Sp1/ATM pathway.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yusuke Urushihara
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiko Murata
- MSD K.K., 1-13-12 Kudankita, Chiyoda-ku, Tokyo, 102-8667, Japan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori, 036-8564, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
8
|
Sha Y, Cai W, Mohanad Khalid A, Chi Q, Wang J, Sun T, Wang C. Pretreatment with mechano growth factor E peptide attenuates osteoarthritis through improving cell proliferation and extracellular matrix synthesis in chondrocytes under severe hypoxia. Int Immunopharmacol 2021; 97:107628. [PMID: 34015701 DOI: 10.1016/j.intimp.2021.107628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Osteoarthritis (OA) is characterized by pain and declining gait function associated with degeneration of cartilage. A severe hypoxic environment occurs due to tissue injury in the joint cavity and may aggravate the development of OA. In this study, the effects of severe hypoxia and treatment with mechano growth factor (MGF) E peptide on metabolism of the extracellular matrix (ECM) during the progression of OA were determined. The results showed that cell viability, cell proliferation, and type II collagen expression in chondrocytes were significantly inhibited by cobalt chloride (CoCl2)-simulated severe hypoxia, whereas cell apoptosis and expression levels of hypoxia inducible factor 1 alpha, type I collagen, and matrix metalloproteinases 1/13 were clearly induced. Pretreatment with MGF E peptide reduced the abovementioned adverse effects induced by CoCl2-simulated severe hypoxia in chondrocytes. Pretreatment also upregulated the proliferation of chondrocytes under severe hypoxia through the PI3K-Akt and MEK-ERK1/2 signaling pathways. In a rat model of monosodium iodoacetate (MIA)-induced OA. MIA treatment induced tissue necrosis and cartilage degeneration, and histological score was significantly decreased. The levels of type II collagen and aggrecan were reduced after MIA treatment for 4 or 6 weeks, and abnormal distribution of ECM occurred in the inner epicondyle after 6 weeks. MGF E peptide also reduced the progression of MIA-induced OA by retarding cartilage degeneration, upregulating type II collagen synthesis, and improving ECM distribution after 4 or 6 weeks. Our findings suggest that MGF attenuates the progression of OA, and thus may be applied for the treatment of OA in the clinic.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Wenjie Cai
- Departments of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Alani Mohanad Khalid
- Department of Microbiology, College of Medicine, Tikrit University, Tikrīt, Sallahaldin 009642, Iraq
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, Hubei 430070, PR China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
9
|
Chu Z, Huo N, Zhu X, Liu H, Cong R, Ma L, Kang X, Xue C, Li J, Li Q, You H, Zhang Q, Xu X. FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol Ther 2021; 29:2737-2753. [PMID: 33940159 DOI: 10.1016/j.ymthe.2021.04.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023] Open
Abstract
Phosphoglycerate kinase 1 (PGK1), a critical component of the glycolytic pathway, relates to the development of various cancers. However, the mechanisms of PGK1 inhibition and physiological significance of PGK1 inhibitors in cancer cells are unclear. Long non-coding RNAs (lncRNAs) play a vital role in tumor growth and progression. Here, we identify a lncRNA LINC00926 that negatively regulates PGK1 expression and predicts good clinical outcome of breast cancer. LINC00926 downregulates PGK1 expression through the enhancement of PGK1 ubiquitination mediated by E3 ligase STUB1. Moreover, hypoxia inhibits LINC00926 expression and activates PGK1 expression largely through FOXO3A. FOXO3A/LINC00926/PGK1 axis regulates breast cancer glycolysis, tumor growth, and lung metastasis both in vitro and in vivo. In breast cancer patients, LINC00926 expression is negatively correlated with PGK1 and positively correlated with FOXO3A expression. Our work established FOXO3A/LINC00926/PGK1 as a critical axis to regulate breast cancer growth and progression. Targeting PGK1 or supplement of LINC00926 or FOXO3A could be potential therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhong Chu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Nan Huo
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiang Zhu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Hanxiao Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Rui Cong
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Luyuan Ma
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiaofeng Kang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Chunyuan Xue
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jingtong Li
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qihong Li
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Hua You
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China.
