1
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Zhong S, Zhang Y, Mou H, Jian C, Huang Q, Ou Y. Targeting PERK-ATF4-P21 axis enhances the sensitivity of osteosarcoma HOS cells to Mppα-PDT. Aging (Albany NY) 2024; 16:2789-2811. [PMID: 38319715 PMCID: PMC10911341 DOI: 10.18632/aging.205511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Osteosarcoma (OS) is the most prevalent type of malignant bone tumor in adolescents. The overall survival of OS patients has reached a plateau recently. Thus, there is an urgent need to develop approaches to improve the sensitivity of OS to therapies. Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPα-PDT) is a new type of tumor therapy, and elucidating its mechanism is helpful to improve its anti-tumor efficacy. Here, we investigated how PERK signaling promotes the human OS (HOS) cell survival induced by MPPα-PDT, as overcoming this may enhance sensitivity to MPPα-PDT. We found that MPPα-PDT combined with PERK inhibitor GSK2656157 enhanced HOS cell apoptosis by suppressing autophagy and p21. Autophagy inhibition and p21 depletion enhanced cell death, indicating pro-survival effects in MPPα-PDT. Notably, p21 was found to be an effector of the PERK-Atf4 pathway, which could positively regulate autophagy mediated by MPPα-PDT. In conclusion, we found that the combination of MPPα-PDT and GSK2656157 enhanced apoptosis in HOS cells by inhibiting autophagy. Mechanistically, this autophagy is p21-dependent and can be suppressed by GSK2656157, thereby enhancing sensitivity to MPPα-PDT.
Collapse
Affiliation(s)
- Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing 400016, China
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing 400016, China
| | - Hai Mou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing 400016, China
| | - Changchun Jian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing 400016, China
| | - Qiu Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing 400016, China
| |
Collapse
|
3
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
4
|
Leitner N, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I, Hlavaty J. Isolation and Characterization of Novel Canine Osteosarcoma Cell Lines from Chemotherapy-Naïve Patients. Cells 2023; 12:cells12071026. [PMID: 37048099 PMCID: PMC10093184 DOI: 10.3390/cells12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to establish novel canine osteosarcoma cell lines (COS3600, COS3600B, COS4074) and characterize the recently described COS4288 cells. The established D-17 cell line served as a reference. Analyzed cell lines differed notably in their biological characteristics. Calculated doubling times were between 22 h for COS3600B and 426 h for COS4074 cells. COS3600B and COS4288 cells produced visible colonies after anchorage-independent growth in soft agar. COS4288 cells were identified as cells with the highest migratory capacity. All cells displayed the ability to invade through an artificial basement membrane matrix. Immunohistochemical analyses revealed the mesenchymal origin of all COS cell lines as well as positive staining for the osteosarcoma-relevant proteins alkaline phosphatase and karyopherin α2. Expression of p53 was confirmed in all tested cell lines. Gene expression analyses of selected genes linked to cellular immune checkpoints (CD270, CD274, CD276), kinase activity (MET, ERBB2), and metastatic potential (MMP-2, MMP-9) as well as selected long non-coding RNA (MALAT1) and microRNAs (miR-9, miR-34a, miR-93) are provided. All tested cell lines were able to grow as multicellular spheroids. In all spheroids except COS4288, calcium deposition was detected by von Kossa staining. We believe that these new cell lines serve as useful biological models for future studies.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Simone Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +431-250-77-3402; Fax: +431-250-77-3490
| |
Collapse
|
5
|
Pharmacogenetics of the Primary and Metastatic Osteosarcoma: Gene Expression Profile Associated with Outcome. Int J Mol Sci 2023; 24:ijms24065607. [PMID: 36982681 PMCID: PMC10059037 DOI: 10.3390/ijms24065607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. In recent decades, OS treatment has reached a plateau and drug resistance is still a major challenge. Therefore, the present study aimed to analyze the expression of the genes related to pharmacogenetics in OS. The expression of 32 target genes in 80 paired specimens (pre-chemotherapeutic primary tumor, post-chemotherapeutic primary tumor and pulmonary metastasis) obtained from 33 patients diagnosed with OS were analyzed by the real-time PCR methodology. As the calibrators (control), five normal bone specimens were used. The present study identified associations between the OS outcome and the expression of the genes TOP2A, DHFR, MTHFR, BCL2L1, CASP3, FASLG, GSTM3, SOD1, ABCC1, ABCC2, ABCC3, ABCC5, ABCC6, ABCC10, ABCC11, ABCG2, RALBP1, SLC19A1, SLC22A1, ERCC1 and MSH2. In addition, the expression of the ABCC10, GGH, GSTM3 and SLC22A1 genes were associated with the disease event, and the metastasis specimens showed a high expression profile of ABCC1, ABCC3 and ABCC4 genes and a low expression of SLC22A1 and ABCC10 genes, which is possibly an important factor for resistance in OS metastasis. Therefore, our findings may, in the future, contribute to clinical management as prognostic factors as well as possible therapeutic targets.
