1
|
Li Y, Ding S, Wang Y. Targeting the cholinergic anti-inflammatory pathway: an innovative strategy for treating diseases. Mol Biol Rep 2025; 52:199. [PMID: 39903351 DOI: 10.1007/s11033-025-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is comprised of the vagus nerve, acetylcholine, nicotinic acetylcholine receptors, the spleen, and the splenic nerve. It represents a sophisticated neuroimmune axis that critically regulates the crosstalk between the nervous system and the immune response via the vagus nerve. Here, we provided a nuanced exploration of the CAP's role in curbing inflammatory processes and its broad therapeutic potential across a spectrum of diseases. We meticulously dissect the intricate mechanisms by which the CAP modulates key signaling cascades, including the NF-κB, JAK2/STAT3, MAPK/ERK, PI3K/AKT, COX2/PGE2, and NRF2/HO-1 pathways, which are quintessential in the pathogenesis of various conditions. Additionally, we also summarized the CAP's profound implications in the management of inflammatory diseases, neurodegenerative disorders, metabolic syndromes, and oncological malignancies, elucidating its capacity to mitigate disease severity and progression through sophisticated immune modulation. The modulation of the CAP is suggested as a novel strategy that could potentially transform treatment approaches for a variety of conditions. However, the precise cellular and molecular underpinnings of the CAP's effects, as well as its translatability to clinical settings, remain subjects of ongoing investigation. The review calls for further research to demystify the mechanisms of the CAP and to harness its therapeutic potential fully, with the aim of developing innovative and efficacious treatment modalities that exploit the pathway's unique attributes.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Getiye Y, Peterson MR, Phillips BD, Carrillo D, Bisha B, He G. E-cigarette exposure with or without heating the e-liquid induces differential remodeling in the lungs and right heart of mice. J Mol Cell Cardiol 2022; 168:83-95. [PMID: 35489388 DOI: 10.1016/j.yjmcc.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/12/2023]
Abstract
Various cardiopulmonary pathologies associated with electronic cigarette (EC) vaping have been reported. This study investigated the differential adverse effects of heating-associated by-products versus the intact components of EC aerosol to the lungs and heart of mice. We further dissected the roles of caspase recruitment domain-containing protein 9 (CARD9)-associated innate immune response and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in EC exposure-induced cardiopulmonary injury. C57BL/6 wild type (WT), CARD9-/-, and NLRP3-/- mice were exposed to EC aerosol 3 h/day, 5 days/week for 6 month with or without heating the e-liquid with exposure to ambient air as the control. In WT mice, EC exposure with heating (EwH) significantly increased right ventricle (RV) free wall thickness at systole and diastole. However, EC exposure without heating (EwoH) caused a significant decrease in the wall thickness at systole. RV fractional shortening was also markedly reduced following EwH in WT and NLRP3-/- mice. Further, EwH activated NF-κB and p38 MAPK inflammatory signaling in the lungs, but not in the RV, in a CARD9- and NLRP3-dependent manner. Levels of circulatory inflammatory mediators were also elevated following EwH, indicating systemic inflammation. Moreover, EwoH activated TGF-β1/SMAD2/3/α-SMA fibrosis signaling in the lungs but not the RV of WT mice. In conclusion, EC aerosol exposure following EwH or EwoH induced differential cardiopulmonary remodeling and CARD9 innate immune and NLRP3 inflammasome contributed to the adverse effects.
Collapse
Affiliation(s)
- Yohannes Getiye
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Matthew R Peterson
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Brandon D Phillips
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel Carrillo
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Bledar Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Guanglong He
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
3
|
Müller I, Kym U, Galati V, Tharakan S, Subotic U, Krebs T, Stathopoulos E, Schmittenbecher P, Cholewa D, Romero P, Reingruber B, Holland-Cunz S, Keck S. Cholinergic Signaling Attenuates Pro-Inflammatory Interleukin-8 Response in Colonic Epithelial Cells. Front Immunol 2022; 12:781147. [PMID: 35069554 PMCID: PMC8770536 DOI: 10.3389/fimmu.2021.781147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Infants affected by Hirschsprung disease (HSCR), a neurodevelopmental congenital disorder, lack ganglia of the intrinsic enteric nervous system (aganglionosis) in a variable length of the colon, and are prone to developing severe Hirschsprung-associated enterocolitis (HAEC). HSCR patients typically show abnormal dense innervation of extrinsic cholinergic nerve fibers throughout the aganglionic rectosigmoid. Cholinergic signaling has been reported to reduce inflammatory response. Consequently, a sparse extrinsic cholinergic innervation in the mucosa of the rectosigmoid correlates with increased inflammatory immune cell frequencies and higher incidence of HAEC in HSCR patients. However, whether cholinergic signals influence the pro-inflammatory immune response of intestinal epithelial cells (IEC) is unknown. Here, we analyzed colonic IEC isolated from 43 HSCR patients with either a low or high mucosal cholinergic innervation density (fiber-low versus fiber-high) as well as from control tissue. Compared to fiber-high samples, IEC purified from fiber-low rectosigmoid expressed significantly higher levels of IL-8 but not TNF-α, IL-10, TGF-β1, Muc-2 or tight junction proteins. IEC from fiber-low rectosigmoid showed higher IL-8 protein concentrations in cell lysates as well as prominent IL-8 immunoreactivity compared to IEC from fiber-high tissue. Using the human colonic IEC cell line SW480 we demonstrated that cholinergic signals suppress lipopolysaccharide-induced IL-8 secretion via the alpha 7 nicotinic acetylcholine receptor (a7nAChR). In conclusion, we showed for the first time that the presence of a dense mucosal cholinergic innervation is associated with decreased secretion of IEC-derived pro-inflammatory IL-8 in the rectosigmoid of HSCR patients likely dependent on a7nAChR activation. Owing to the association between IL-8 and enterocolitis-prone, fiber-low HSCR patients, targeted therapies against IL-8 might be a promising immunotherapy candidate for HAEC treatment.
