1
|
Luo Z, Li W, Li J, Zhang Y. A new Tec family-based clinical model predicts survival in differentiated thyroid cancer patients via machine learning. Thyroid Res 2025; 18:18. [PMID: 40307932 PMCID: PMC12044924 DOI: 10.1186/s13044-025-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND The Tec family of proteins has been identified as a key player in numerous diseases. However, no studies on the associations of Tec family proteins with overall survival (OS) in differentiated thyroid cancer (DTC) patients have been conducted. METHODS RNA sequencing (RNA-Seq) and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. LASSO-Cox, random forest, and eXtreme Gradient Boosting (XGBoost) analysis methods were used to screen for the genes encoding Tec family proteins that were most closely associated with DTC. A predictive model was developed to estimate the OS of DTC patients. The validity of the prediction model was evaluated via receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and fivefold and 200-fold cross-validation. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the biological functions of the most significant genes. RESULTS The AC007494.3 and AC019226.2 genes were most strongly associated with the OS of DTC patients. Therefore, the model can be used to predict the OS of DTC patients. Functional annotation analysis revealed characteristics similar to those of other Tec kinases. CONCLUSIONS We found that the TEC gene has significant predictive value for the prognosis of DTC patients. The TEC gene has potential value as a target for future drug development. In addition, we recommend more comprehensive treatment and closer monitoring of high-risk populations.
Collapse
Affiliation(s)
- Ziyu Luo
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Ying Zhang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
2
|
Lowry AJ, Liang P, Song M, Wan Y, Pei ZM, Yang H, Zhang Y. TMEM16 and OSCA/TMEM63 proteins share a conserved potential to permeate ions and phospholipids. eLife 2024; 13:RP96957. [PMID: 39495104 PMCID: PMC11534332 DOI: 10.7554/elife.96957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure-function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here, we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.
Collapse
Affiliation(s)
- Augustus J Lowry
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Mo Song
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryGuangdongChina
| | - Yuichun Wan
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Zhen-Ming Pei
- Department of Biology, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Yang Zhang
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryGuangdongChina
| |
Collapse
|
3
|
Lowry AJ, Liang P, Song M, Serena Wan YC, Pei ZM, Yang H, Zhang Y. TMEM16 and OSCA/TMEM63 proteins share a conserved potential to permeate ions and phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578431. [PMID: 38370744 PMCID: PMC10871192 DOI: 10.1101/2024.02.04.578431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure-function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.
Collapse
Affiliation(s)
- Augustus J Lowry
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mo Song
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Guangdong 518106, China
| | - Y C Serena Wan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yang Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Guangdong 518106, China
| |
Collapse
|
4
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Fukami T, Shiozaki A, Kosuga T, Kudou M, Shimizu H, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Morinaga Y, Konishi E, Otsuji E. Anoctamin 5 regulates the cell cycle and affects prognosis in gastric cancer. World J Gastroenterol 2022; 28:4649-4667. [PMID: 36157935 PMCID: PMC9476871 DOI: 10.3748/wjg.v28.i32.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anoctamin 5 (ANO5)/transmembrane protein 16E belongs to the ANO/ transmembrane protein 16 anion channel family. ANOs comprise a family of plasma membrane proteins that mediate ion transport and phospholipid scrambling and regulate other membrane proteins in numerous cell types. Previous studies have elucidated the roles and mechanisms of ANO5 activation in various cancer types. However, it remains unclear whether ANO5 acts as a plasma membrane chloride channel, and its expression and functions in gastric cancer (GC) have not been investigated.
AIM To examine the role of ANO5 in the regulation of tumor progression and clinicopathological significance of its expression in GC.
METHODS Knockdown experiments using ANO5 small interfering RNA were conducted in human GC cell lines, and changes in cell proliferation, cell cycle progression, apoptosis, and cellular movement were assessed. The gene expression profiles of GC cells were investigated following ANO5 silencing by microarray analysis. Immunohistochemical staining of ANO5 was performed on 195 primary tumor samples obtained from patients with GC who underwent curative gastrectomy between 2011 and 2013 at our department.