Collapse
|
6
|
Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Synthesis and characterization of novel Schiff base-silicon (IV) phthalocyanine complex for photodynamic therapy of breast cancer cell lines. Photodiagnosis Photodyn Ther 2023; 42:103504. [PMID: 36907257 DOI: 10.1016/j.pdpdt.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Photodynamic therapy is an alternative anticancer treatment approach that promises high therapeutic efficacy. In this study, it is aimed to investigate the PDT-mediated anticancer effects of newly synthesized silicon phthalocyanine (SiPc) molecules on MDA-MB-231, MCF-7 breast cancer cell lines, and non-tumorigenic MCF-10A breast cell line. METHODS Novel bromo substituted Schiff base (3a), its nitro homolog (3b), and their silicon complexes (SiPc-5a and SiPc-5b) were synthesized. Their proposed structures were confirmed by FT-IR, NMR, UV-vis and MS instrumental techniques. MDA-MB-231, MCF-7 and MCF-10A cells were illuminated at a light wavelength of 680 nm for 10 min, giving a total irradiation dose of 10 j/cm2. MTT assay was used to determine the cytotoxic effects of SiPc-5a and SiPc-5b. Apoptotic cell death was analyzed using flow cytometry. Changes in the mitochondrial membrane potential were determined by TMRE staining. Intracellular ROS generation was observed microscopically using H2DCFDA dye. Colony formation assay and in vitro scratch assay were performed to analyze the clonogenic activity and cell motility. Transwell migration and matrigel invasion analyzes were conducted to observe changes in the migration and invasion status of the cells. RESULTS The combination of SiPc-5a and SiPc-5b with PDT exhibited cytotoxic effects on cancer cells and triggered cell death. SiPc-5a/PDT and SiPc-5b/PDT decreased mitochondrial membrane potential and increased intracellular ROS production. Statistically significant changes were detected in cancer cells' colony-forming ability and motility. SiPc-5a/PDT and SiPc-5b/PDT reduced cancer cells' migration and invasion capacities. CONCLUSION The present study identifies PDT-mediated antiproliferative, apoptotic, and anti-migratory characteristics of novel SiPc molecules. The outcomes of this study emphasize the anticancer properties of these molecules and suggest that they may be evaluated as drug-candidate molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Ceren Sarı
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Değirmencioğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
7
|
Hu D, Zheng Y, Ou X, Zhang L, Du X, Shi S. Integrated analysis of anti-tumor roles of BAP1 in osteosarcoma. Front Oncol 2022; 12:973914. [PMID: 36003792 PMCID: PMC9393745 DOI: 10.3389/fonc.2022.973914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study aims to screen out differentially expressed genes (DEGs) regulated by BRCA1-associated protein 1 (BAP1) in osteosarcoma cells, and to analyze their biological functions. Methods The microarray dataset GSE23035 of BAP1-knockdown osteosarcoma cells was obtained from Gene Expression Omnibus (GEO) database, consisting of shControl, shBAP1#1 and shBAP1#2 samples. The DEGs between the BAP1-knockdown osteosarcoma cells and the untreated osteosarcoma cells were screened with limma package, and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Gene Set Enrichment Analysis (GSEA) was also performed for the three groups of samples. Hub genes in a protein-protein interaction (PPI) network of DEGs was filtered, and then subjected to prognostic analysis and correlation analysis with BAP1 in Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Besides, the correlation between BAP1 and biological processes/pathways was analyzed by Gene Set Variation Analysis (GSVA) method and the correlation between BAP1 and immune infiltration by CIBERSORT and ESTIMATE methods. The roles of BAP1 in regulating proliferation and epithelial-mesenchymal transition (EMT) were validated by CCK-8 and western blot. Results 58 upregulated DEGs and 81 downregulated DEGs were obtained with |logFC| ≥ 1 and adj.p < 0.05. Cell cycle, DNA repair, and focal adhesion were associated with BAP1 in datasets. Further, BAP1 was negatively correlated with naïve CD4 T cells infiltration. In vitro, BAP1 inhibited proliferation and EMT. Conclusion BAP1 might be a tumor suppressor in osteosarcoma and a promising therapeutic target.