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China.
| | - Xiaojie Xu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
10
|
Meng F, Zhang Z, Chen C, Liu Y, Yuan D, Hei Z, Luo G. PI3K/AKT activation attenuates acute kidney injury following liver transplantation by inducing FoxO3a nuclear export and deacetylation. Life Sci 2021; 272:119119. [PMID: 33508296 DOI: 10.1016/j.lfs.2021.119119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
AIMS Acute kidney injury (AKI) is a severe complication of autologous orthotopic liver transplantation (AOLT). Apoptosis has been shown to be involved in renal ischemia/reperfusion, and the PI3K/AKT signaling pathway is involved in numerous cell processes, including promoting cell survival and inhibiting apoptosis. We aimed to verify whether the PI3K/AKT signaling pathway participates in the development of post-AOLT AKI. METHODS Male Sprague-Dawley rats underwent AOLT with or without treatment with insulin-like growth factor-1 (IGF-1, a PI3K/AKT activator) and LY294002 (a PI3K/AKT inhibitor; n = 8/group). NRK-52E cells (rat renal tubular epithelial cell line) were subjected to hypoxia-re-oxygenation to mimic renal cell I/R injury in vitro, and confirm whether silencing information regulator 1 (SIRT1) mediated the protective effects of PI3K/AKT by deacetylating forkhead protein O3a (FoxO3a). KEY FINDINGS During the reperfusion stage, kidney injury peaked at 8 h after reperfusion, then gradually recovered, which was consistent with the dynamic changes in apoptosis and the protein expressions of Bcl-2 interacting mediator of cell death (Bim), Fas ligand (FasL), and nuclear FoxO3a AKT phosphorylation and nuclear SIRT1 protein expression were also upregulated. IGF-1 application decreased Bim, FasL, and nuclear FoxO3a protein expressions, and protected against apoptosis and AKI. In NRK-52E cells, IGF-1 upregulated nuclear SIRT1 expression, reduced FoxO3a acetylation, downregulated Bim and FasL protein expressions, and attenuated apoptosis and AKI; these effects were reversed by SIRT1 blocking. CONCLUSION The activation of the PI3K/AKT signaling pathway not only induced FoxO3a nuclear export but also deacetylation through upregulating nuclear SIRT1 expression to attenuate post-AOLT AKI.
Collapse
Affiliation(s)
- Fanbing Meng
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; Department of Anesthesiology, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Zheng Zhang
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Yue Liu
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Dongdong Yuan
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Ziqing Hei
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Gangjian Luo
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
11
|
Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, Hu J, Tsao M, Little P, Zheng W. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med Res Rev 2020; 40:2089-2113. [PMID: 32474970 PMCID: PMC7586888 DOI: 10.1002/med.21695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved intracellular degradation process that plays a crucial role in cell survival and stress reactions as well as in cancer development and metastasis. Autophagy process involves several steps including sequestration, fusion of autophagosomes with lysosomes and degradation. Forkhead box O (FOXO) transcription factors regulate the expression of genes involved in cellular metabolic activity and signaling pathways of cancer growth and metastasis. Recent evidence suggests that FOXO proteins are also involved in autophagy regulation. The relationship among FOXOs, autophagy, and cancer has been drawing attention of many who work in the field. This study summarizes the role of FOXO proteins and autophagy in cancer growth and metastasis and analyzes their potential roles in cancer disease management.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Marta Silva
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Shuai Li
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Fengxia Yan
- Department of MedicineJinan UniversityGuangzhouChina
| | - Jiankang Fang
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Tangming Peng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Jim Hu
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming‐Sound Tsao
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of QueenslandWoolloongabbaQueenslandAustralia
| | - Wenhua Zheng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| |
Collapse
|
12
|