RESULTS Reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting demonstrated high ANO5 mRNA and protein expression, respectively, in NUGC4 and MKN45 cells. In these cells, ANO5 silencing inhibited cell proliferation and induced apoptosis. In addition, the knockdown of ANO5 inhibited G1-S phase progression, invasion, and migration. The results of the microarray analysis revealed changes in the expression levels of several cyclin-associated genes, such as CDKN1A, CDK2/4/6, CCNE2, and E2F1, in ANO5-depleted NUGC4 cells. The expression of these genes was verified using reverse transcription-quantitative PCR. Immunohistochemical staining revealed that high ANO5 expression levels were associated with a poor prognosis. Multivariate analysis identified high ANO5 expression as an independent prognostic factor for 5-year survival in patients with GC (P = 0.0457).
CONCLUSION ANO5 regulates the cell cycle progression by regulating the expression of cyclin-associated genes and affects the prognosis of patients with GC. These results may provide insights into the role of ANO5 as a key mediator in tumor progression and/or promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Tomoyuki Fukami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto City Hospital, Kyoto 604-8845, Japan
| | - Yukiko Morinaga
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
6
|
Christiansen J, Güttsches AK, Schara-Schmidt U, Vorgerd M, Heute C, Preusse C, Stenzel W, Roos A. ANO5-related muscle diseases: from clinics and genetics to pathology and research strategies. Genes Dis 2022; 9:1506-1520. [PMID: 36157496 PMCID: PMC9485283 DOI: 10.1016/j.gendis.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
|
7
|
Ji W, Shi D, Shi S, Yang X, Chen Y, An H, Pang C. TMEM16A protein: calcium binding site and its activation mechanism. Protein Pept Lett 2021; 28:1338-1348. [PMID: 34749600 DOI: 10.2174/0929866528666211105112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022]
Abstract
TMEM16A mediates calcium-activated transmembrane flow of chloride ion and a variety of physiological functions. The binding of cytoplasmic calcium ions of TMEM16A and the consequent conformational changes of it are the key issues to explore the relationship between its structure and function. In recent years, researchers have explored this issue through electrophysiological experiment, structure resolving, molecular dynamic simulation and other methods. The structures of TMEM16 family members resolved by cryo-Electron microscopy (cryo-EM) and X-ray crystallization provide the primarily basis for the investigation of the molecular mechanism of TMEM16A. However, the binding and activation mechanism of calcium ions in TMEM16A are still unclear and controversial. This review discusses four Ca2+ sensing sites of TMEM16A and analyze activation properties of TMEM16A by them, which will help to understand the structure-function relationship of TMEM16A and throw light on the molecular design targeting TMEM16A channel.
Collapse
Affiliation(s)
- Wanying Ji
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Donghong Shi
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Sai Shi
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Xiao Yang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Yafei Chen
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Hailong An
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Chunli Pang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| |
Collapse
|
8
|
Cai C, Bi D, Bick G, Wei Q, Liu H, Lu L, Zhang X, Qin H. Hepatocyte nuclear factor HNF1A is a potential regulator in shaping the super-enhancer landscape in colorectal cancer liver metastasis. FEBS Lett 2021; 595:3056-3071. [PMID: 34719039 DOI: 10.1002/1873-3468.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 01/15/2023]
Abstract
Super-enhancers (SEs) play essential roles in colorectal cancer (CRC) progression. However, how the SE landscape is orchestrated by transcriptional regulators and evolves is not clear. Using de novo motif analysis, we show that the hepatocyte nuclear factor 1 (HNF1)-binding motif is enriched in SEs in cell lines derived from liver metastases, but not in those from primary tumors. This finding was further validated by extending the method to pancreatic cancer and a pair of isogenic CRC lines. Next, we revealed HNF1-alpha (HNF1A) was majorly expressed and upregulated in CRC liver metastatic cell lines. Clinically, HNF1A was remarkably upregulated in synchronous liver metastases as compared to localized tumors. Collectively, our study implicates HNF1A as a key regulator in shaping the SE landscape in CRC liver metastasis.