Collapse
Affiliation(s)
- Isabelle Müller
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Urs Kym
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Virginie Galati
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Sasha Tharakan
- Department of Pediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - Ulrike Subotic
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland.,Department of Pediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - Thomas Krebs
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Eleuthere Stathopoulos
- Department of Pediatric Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | | | - Dietmar Cholewa
- Department of Pediatric Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Romero
- Department of Pediatric Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Bertram Reingruber
- Department of Pediatric Surgery, Florence Nightingale Hospital, Düsseldorf, Germany
| | | | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Simone Keck
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Han X, Li W, Li P, Zheng Z, Lin B, Zhou B, Guo K, He P, Yang J. Stimulation of α7 Nicotinic Acetylcholine Receptor by Nicotine Suppresses Decidual M1 Macrophage Polarization Against Inflammation in Lipopolysaccharide-Induced Preeclampsia-Like Mouse Model. Front Immunol 2021; 12:642071. [PMID: 33995360 PMCID: PMC8113862 DOI: 10.3389/fimmu.2021.642071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Changes in decidual macrophage polarization affect local inflammatory microenvironment and lead to adverse pregnancy outcomes. However, the regulatory mechanism of macrophage polarization in preeclampsia (PE) remains unclear. In this study, we found that α7nAChR expression was significantly down-regulated in decidual macrophages in PE patients compared to normal pregnant women, accompanied by a reduced proportion of M2 phenotype and an increased proportion of M1 phenotype; these results suggested that the reduced α7nAChR activity might contribute to changes in the polarization of decidual macrophages. Then, we further investigated the regulatory role of α7nAChR activation by nicotine on decidual macrophage polarization and placental remodeling in the PE-like mouse model. The PE mice were obtained by i.p. injection of 10 µg/kg lipopolysaccharide (LPS) gestational day (GD) 13, and 40 µg/kg LPS daily until GD16. Subcutaneous injection of 1.0 mg/kg nicotine was administrated from GD14 to GD18. Nicotine treatment increased the decreased M2 phenotype and inhibited the increased M1 phenotype in decidua of pregnant mice induced by LPS. The levels of pro-inflammatory cytokines in decidua were higher but the levels of anti-inflammatory cytokines were lower in PE mice compared to the controls, nicotine reversed these changes. The level of choline acetyltransferase (CHAT) was reduced in the LPS-treated group, it was increased following nicotine treatment. Damage of spiral artery remodeling and down-regulation of markers related to trophoblast invasion in placentas were found in PE mice; nicotine improved these pathological structures of placentas. α-bungarotoxin (α-BGT) which is specific antagonist for α7nAChR could abolish the effects of nicotine on decidual macrophage polarization, trophoblast arrangement and vascular structure in placental tissue in PE mice. These results suggest that α7nAChR plays an important regulatory role in maternal-fetal inflammation and placental remodeling in preeclampsia and may provide a theoretical basis for the discovery of new strategies for preeclampsia.
Collapse
Affiliation(s)
- Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baohua Lin
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bei Zhou
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaimin Guo
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Cheng CC, Lin HC, Chiang YW, Chang J, Sie ZL, Yang BL, Lim KH, Peng CL, Ho AS, Chang YF. Nicotine exhausts CD8 + T cells against tumor cells through increasing miR-629-5p to repress IL2RB-mediated granzyme B expression. Cancer Immunol Immunother 2020; 70:1351-1364. [PMID: 33146402 DOI: 10.1007/s00262-020-02770-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
The mechanism exhausting CD8+ T cells is not completely clear against tumors. Literature has demonstrated that cigarette smoking disables the immunological activity, so we propose nicotine is able to exhaust CD8+ T cells. The CD8+ T cells from healthy volunteers with and without cigarette smoking and the capacity of CD8+ T cells against tumor cells were investigated. RNAseq was used to investigate the gene profiling expression in CD8+ T cells. Meanwhile, small RNAseq was also used to search novel microRNAs involved in the exhaustion of CD8+ T cells. The effect of nicotine exhausting CD8+ T cells was investigated in vitro and in the humanized tumor xenografts in vivo. We found that CD8+ T cells were able to reduce cell viability in lung cancer HCC827 and A549 cells, that secreted granzyme B, but CD8+ T cells from the healthy cigarette smokers lost anti-HCC827 effect. Moreover, nicotine suppressed the anti-HCC827 effect of CD8+ T cells. RNAseq revealed lower levels of IL2RB and GZMB in the exhausted CD8+ T cells. We identified that miR-629-5p was increased by nicotine, that targeted IL2RB. Transfection of miR-629-5p mimic reduced IL2RB and GZMB levels. We further validated that nicotine reduced granzyme B levels using a nuclear imaging technique, and demonstrated that nicotine exhausted peripheral blood mononuclear cells against HCC827 growth in the humanized tumor xenografts. This study demonstrated that nicotine exhausted CD8+ T cells against HCC827 cells through increasing miR-629-5p to suppress IL2RB.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taiwan
| | - Hsin-Chi Lin
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ya-Wen Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zong-Lin Sie
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taiwan
| | - Bi-Ling Yang
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan.