Zhang Z, Huang C, Wang P, Gao J, Liu X, Li Y, Yan S, Shi Y. HIF‑1α affects trophoblastic apoptosis involved in the onset of preeclampsia by regulating FOXO3a under hypoxic conditions. Mol Med Rep 2020; 21:2484-2492. [PMID: 32323858 PMCID: PMC7185296 DOI: 10.3892/mmr.2020.11050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/07/2020] [Indexed: 12/25/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome that has severe implications on perinatal mortality and morbidity. Excessive apoptosis of trophoblasts induced by hypoxia may be associated with the development of PE, but the exact pathogenesis is unknown. Forkhead box O transcription factor 3a (FOXO3a) is activated under hypoxic conditions. Furthermore, hypoxia-inducible factor-1α (HIF-1α) is sensitive to variations in partial oxygen pressure. Thus, the aims of the present study were to investigate the expression levels of HIF-1α and FOXO3a in placental samples of early onset severe PE, and their effect on trophoblastic apoptosis under hypoxic conditions. Cobalt chloride was used to establish the hypoxic model. The present study examined the expression levels of HIF-1α and FOXO3a in the placental tissues and HTR8/SVneo cells under hypoxic conditions. It was found that HIF-1α and FOXO3a were highly expressed in placental tissues of patients with PE and in HTR8/SVneo cells under hypoxic conditions. Furthermore, knockdown of FOXO3a using a specific small interfering RNA (siRNA) decreased apoptosis in HTR8/SVneo cells. Moreover, it was found that after knockdown of HIF-1α using siRNA, FOXO3a expression and the apoptotic rate were reduced in HTR8/SVneo cells. Therefore, the present results indicated that the elevated expression of HIF-1α increased trophoblastic apoptosis by regulating FOXO3a, which may be involved in the pathogenesis of PE.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenxi Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ping Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junjun Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shujun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Dong Z, Yang J, Li L, Tan L, Shi P, Zhang J, Zhong X, Ge L, Wu Z, Cui H. FOXO3a‑SIRT6 axis suppresses aerobic glycolysis in melanoma. Int J Oncol 2020; 56:728-742. [PMID: 32124950 PMCID: PMC7010217 DOI: 10.3892/ijo.2020.4964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma, the most aggressive human skin tumor, has a very short survival time, and there are currently no effective treatments. Alterations in cell metabolism, such as enhanced aerobic glycolysis, have been identified as hallmarks of cancer cells. In the present study, bioinformatics studies using online databases revealed that FOXO3a expression was lower in melanoma tissues compared with normal tissues and nevus. Additionally, Kaplan‑Meier analysis showed that high expression of FOXO3a predicted an improved prognosis for patients with melanoma. Furthermore, Pearson correlation analysis indicated that the expression of FOXO3a was positively correlated with SIRT6 expression and negatively correlated with the expression levels of a number of glycolysis‑associated genes. Chromatin immunoprecipitation and luciferase assays showed that FOXO3a was enriched in the SIRT6 promoter region and promoted its transcription. Then, SIRT6 was overexpressed in FOXO3a‑knockdown MV3 cells and downregulated in FOXO3a‑overexpressing MV3 cells by using lentivirus‑mediated stable infection. The results showed that SIRT6 knockdown or overexpression rescued the effects of FOXO3a overexpression or knockdown, respectively, on glycolysis, as determined by glucose uptake, glucose consumption and lactate production assays, the expression of glycolytic genes and glucose stress flux tests. SIRT6 overexpression also suppressed FOXO3a knockdown‑induced tumor growth in a mouse model. The present findings indicated that the FOXO3a‑SIRT6 regulatory axis inhibited glucose metabolism and tumor cell proliferation in melanoma, and provided novel insight into potential therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Xi Zhong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Lingjun Ge
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Zonghui Wu
- Hospital of Southwest University, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
14
|
Yang Y, Yu S, Liu N, Xu H, Gong Y, Wu Y, Wang P, Su X, Liao Y, De Saeger S, Humpf HU, Wu A. Transcription Factor FOXO3a Is a Negative Regulator of Cytotoxicity of Fusarium mycotoxin in GES-1 Cells. Toxicol Sci 2019; 166:370-381. [PMID: 30169763 DOI: 10.1093/toxsci/kfy216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Molecular mechanism and key factors responsible for cytotoxicity against mycotoxin deoxynivalenol (DON) from Fusarium pathogens are rarely elucidated. In this study, rapid increases of ROS were first observed in human gastric epithelial (GES-1) cells under DON exposure. Mitochondrial DNA damage, impaired respiratory chain, and decreased oxygen consumption rate (OCR) values, as well as G2/M cell cycle arrest and apoptosis, were also detected. Via combinatorial approaches of a large-scale microarray of differentially expressed genes, high content and RNAi analysis, a transcription factor of Forkhead box O3 (FOXO3a) was found with crucial functionalities, regulated some apoptotic genes associated with mitochondrial toxicity and cell death after activation by nuclear translocation. Namely, knockdown of FOXO3a decreased the cytotoxicity of DON to GES-1 cells. Moreover, knockdown of the FOXO ortholog DAF16 in Caenorhabditis elegans increased the resistance to DON-induced cytotoxicity. Simultaneously, the signaling pathway of ROS/JNK/FOXO3a of DON-induced cytotoxicity was newly proposed. In total, FOXO3a via ROS/JNK/FOXO3a plays a critical role to function as negative regulator associating with DON-induced cytotoxicity, with the potential extending to other substances.