Collapse
Affiliation(s)
- Chunmiao Cai
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Pan R, Lu Q, Ren C, Li H, Zeng F, Tian X, Chen H. Anoctamin 5 promotes osteosarcoma development by increasing degradation of Nel-like proteins 1 and 2. Aging (Albany NY) 2021; 13:17316-17327. [PMID: 34238763 PMCID: PMC8312408 DOI: 10.18632/aging.203212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
Anoctamin 5 (ANO5) is a member of the Anoctamin (ANO) family of calcium-activated chloride channels. Although ANO5 expression is upregulated in various cancers, its role in osteosarcoma remains largely unknown. In this study, bioinformatics analysis, western blot, and immunohistochemical staining revealed that ANO5 was upregulated in osteosarcoma cell lines and osteosarcoma tissues, and ANO5 expression was positively associated with tumor size, tumor grade, and metastasis. Functional experiments demonstrated that inhibition of ANO5 decreased, while ANO5 overexpression increased, osteosarcoma cell proliferation and mobility in vitro. Immunoprecipitation, western blot, and confocal microscopy experiments showed that ANO5 bound to and promoted the degradation of Nel-like proteins 1 (NELL1) and 2 (NELL2). Moreover, a subcutaneous tumor transplantation model revealed that ANO5 knockdown reduced osteosarcoma cell proliferation and increased NELL1 and NELL2 expression in vivo. Finally, rescue experiments showed that knockdown of NELL1 or NELL2 reversed the inhibitory effects of ANO5 knockdown on osteosarcoma cell proliferation and migration. These results demonstrated that upregulation of ANO5 promoted osteosarcoma development by decreasing the stability of the NELL1 and NELL2 proteins and that ANO5 may be an effective target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Runsang Pan
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550009, Guizhou, China
| | - Qiaoying Lu
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550009, Guizhou, China
| | - Chong Ren
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550009, Guizhou, China
| | - Hao Li
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550009, Guizhou, China
| | - Fanqiang Zeng
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550009, Guizhou, China
| | - Xiaobin Tian
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Houping Chen
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550009, Guizhou, China
| |
Collapse
|
10
|
Asghar MY, Lassila T, Törnquist K. Calcium Signaling in the Thyroid: Friend and Foe. Cancers (Basel) 2021; 13:cancers13091994. [PMID: 33919125 PMCID: PMC8122656 DOI: 10.3390/cancers13091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary All cells in our body are activated by several different signals. The calcium ion is one of the most versatile signaling molecules, and regulates a multitude of different events in the cells. These range from activation of muscle contraction, to the regulation of cell movement, just to name a few. In normal thyroid cells, calcium signaling is of importance for the normal physiology of the cells. In thyroid pathologies, e.g., thyroid cancer, calcium is important for the regulation of proliferation and invasion, and may also activate gene transcription programs important for cancer cell survival. In this Commentary, we summarize what is known regarding calcium in the normal thyroid, and highlight the importance of calcium signaling in thyroid pathologies. Abstract Calcium signaling participates in a vast number of cellular processes, ranging from the regulation of muscle contraction, cell proliferation, and mitochondrial function, to the regulation of the membrane potential in cells. The actions of calcium signaling are, thus, of great physiological significance for the normal functioning of our cells. However, many of the processes that are regulated by calcium, including cell movement and proliferation, are important in the progression of cancer. In the normal thyroid, calcium signaling plays an important role, and evidence is also being gathered showing that calcium signaling participates in the progression of thyroid cancer. This review will summarize what we know in regard to calcium signaling in the normal thyroid as, well as in thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland; (M.Y.A.); (T.L.)
| | - Taru Lassila
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland; (M.Y.A.); (T.L.)
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6, 00250 Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland; (M.Y.A.); (T.L.)