Collapse
|
8
|
Zhan F, Zhang Y, Zuo Q, Xie C, Li H, Tian L, Wu C, Chen Z, Yang C, Wang Y, Li Q, He T, Yu H, Chen J, Xiang J, Ou Y. YAP knockdown in combination with ferroptosis induction increases the sensitivity of HOS human osteosarcoma cells to Pyropheophorbide-α methyl ester-mediated photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 39:102964. [PMID: 35705143 DOI: 10.1016/j.pdpdt.2022.102964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS This study was designed to explore the effects of Yes-associated protein (YAP) knockdown on human osteosarcoma (HOS) cell sensitivity to Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT), and to assess how YAP silencing in combination with treatment with the ferroptosis inducer Erastin improves HOS cell sensitivity to MPPa-PDT in an effort to better clarify the molecular mechanisms underlying these phenotypes. METHODS At 12 h post-MPPa-PDT, Hoechst staining and flow cytometry were conducted to evaluate the apoptotic death of HOS cells. The expression of YAP in these cells at 12 h post-MPPa-PDT treatment was assessed via Western blotting and immunofluorescent staining. BODIPY581/591-C11 was used to evaluate lipid peroxidation. Following shYAP lentiviral transduction, Western blotting was conducted to assess the expression of proteins associated with proliferation, apoptosis, and ferroptosis. EdU assays and clonogenic assays were performed to analyze cellular proliferation. Erastin-treated HOS cells were used to establish a ferroptosis model. Western blotting was used to measure ferroptosis-associated protein levels following shYAP and erastin treatment, while changes in proliferation and MDA levels in each group were examined using an MDA kit. RESULTS At 12 h post-MPPa-PDT, HOS cells exhibited apoptotic characteristics including nuclear fragmentation and pyknosis, with concomitant increases in apoptosis-associated proteins as detected via Western blotting and apoptotic induction as measured via flow cytometry. Phosphorylated YAP levels fell and non-phosphorylated YAP levels rose following such treatment. Transfection with shYAP was successful as a means of generating stable HOS cell lines, and Western blotting analyses of these cells revealed reductions in proteins associated with cellular proliferation together with the upregulation of apoptosis-related proteins. MDA assays indicated that erastin combined with YAP knockdown enhanced the sensitivity of HOS cells to MPPa-PDT treatment. CONCLUSIONS These data indicate that ferroptosis and YAP knockdown can enhance osteosarcoma cell sensitivity to MPPa-PDT therapy.
Collapse
Affiliation(s)
- Fangbiao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric diseases, Wanzhou, Chongqing, 404000, China
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; West China-Guang'an Hospital, Sichuan University, Guang'an, Sichuan,638000, China
| | - Chaozheng Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huanhuan Li
- Department of Emergency Medicine, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China
| | - Ling Tian
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China
| | - Chunrong Wu
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Chaohua Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Yang Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Tao He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric diseases, Wanzhou, Chongqing, 404000, China
| | - Jiangxia Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Traumatology department, Chongqing university central hospital. 1#, Jiankong road, Yuzhong district, Chongqing,400014, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
9
|
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 2022; 13:455. [PMID: 35562364 PMCID: PMC9106666 DOI: 10.1038/s41419-022-04851-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Anastasia Gorokhova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium ,grid.448878.f0000 0001 2288 8774Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
10
|
Aniogo EC, George BP, Abrahamse H. Molecular Effectors of Photodynamic Therapy-Mediated Resistance to Cancer Cells. Int J Mol Sci 2021; 22:ijms222413182. [PMID: 34947979 PMCID: PMC8704319 DOI: 10.3390/ijms222413182] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments.