Collapse
Affiliation(s)
- Yunxia Yang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Haibin Xu
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China
| | - Yunyun Gong
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China.,School of Food Sciences and Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | - Yongning Wu
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, 100000, Beijing, P. R. China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, 100000, Beijing, P. R. China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, 430000, Wuhan, P. R. China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 00329, Ghent, Belgium
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149 Münster, Germany
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| |
Collapse
|
15
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
16
|
Taniguchi K, Ii H, Kageyama S, Takagi H, Chano T, Kawauchi A, Nakata S. Depletion of gamma-glutamylcyclotransferase inhibits cancer cell growth by activating the AMPK–FOXO3a–p21 axis. Biochem Biophys Res Commun 2019; 517:238-243. [DOI: 10.1016/j.bbrc.2019.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
17
|
Sha Y, Yang L, Lv Y. MGF E peptide improves anterior cruciate ligament repair by inhibiting hypoxia‐induced cell apoptosis and accelerating angiogenesis. J Cell Physiol 2018; 234:8846-8861. [DOI: 10.1002/jcp.27546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yongqiang Sha
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Bioengineering College, Chongqing University Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory Bioengineering College, Chongqing University Chongqing China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Bioengineering College, Chongqing University Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory Bioengineering College, Chongqing University Chongqing China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Bioengineering College, Chongqing University Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory Bioengineering College, Chongqing University Chongqing China
| |
Collapse
|
18
|
Santo EE, Paik J. A splice junction-targeted CRISPR approach (spJCRISPR) reveals human FOXO3B to be a protein-coding gene. Gene 2018; 673:95-101. [PMID: 29925039 PMCID: PMC6064391 DOI: 10.1016/j.gene.2018.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022]
Abstract
The rapid development of CRISPR technology is revolutionizing molecular approaches to the dissection of complex biological phenomena. Here we describe an alternative generally applicable implementation of the CRISPR-Cas9 system that allows for selective knockdown of extremely homologous genes. This strategy employs the lentiviral delivery of paired sgRNAs and nickase Cas9 (Cas9D10A) to achieve targeted deletion of splice junctions. This general strategy offers several advantages over standard single-guide exon-targeting CRISPR-Cas9 such as greatly reduced off-target effects, more restricted genomic editing, routine disruption of target gene mRNA expression and the ability to differentiate between closely related genes. Here we demonstrate the utility of this strategy by achieving selective knockdown of the highly homologous human genes FOXO3A and suspected pseudogene FOXO3B. We find the spJCRISPR strategy to efficiently and selectively disrupt FOXO3A and FOXO3B mRNA and protein expression; thus revealing that the human FOXO3B locus encodes a bona fide human gene. Unlike FOXO3A, we find the FOXO3B protein to be cytosolically localized in both the presence and absence of active Akt. The ability to selectively target and efficiently disrupt the expression of the closely-related FOXO3A and FOXO3B genes demonstrates the efficacy of the spJCRISPR approach.
Collapse
Affiliation(s)
- Evan E Santo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, United States of America
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, United States of America.