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6, 00250 Turku, Finland
- Correspondence:
| |
Collapse
|
11
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
12
|
Sun R, Yang L, Hu Y, Wang Y, Zhang Q, Zhang Y, Ji Z, Zhao D. ANGPTL1 is a potential biomarker for differentiated thyroid cancer diagnosis and recurrence. Oncol Lett 2020; 20:240. [PMID: 32973954 PMCID: PMC7509504 DOI: 10.3892/ol.2020.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Differentiated thyroid cancer (DTC) is a common type of cancer among women with an increasing worldwide incidence rate. However, there are no specific and sensitive molecular biomarkers for DTC diagnosis or prognosis. Angiopoietin-like protein 1 (ANGPTL1) may be a novel tumor suppressor in lung, breast, colorectal and hepatocellular carcinoma. However, little is known about the influence of ANGPTL1 on the malignant properties of thyroid cancer cells or DTC recurrence in patients. Thus, the present study aimed to investigate the effects of ANGPTL1 on thyroid cancer malignancy or recurrence. The present study examined the mRNA levels of ANGPTL1 in thyroid cancer and paracancerous tissues using RNA sequencing data from The Cancer Genome Atlas. The present study also determined the effects of ANGPTL1 on thyroid cancer cell proliferation using the Cell Counting Kit-8 assay. Associations were identified among ANGPTL1 expression levels and thyroid cancer proliferation, migration and metastasis using The Cancer Genome Atlas data set and by Gene Set Enrichment Analysis. The expression of ANGPTL1 in patients with DTC and without recurrence was compared in order to assess its potential as a prognostic biomarker for DTC. In addition, ANGPTL1 concentrations in the serum of patients with DTC and individuals with benign thyroid nodules were compared to evaluate the sensitivity and specificity of ANGPTL1 as a predictive biomarker for DTC. The results of the present study demonstrated that ANGPTL1 expression levels were lower in thyroid cancer compared with those in adjacent normal thyroid tissues. ANGPTL1 expression was observed to decrease with thyroid cancer progression. In addition, ANGPTL1 was demonstrated to inhibit thyroid cancer cell proliferation, migration and invasion and ANGPTL1 expression levels were reduced in patients with DTC with recurrence compared with those in patients with non-recurrent DTC. Additionally, serum concentrations of ANGPTL1 in patients with DTC were decreased compared with those in individuals with benign thyroid nodules. In conclusion, ANGPTL1 may be a novel predictive biomarker for DTC diagnosis and recurrence in patients with DTC.
Collapse
Affiliation(s)
- Rongxin Sun
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yangping Hu
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhili Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
13
|
Zhong LK, Gan XX, Deng XY, Shen F, Feng JH, Cai WS, Liu QY, Miao JH, Zheng BX, Xu B. Potential five-mRNA signature model for the prediction of prognosis in patients with papillary thyroid carcinoma. Oncol Lett 2020; 20:2302-2310. [PMID: 32782547 PMCID: PMC7400165 DOI: 10.3892/ol.2020.11781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Although the mortality rate of papillary thyroid carcinoma (PTC) is relatively low, the recurrence rates of PTC remain high. The high recurrence rates are related to the difficulties in treatment. Gene expression profiles has provided novel insights into potential therapeutic targets and molecular biomarkers of PTC. The aim of the present study was to identify mRNA signatures which may categorize PTCs into high-and low-risk subgroups and aid with the predictions for prognoses. The mRNA expression profiles of PTC and normal thyroid tissue samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs were identified using the ‘EdgeR’ software package. Gene signatures associated with the overall survival of PTC were selected, and enrichment analysis was performed to explore the biological pathways and functions of the prognostic mRNAs using the Database for Visualization, Annotation and Integration Discovery. A signature model was established to investigate a specific and robust risk stratification for PTC. A total of 1,085 differentially expressed mRNAs were identified between the PTC and normal thyroid tissue samples. Among them, 361 mRNAs were associated with overall survival (P<0.05). A 5-mRNA prognostic signature for PTC (ADRA1B, RIPPLY3, PCOLCE, TEKT1 and SALL3) was identified to classify the patients into high-and low-risk subgroups. These prognostic mRNAs were enriched in Gene Ontology terms such as ‘calcium ion binding’, ‘enzyme inhibitor activity’, ‘carbohydrate binding’, ‘transcriptional activator activity’, ‘RNA polymerase II core promoter proximal region sequence-specific binding’ and ‘glutathione transferase activity’, and Kyoto Encyclopedia of Genes and Genomes signaling pathways such as ‘pertussis’, ‘ascorbate and aldarate metabolism’, ‘systemic lupus erythematosus’, ‘drug metabolism-cytochrome P450 and ‘complement and coagulation cascades’. The 5-mRNA signature model may be useful during consultations with patients with PTC to improve the prediction of their prognosis. In addition, the prognostic signature identified in the present study may reveal novel therapeutic targets for patients with PTC.