Collapse
|
11
|
Yu H, Zhang Y, Zuo Q, Zhong S, Chen Y, Zhang M, Zhan F, Ou Y. Targeting X box-binding protein-1 (XBP1) enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbide- α methyl ester-mediated photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102646. [PMID: 34818599 DOI: 10.1016/j.pdpdt.2021.102646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT), utilizes a photochemical reaction between photosensitizer and light to cause cancer death by generating reactive oxygen species (ROS). X-box binding protein 1 (XBP1), a downstream product of the IRE1α-XBP1 pathway, regulates diverse target genes, including various proto-oncogenes and its overexpression was closely related to the occurrence and progression of malignant tumors. The present study was performed to explore the role of XBP1 in human osteosarcoma HOS cells treated with pyropheophorbide-α methyl ester (MPPα)-mediated photodynamic therapy (PDT) (MPPα-PDT) and its potential mechanisms. The protein IRE1α and XBP1 increased with a time-dependent manner after MPPα-PDT treated, which indicated that MPPα-PDT induced the activation of the IRE1α-XBP1 pathway in HOS cells. Besides, MPPα-PDT treated alone or combined with XBP1 knockdown could both restrain the cell viability, but the latter one has more notable effect, which indicated that XBP1 knockdown may enhance the cell inhibitory effect by MPPα-PDT. Simultaneously, the apoptotic rate measured by flow cytometry (FCM) was increased surprisedly and the expression of apoptosis proteins was increased when knockdown XBP1 under the MPPα-PDT. In addition, antioxidant-related proteins such as the Catalase and SOD1 protein levels decreased, while the intracellular ROS content increased in HOS cells when knockdown XBP1 under the MPPα-PDT. These results suggested that the mechanism of XBP1 mediating resistance in HOS cells might be related to the expression of antioxidant molecules. In summary, this study found that the IRE1α-XBP1 pathway was activated in HOS cells after MPPα-PDT treated, and furthermore, XBP1 knockdown could decrease HOS cell viability through apoptosis and enhance the anti-tumor effect of MPPα-PDT remarkably in the meantime, which related to the regulation of oxidation-antioxidant system.
Collapse
Affiliation(s)
- Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yanyang Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Fangbiao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Zuo Q, Ou Y, Zhong S, Yu H, Zhan F, Zhang M. Targeting GRP78 enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbide-α methyl ester-mediated photodynamic therapy via the Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1387-1397. [PMID: 34494093 PMCID: PMC8507956 DOI: 10.1093/abbs/gmab115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT), which is a new method for treating tumors, has been used in the treatment of cancer. In-depth research has shown that PDT cannot completely kill tumor cells, indicating that tumor cells are resistant to PDT. Glucose regulatory protein 78 (GRP78), which is a key regulator of endoplasmic reticulum stress, has been confirmed to be related to tumor resistance and recurrence, but there are relatively few studies on the further mechanism of GRP78 in PDT. Our experiment aimed to observe the role of GRP78 in HOS human osteosarcoma cells treated with pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPα-PDT) and to explore the possible mechanism by which the silencing of GRP78 expression enhances the sensitivity of HOS osteosarcoma cells to MPPα-PDT. HOS osteosarcoma cells were transfected with siRNA-GRP78. Apoptosis and reactive oxygen species (ROS) levels were detected by Hoechst staining and flow cytometry, cell viability was detected by Cell Counting Kit-8 assay, GRP78 protein fluorescence intensity was detected by immunofluorescence, and apoptosis-related proteins, cell proliferation-related proteins, and Wnt pathway-related proteins were detected by western blot. The results showed that MPPα-PDT can induce HOS cell apoptosis and increase GRP78 expression. After successful siRNA-GRP78 transfection, HOS cell proliferation was decreased, and apoptosis-related proteins expressions was increased, Wnt/β-catenin-related proteins expressions was decreased, and ROS levels was increased. In summary, siRNA-GRP78 enhances the sensitivity of HOS cells to MPPα-PDT, the mechanism may be related to inhibiting Wnt pathway activation and increasing ROS levels.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangbiao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
RhoA enhances osteosarcoma resistance to MPPa-PDT via the Hippo/YAP signaling pathway. Cell Biosci 2021; 11:179. [PMID: 34627383 PMCID: PMC8501741 DOI: 10.1186/s13578-021-00690-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is the most prevalent primary bone malignancy affecting adolescents, yet the emergence of chemoradiotherapeutic resistance has limited efforts to cure affected patients to date. Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) is a recently developed, minimally invasive treatment for OS that is similarly constrained by such therapeutic resistance. This study sought to explore the mechanistic basis for RhoA-activated YAP1 (YAP)-mediated resistance in OS. Methods The relationship between YAP expression levels and patient prognosis was analyzed, and YAP levels in OS cell lines were quantified. Immunofluorescent staining was used to assess YAP nuclear translocation. OS cell lines (HOS and MG63) in which RhoA and YAP were knocked down or overexpressed were generated using lentiviral vectors. CCK-8 assays were used to examine OS cell viability, while the apoptotic death of these cells was monitored via Hoechst staining, Western blotting, and flow cytometry. Tumor-bearing nude mice were additionally used to assess the relationship between lentivirus-mediated alterations in RhoA expression and MPPa-PDT treatment outcomes. TUNEL and immunohistochemical staining approaches were leveraged to assess apoptotic cell death in tissue samples. Results OS patients exhibited higher levels of YAP expression, and these were correlated with a poor prognosis. MPPa-PDT induced apoptosis in OS cells, and such MPPa-PDT-induced apoptosis was enhanced following YAP knockdown whereas it was suppressed by YAP overexpression. RhoA and YAP expression levels were positively correlated in OS patients, and both active and total RhoA protein levels rose in OS cells following MPPa-PDT treatment. When RhoA was knocked down, levels of unphosphorylated YAP and downstream target genes were significantly reduced, while RhoA/ROCK2/LIMK2 pathway phosphorylation was suppressed, whereas RhoA overexpression resulted in the opposite phenotype. MPPa-PDT treatment was linked to an increase in HMGCR protein levels, and the inhibition of RhoA or HMGCR was sufficient to suppress RhoA activity and to decrease the protein levels of YAP and its downstream targets. Mevalonate administration partially reversed these reductions in the expression of YAP and YAP target genes. RhoA knockdown significantly enhanced the apoptotic death of OS cells in vitro and in vivo following MPPa-PDT treatment, whereas RhoA overexpression had the opposite effect. Conclusions These results suggest that the mevalonate pathway activates RhoA, which in turn activates YAP and promotes OS cell resistance to MPPa-PDT therapy. Targeting the RhoA/ROCK2/LIMK2/YAP pathway can significantly improve the efficacy of MPPa-PDT treatment for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00690-6.