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan. .,Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan. .,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Akt+ IKKα/β+ Rab5+ Signalosome Mediate the Endosomal Recruitment of Sec61 and Contribute to Cross-Presentation in Bone Marrow Precursor Cells. Vaccines (Basel) 2020; 8:vaccines8030539. [PMID: 32957586 PMCID: PMC7563657 DOI: 10.3390/vaccines8030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cross-presentation in dendritic cells (DC) requires the endosomal relocations of internalized antigens and the endoplasmic reticulum protein Sec61. Despite the fact that endotoxin-containing pathogen and endotoxin-free antigen have different effects on protein kinase B (Akt) and I-kappa B Kinase α/β (IKKα/β) activation, the exact roles of Akt phosphorylation, IKKα or IKKβ activation in endotoxin-containing pathogen-derived cross-presentation are poorly understood. In this study, endotoxin-free ovalbumin supplemented with endotoxin was used as a model pathogen. We investigated the effects of endotoxin-containing pathogen and endotoxin-free antigen on Akt phosphorylation, IKKα/β activation, and explored the mechanisms that the endotoxin-containing pathogen orchestrating the endosomal recruitment of Sec61 of the cross-presentation in bone marrow precursor cells (BMPC). We demonstrated that endotoxin-containing pathogen and endotoxin-free antigen efficiently induced the phosphorylation of Akt-IKKα/β and Akt-IKKα, respectively. Endotoxin-containing pathogen derived Akt+ IKKα/β+ Rab5+ signalosome, together with augmented the recruitment of Sec61 toward endosome, lead to the increased cross-presentation in BMPC. Importantly, the endosomal recruitment of Sec61 was partly mediated by the formation of Akt+ IKKα/β+ signalosome. Thus, these data suggest that Akt+ IKKα/β+ Rab5+ signalosome contribute to endotoxin-containing pathogen-induced the endosomal recruitment of Sec61 and the superior efficacy of cross-presentation in BMPC.
Collapse
|
7
|
Traboulsi H, Cherian M, Abou Rjeili M, Preteroti M, Bourbeau J, Smith BM, Eidelman DH, Baglole CJ. Inhalation Toxicology of Vaping Products and Implications for Pulmonary Health. Int J Mol Sci 2020; 21:E3495. [PMID: 32429092 PMCID: PMC7278963 DOI: 10.3390/ijms21103495] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
| | - Mathew Cherian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
| | - Mira Abou Rjeili
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Matthew Preteroti
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Benjamin M. Smith
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
| | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
8
|
Nicotine attenuates concanavalin A-induced liver injury in mice by regulating the α7-nicotinic acetylcholine receptor in Kupffer cells. Int Immunopharmacol 2019; 78:106071. [PMID: 31835083 DOI: 10.1016/j.intimp.2019.106071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Nicotine, a potent parasympathomimetic alkaloid, manifests anti-inflammatory properties by activating nicotinic acetylcholine receptors (nAChRs). In this study, we evaluated the effects of nicotine on concanavalin A (ConA)-induced autoimmune hepatitis. Nicotine (0.5 and 1 mg/kg) was intraperitoneally administered to BALB/c mice and mice were intravenously injected with ConA (15 mg/kg) to induce hepatitis. The results showed that nicotine treatment ameliorated pathological lesions in livers and significantly suppressed the expression of pro-inflammatory cytokines in the livers. Such effects were mediated by inhibiting the nuclear factor-kappa B (NF-κB) signaling in livers. Interestingly, nicotine inhibited the ConA-induced inflammatory response in primary cultured Kupffer cells (KCs) but did not alter the proliferation of splenocytes. The protective effects of nicotine against ConA-induced hepatitis were abolished in KC-depleted mice, indicating the requirement of KCs in this process. Additionally, the expression of α7-nAChR on KCs was dramatically increased by nicotine treatment, and the protective effects of nicotine on ConA-induced liver injury were significantly suppressed by treatment with methyllycaconitine (MLA), a specific α7-nAChR antagonist. Consistently, in primary cultured KCs, the activation of NF-κB signaling was also regulated by nicotine treatment. This study suggests that nicotine increases α7-nAChR-mediated cholinergic activity in KCs resulting in decrease of ConA-induced autoimmune hepatitis through inhibiting NF-κB signaling.
Collapse
|