Collapse
Affiliation(s)
- Lin-Kun Zhong
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, Zhongshan City People's Hospital Affiliated to Sun Yat-sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Xiao-Xiong Gan
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xing-Yan Deng
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jian-Hua Feng
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wen-Song Cai
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Qiong-Yao Liu
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jian-Hang Miao
- Department of General Surgery, Zhongshan City People's Hospital Affiliated to Sun Yat-sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Bing-Xing Zheng
- Department of General Surgery, Zhongshan City People's Hospital Affiliated to Sun Yat-sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Bo Xu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
14
|
Yu CC, Chen LC, Huang CY, Lin VC, Lu TL, Lee CH, Huang SP, Bao BY. Genetic association analysis identifies a role for ANO5 in prostate cancer progression. Cancer Med 2020; 9:2372-2378. [PMID: 32027096 PMCID: PMC7131841 DOI: 10.1002/cam4.2909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
Anoctamins were originally identified as a family of calcium‐activated chloride channels, but recently their roles in the development of different types of malignancies were suggested. Here, we evaluated the associations between 211 common single‐nucleotide polymorphisms in 10 anoctamin genes with biochemical recurrence (BCR) after radical prostatectomy (RP) for localized prostate cancer. Four SNPs (ANO4 rs585335, ANO5 rs4622263, ANO7 rs62187431, and ANO10 rs118005571) remained significantly associated with BCR after multiple test correction (P < .05 and q = 0.232) and adjustment for known prognostic factors. Expression quantitative trait loci analysis found that ANO5 rs4622263 C and ANO10 rs118005571 C alleles were associated with decreased mRNA expression levels. Moreover, lower expression of ANO5 was correlated with more advanced tumors and poorer outcomes in two independent prostate cancer cohorts. Taken together, ANO5 rs4622263 was associated with BCR, and ANO5 gene expression was correlated with patient prognosis, suggesting a pivotal role for ANO5 in prostate cancer progression.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- Division of Urology/Transplant Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Ma Y, Cang S, Li G, Su Y, Zhang H, Wang L, Yang J, Shi X, Qin G, Yuan H. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression. J Cell Physiol 2019; 234:22260-22271. [PMID: 31081124 DOI: 10.1002/jcp.28793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
To better understand the molecular mechanisms of anaplastic thyroid carcinoma (ATC), we aimed to identify the hub genes specifically involved in ATC by integrated bioinformatics analysis. In this study, using three Gene Expression Omnibus data sets with the same platform GPL570, we screened hub genes involved in ATC progression. In vitro experiments, such as western blot analysis, Transwell assays, and coimmunoprecipitation, was performed to verify our findings. By comparing three subtypes of thyroid cancer with normal tissue, we found ATC harbored more changed genes than well and poorly differentiated thyroid cancer. Using specifically differentially expressed genes between ATC and normal thyroid tissues to perform Gene ontology (GO) analysis, ATC showed enrichments of GO terms involved in lymphocyte migration and activation, collagen catabolic and metabolic process, thyroid hormone synthesis, and embolism. Using genes involved in extracellular matrix, coexpression network analysis and protein-protein interaction analysis were performed to identify matrix metalloproteinase 3 (MMP3) and MMP13 as two hub genes. Our experimental data indicated that both MMP3 and MMP13 were upregulated in ATC and knockdown of either of them could notably suppress ATC cell invasion and migration. Mechanistically, Gene Set Enrichment Analysis, coimmunoprecipitation, and rescue experiments revealed MMP3 and MMP13 not only interacted with each other, but also regulated each other through the janus kinase/signal transducer and activator of transcription 3 and mammalian target of rapamycin pathways. In conclusion, we identified a specific molecular mechanisms for the development of ATC by integrated analysis of transcriptome and in vitro experiments, which suggested that MMP3 and MMP13 might be developed as novel therapeutic targets for ATC.