| |
Collapse
|
19
|
Meng W, Wang B, Mao W, Wang J, Zhao Y, Li Q, Zhang C, Tang Y, Ma J. Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:241. [PMID: 30285808 PMCID: PMC6167847 DOI: 10.1186/s13046-018-0916-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Abstract
Background Glioblastoma (GBM) is the most common and most malignant primary brain cancer in adults. Despite multimodality treatment, the prognosis is still poor. Therefore, further work is urgently required to discover novel therapeutic strategies for GBM treatment. Methods The synergistic effects of cotreatment with the histone deacetylase (HDAC) inhibitor panobinostat and bromodomain inhibitor JQ1 or OTX015 were validated using cell viability assays in GBM cell lines. Furthermore, the inhibitory mechanisms were investigated via an EdU proliferation assay, an apoptosis assay, qPCR, Western blot and RNAseq analyses. Results We found that the cotreatment with panobinostat and JQ1 or OTX015 synergistically inhibited cell viability in GBM cells. The cotreatment with panobinostat and JQ1 or OTX015 markedly inhibited cell proliferation and induced apoptosis in GBM cells. Compared with treatment with each drug alone, the cotreatment with panobinostat and JQ1 induced more profound caspase 3/7 activation and cytotoxicity. Mechanistic investigation showed that combination of panobinostat with JQ1 or OTX015 results in stronger repression of GBM-associated oncogenic genes or pathways as well as higher induction of GBM-associated tumor-suppressive genes. Conclusion Our study demonstrated that HDAC inhibitor and bromodomain inhibitor had synergistical efficacy against GBM cells. The cotreatment with HDAC inhibitor and bromodomain inhibitor warrants further attention in GBM therapy.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Weiwei Mao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yang Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Qifeng Li
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yujie Tang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China. .,Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
20
|
Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 2018; 132:321-333. [PMID: 29884740 DOI: 10.1182/blood-2017-11-814335] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Induction of red blood cell (RBC) fetal hemoglobin (HbF; α2γ2) ameliorates the pathophysiology of sickle cell disease (SCD) by reducing the concentration of sickle hemoglobin (HbS; α2βS2) to inhibit its polymerization. Hydroxyurea (HU), the only US Food and Drug Administration (FDA)-approved drug for SCD, acts in part by inducing HbF; however, it is not fully effective, reflecting the need for new therapies. Whole-exome sequence analysis of rare genetic variants in SCD patients identified FOXO3 as a candidate regulator of RBC HbF. We validated these genomic findings through loss- and gain-of-function studies in normal human CD34+ hematopoietic stem and progenitor cells induced to undergo erythroid differentiation. FOXO3 gene silencing reduced γ-globin RNA levels and HbF levels in erythroblasts, whereas overexpression of FOXO3 produced the opposite effect. Moreover, treatment of primary CD34+ cell-derived erythroid cultures with metformin, an FDA-approved drug known to enhance FOXO3 activity in nonerythroid cells, caused dose-related FOXO3-dependent increases in the percentage of HbF protein and the fraction of HbF-immunostaining cells (F cells). Combined HU and metformin treatment induced HbF additively and reversed the arrest in erythroid maturation caused by HU treatment alone. HbF induction by metformin in erythroid precursors was dependent on FOXO3 expression and did not alter expression of BCL11A, MYB, or KLF1. Collectively, our data implicate FOXO3 as a positive regulator of γ-globin expression and identify metformin as a potential therapeutic agent for SCD.
Collapse
|
21
|
Unterman TG. Regulation of Hepatic Glucose Metabolism by FoxO Proteins, an Integrated Approach. Curr Top Dev Biol 2018; 127:119-147. [DOI: 10.1016/bs.ctdb.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Huo L, Bai X, Wang Y, Wang M. Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA. Biomed Pharmacother 2017; 92:347-355. [PMID: 28554130 DOI: 10.1016/j.biopha.2017.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the central nervous system. B10 is a new glycosylated derivative of betulinic acid with enhanced cytotoxic activity. The present study was designed to explore the molecular mechanism underlying the anticancer effect of B10 in glioma cells. 25-50μM B10 resulted in a significant decrease of cell viability and BrdU incorporation. 25-50mg/kg B10 significantly reduced the implanted tumor weight and volume in nude mice. Activation of apoptosis was found in glioma cells when the cells were exposed to B10, as evidenced by increased number of TUNEL-stained cells, increased caspase 3 and 9 activities, and Bax and cleaved PARP expression. B10 caused a significant decrease in mitochondrial oxygen consumption rate, mitochondrial complex I, II, III, IV, and V activities, and ATP level, and increase of mitochondrial ROS production, indicating the induction of mitochondrial dysfunction. B10 reduced the expression of sirtuin (SIRT) 1 and resulted in an increase in forkhead box O (FOXO) 3a expression and acetylation. Activation of SIRT1 by SRT-1720 and downregualtion of FOXO3a using shRNA significantly inhibited B10-induced cytotoxicity. B10 markedly increased the expression of Bim and PUMA. Downregualtion of FOXO3a or activation of SIRT1 significantly inhibited B10-induced increase of Bim and PUMA expression. Downregualtion of Bim or PUMA could suppress B10-induced increase of Bax expression. Moreover, B10-induced cytotoxicity was significantly suppressed by downregulation of Bim or PUMA. In summary, we identified B10 as a potent therapeutic candidate for glioma treatment and SIRT1-FOXO3a-Bim/PUMA axis as a novel therapeutic target.
Collapse
Affiliation(s)
- Longwei Huo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China; Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin 719000, Shaanxi, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China
| | - Yafei Wang
- Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin 719000, Shaanxi, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|