Collapse
Affiliation(s)
- Yuehua Ma
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Guoqing Li
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Huifeng Zhang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Gawrieh S, Guo X, Tan J, Lauzon M, Taylor KD, Loomba R, Cummings OW, Pillai S, Bhatnagar P, Kowdley KV, Yates K, Wilson LA, Chen YI, Rotter JI, Chalasani N. A Pilot Genome-Wide Analysis Study Identifies Loci Associated With Response to Obeticholic Acid in Patients With NASH. Hepatol Commun 2019; 3:1571-1584. [PMID: 31832568 PMCID: PMC6887685 DOI: 10.1002/hep4.1439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] Open
Abstract
A significantly higher proportion of patients with nonalcoholic steatohepatitis (NASH) who received obeticholic acid (OCA) had histological improvement relative to placebo in the FLINT (farnesoid X nuclear receptor ligand obeticholic acid for noncirrhotic, NASH treatment) trial. However, genetic predictors of response to OCA are unknown. We conducted a genome-wide association study (GWAS) in FLINT participants to identify variants associated with NASH resolution and fibrosis improvement. Genotyping was performed using the Omni2.5 content GWAS chip. To avoid false positives introduced by population stratification, we focused our GWAS on white participants. Six regions on chromosomes 1, 4, 6, 7, 15, and 17 had multiple single nucleotide polymorphisms (SNPs) with suggestive association (P < 1 × 10 - 4 ) with NASH resolution. A sentinel SNP, rs75508464, near CELA3B on chromosome 1 was associated with NASH resolution, improvement in the nonalcoholic fatty liver disease activity score, portal inflammation, and fibrosis. Among individuals carrying this allele, 83% achieved NASH resolution with OCA compared with only 33% with placebo. Eight regions on chromosomes 1, 2, 3, 11, 13, and 18 had multiple SNPs associated with fibrosis improvement; of these, rs12130403 near TDRD10 on chromosome 1 was also associated with improvement in NASH and portal inflammation, and rs4073431 near ANO3 on chromosome 11 was associated with NASH resolution and improvement in steatosis. Multiple SNPs on chromosome 11 had suggestive association with pruritus, with rs1379650 near ANO5 being the top SNP. Conclusion: We identified several variants that may be associated with histological improvement and pruritus in individuals with NASH receiving OCA. The rs75508464 variant near CELA3B may have the most significant effect on NASH resolution in those receiving OCA.
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana UniversityIndianapolisIN
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Marie Lauzon
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Rohit Loomba
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of California San DiegoSan DiegoCA
| | | | | | | | - Kris V. Kowdley
- Liver Care Network and Organ Care ResearchSwedish Medical CenterSeattleWA
| | - Katherine Yates
- Department of EpidemiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMD
| | - Laura A. Wilson
- Department of EpidemiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMD
| | - Yii‐Der Ida Chen
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Naga Chalasani
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana UniversityIndianapolisIN
| |
Collapse
|
17
|
Zhu J, Wu K, Lin Z, Bai S, Wu J, Li P, Xue H, Du J, Shen B, Wang H, Liu Y. Identification of susceptibility gene mutations associated with the pathogenesis of familial nonmedullary thyroid cancer. Mol Genet Genomic Med 2019; 7:e1015. [PMID: 31642198 PMCID: PMC6900395 DOI: 10.1002/mgg3.1015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Familial nonmedullary thyroid cancer (FNMTC) accounts for approximately 3%–9% of all thyroid cancers; however, the mechanisms underlying FNMTC remain unclear. Environmental and genetic (especially genetic mutation) factors may play important roles in FNMTC etiology, development, and pathogenesis. Methods Three affected members, including two first‐degree relatives, and three healthy members of a family with FNMTC were studied. We performed whole‐exome and targeted gene sequencing to identify gene mutations that may be associated with FNMTC pathogenesis. The results were analyzed using Exome Aggregation Consortium data and the Genome Aggregation Database and further validated using Sanger sequencing. Results Of 28 pivotal genes with rare nonsynonymous mutations found, 7 were identified as novel candidate FNMTC pathogenic genes (ANO7, CAV2, KANK1, PIK3CB, PKD1L1, PTPRF, and RHBDD2). Among them, three genes (PIK3CB, CAV2, and KANK1) are reportedly involved in tumorigenesis through the PI3K/Akt signaling pathway. Conclusion We identified seven pathogenic genes in affected members of a family with FNMTC. The PI3K/Akt signaling pathway is thought to be closely related to the development of FNMTC, and three of the susceptibility genes identified herein are associated with this pathway. These findings expand our understanding of FNMTC pathogenesis and underscore PI3K/Akt pathology as a potential therapy target.
Collapse
Affiliation(s)
- Junwei Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhangying Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peikun Li
- Department of General surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haowei Xue
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huiyin Wang
- Department of Pathology, Microbiology & Immunology, Vanderbilt Children's Hospital, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L, Shi W, Zhu C, Tang L. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J Cell Physiol 2019; 235:2761-2775. [PMID: 31531884 DOI: 10.1002/jcp.29181] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) is one of the most deadly digestive cancers world-wide, with a dismal five-year survival rate of <8%. Upregulation of transmembrane protein 158 (TMEM158) is known to facilitate the progression of several carcinomas. However, little is known concerning the potential roles of TMEM158 in PC. Herein, we first found that TMEM158 was significantly upregulated in PC samples as well as PC cell lines. The overexpression of TMEM158 was significantly correlated with advanced clinicopathologic features (including tumor size, TNM stage, and blood vessel invasion) and poorer prognosis of patients with PC in clinic. Evidenced based on a series of loss- and gain-of-function assays uncovered that TMEM158 enhanced PC cell proliferation, migration, and invasion by stimulating the progression of cell cycle, epithelial-mesenchymal transition, and MMP-2/9 production. Furthermore, mechanism-related investigations disclosed that activation of TGFβ1 and PI3K/AKT signal might be responsible for TMEM158-triggered PC aggressiveness. Collectively, TMEM158 was upregulated in PC and promoted PC cell proliferation, migration, and invasion through the activation of TGFβ1 and PI3K/AKT signaling pathways, highlighting its potential as a tumor promoter and a therapeutic target for PC.
Collapse
Affiliation(s)
- Yue Fu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Na Yao
- Department of Thyroid & Breast Surgery, Wuxi City Hospital of TCM, The Affiliated Hospital of Nanjing University of TCM, Wuxi, Jiangsu, China
| | - Dong Ding
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xudong Zhang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyang Liu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Le Ma
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Weihai Shi
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liming Tang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Gao Y, Yan Y, Guo J, Zhang Q, Bi D, Wang F, Chang Z, Lu L, Yao X, Wei Q. HNF‑4α downregulation promotes tumor migration and invasion by regulating E‑cadherin in renal cell carcinoma. Oncol Rep 2019; 42:1066-1074. [PMID: 31322246 PMCID: PMC6667891 DOI: 10.3892/or.2019.7214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignant disease of the kidneys in adults. Patients with metastatic RCC have an unusually poor prognosis and exhibit resistance to all current therapies. Therefore, it is necessary to explore novel molecules involved in the progression of RCC and to identify effective therapeutic targets. Hepatocyte nuclear factor‑4α (HNF‑4α) serves an important role in hepatocyte differentiation and is involved in the progression of liver cancer; however, the functional role of HNF‑4α has not been well established in RCC. The present study reported that HNF‑4α expression was markedly downregulated in RCC tissue samples compared with in normal controls by immunohistochemistry and RNA‑sequencing analysis. Statistical analysis demonstrated that HNF‑4α downregulation was significantly associated with tumor stage, recurrence, metastasis and poor prognosis in patients with RCC. Furthermore, wound‑healing and Transwell assays revealed that downregulation of HNF‑4α promoted cell migration and invasion by transcriptionally regulating E‑cadherin in RCC. Finally, a positive correlation was revealed between HNF‑4α expression and E‑cadherin expression, and patients with low E‑cadherin expression also had a poor prognosis. These findings may provide novel insights into the biological effects of HNF‑4α and lay the foundation for the discovery of molecular therapeutic targets in RCC.
Collapse
MESH Headings
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 4/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/secondary
- Male
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jing Guo
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qian Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Fen Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
20
|
Joshi P, Seki T, Kitamura S, Bergano A, Lee B, Perera RJ. Transcriptome stability profiling using 5'-bromouridine IP chase (BRIC-seq) identifies novel and functional microRNA targets in human melanoma cells. RNA Biol 2019; 16:1355-1363. [PMID: 31179855 DOI: 10.1080/15476286.2019.1629769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA half-life is closely related to its cellular physiological function, so stability determinants may have regulatory functions. Micro(mi)RNAs have primarily been studied with respect to post-transcriptional mRNA regulation and target degradation. Here we study the impact of the tumour suppressive melanoma miRNA miR-211 on transcriptome stability and phenotype in the non-pigmented melanoma cell line, A375. Using 5'-bromouridine IP chase (BRIC)-seq, transcriptome-wide RNA stability profiles revealed highly regulated genes and pathways important in this melanoma cell line. By combining BRIC-seq, RNA-seq and in silico predictions, we identified both existing and novel direct miR-211 targets. We validated DUSP3 as one such novel miR-211 target, which itself sustains colony formation and invasion in A375 cells via MAPK/PI3K signalling. miRNAs have the capacity to control RNA turnover as a gene expression mechanism, and RNA stability profiling is an excellent tool for interrogating functionally relevant gene regulatory pathways and miRNA targets when combined with other high-throughput and in silico approaches.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Tatsuya Seki
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Medical and Biological Laboratories , Nagoya , Japan
| | | | - Andrea Bergano
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA
| | - Ranjan J Perera
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
21
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
22
|
Fujimoto M, Kito H, Kajikuri J, Ohya S. Transcriptional repression of human epidermal growth factor receptor 2 by ClC-3 Cl - /H + transporter inhibition in human breast cancer cells. Cancer Sci 2018; 109:2781-2791. [PMID: 29949674 PMCID: PMC6125433 DOI: 10.1111/cas.13715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that the intracellular concentration of chloride ions (Cl−) regulates gene expression in several types of cells and that Cl− modulators positively or negatively regulate the PI3K/AKT/mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription (STAT)3 signaling pathways. We previously reported that the Ca2+‐activated Cl− channel anoctamine (ANO)1 regulated human epidermal growth factor receptor 2 (HER2) transcription in breast cancer YMB‐1 cells. However, the mechanisms underlying ANO1‐regulated HER2 gene expression have not yet been elucidated. In the present study, we showed the involvement of intracellular organelle ClC‐3 Cl−/H+ transporter in HER2 transcription in breast cancer MDA‐MB‐453 cells. The siRNA‐mediated inhibition of ClC‐3, but not ANO1, markedly repressed HER2 transcription in MDA‐MB‐453 cells. Subsequently, treatments with the AKT inhibitor AZD 5363 and mTOR inhibitor everolimus significantly enhanced HER2 transcription in MDA‐MB‐453 cells, whereas that with the STAT3 inhibitor 5,15‐diphenylporphyrin (5,15‐DPP) inhibited it. AKT and mTOR inhibitors also significantly enhanced HER2 transcription in YMB‐1 cells. The siRNA‐mediated inhibition of ClC‐3 and ANO1 resulted in increased AKT phosphorylation and decreased STAT3 phosphorylation in MDA‐MB‐453 and YMB‐1 cells, respectively. The intracellular Cl− channel protein CLIC1 was expressed in both cells; however, its siRNA‐mediated inhibition did not elicit the transcriptional repression of HER2. Collectively, our results demonstrate that intracellular Cl− regulation by ANO1/ClC‐3 participates in HER2 transcription, mediating the PI3K/AKT/mTOR and/or STAT3 signaling pathway(s) in HER2‐positive breast cancer cells, and support the potential of ANO1/ClC‐3 blockers as therapeutic options for patients with resistance to anti‐HER2 therapies.
Collapse
Affiliation(s)
- Mayu Fujimoto
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
23
|
Jin X, Guan Y, Shen H, Pang Y, Liu L, Jia Q, Meng F, Zhang X. Copy Number Variation of Immune-Related Genes and Their Association with Iodine in Adults with Autoimmune Thyroid Diseases. Int J Endocrinol 2018; 2018:1705478. [PMID: 29713342 PMCID: PMC5866896 DOI: 10.1155/2018/1705478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autoimmune thyroid diseases (AITD) are complex conditions that are caused by an interaction between genetic susceptibility and environmental triggers. Iodine is already known to be an environmental trigger for AITD, but genes associated with susceptibility need to be further assessed. Therefore, the aims of this study were to assess the association between copy number variations (CNVs) and AITD, to identify genes related with susceptibility to AITD, and to investigate the interaction between iodine status and CNVs in the occurrence of AITD. METHODS Blood samples from 15 patients with AITD and 15 controls were assessed by chromosome microarray to identify candidate genes. The copy number of candidate genes and urinary iodine level was determined in adults from areas of different iodine statuses including 158 patients and 181 controls. RESULTS The immune-related genes, SIRPB1 and TMEM91, were selected as candidate genes. The distribution of SIRPB1 CNV in AITD patients and controls was significantly different and was considered a risk factor for AITD. There was no significant association between urinary iodine level and candidate gene CNVs. CONCLUSION SIRPB1 CNV and an excess of iodine were risk factors for AITD, but an association with the occurrence of AITD was not found.
Collapse
Affiliation(s)
- Xing Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfeng Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingzhen Jia
- Institute for Endemic Disease Prevention and Treatment of Shanxi Province, Linfen, Shanxi, China
| | - Fangang Meng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoye Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|