Collapse
|
14
|
Song L, Cui Z, Guo X. Comprehensive analysis of circular RNA expression profiles in cisplatin-resistant non-small cell lung cancer cell lines. Acta Biochim Biophys Sin (Shanghai) 2020; 52:944-953. [PMID: 32716023 DOI: 10.1093/abbs/gmaa085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Platinum-based drugs such as cisplatin are widely used in combination chemotherapy for non-small cell lung cancer (NSCLC) owing to their high clinical response rate; however, acquired resistance to cisplatin is eventually inevitable. Circular RNAs (circRNAs) are involved in the development of diverse types of cancers, but their connection to cisplatin-resistance in NSCLC has not been studied. In the present study, two cisplatin-resistant NSCLC cell lines (A549/DDP and PC9/DDP) were established by gradually increasing concentrations of cisplatin in the media. The resulting cell lines possessed high resistance to cisplatin and strong proliferation, migration, and colony formation abilities compared to the parental cells. Microarray analysis identified 19,161 circRNAs that were dysregulated in cisplatin-resistant cell lines (fold change abs>2), including 11,915 up-regulated and 7246 down-regulated circRNAs. The expression of the top five up-regulated and down-regulated circRNAs was validated using real-time quantitative polymerase chain reaction. A circRNA-micro RNA (miRNA) network of the top 20 dysregulated circRNAs and their predicted miRNAs was constructed using Cytoscape. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the host genes of the identified circRNAs were involved in the regulation of MAP kinase kinase kinase kinase activity, 6-phosphofructo-2-kinase activity, focal adhesion, ErbB signaling, and ECM-receptor interactions, which may contribute to cisplatin resistance in NSCLC. In summary, this is the first report on circRNA profiling in cisplatin-resistant NSCLC cells and it provides new potential targets for the reversal of cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Lin Song
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Xuejun Guo
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| |
Collapse
|
15
|
León D, Buchegger K, Silva R, Riquelme I, Viscarra T, Mora-Lagos B, Zanella L, Schafer F, Kurachi C, Roa JC, Ili C, Brebi P. Epigallocatechin Gallate Enhances MAL-PDT Cytotoxic Effect on PDT-Resistant Skin Cancer Squamous Cells. Int J Mol Sci 2020; 21:ijms21093327. [PMID: 32397263 PMCID: PMC7247423 DOI: 10.3390/ijms21093327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) has been used to treat certain types of non-melanoma skin cancer with promising results. However, some skin lesions have not fully responded to this treatment, suggesting a potential PDT-resistant phenotype. Therefore, novel therapeutic alternatives must be identified that improve PDT in resistant skin cancer. In this study, we analyzed the cell viability, intracellular protoporphyrin IX (PpIX) content and subcellular localization, proliferation profile, cell death, reactive oxygen species (ROS) detection and relative gene expression in PDT-resistant HSC-1 cells. PDT-resistant HSC-1 cells show a low quantity of protoporphyrin IX and low levels of ROS, and thus a low rate of death cell. Furthermore, the resistant phenotype showed a downregulation of HSPB1, SLC15A2, FECH, SOD2 and an upregulation of HMBS and BIRC5 genes. On the other hand, epigallocatechin gallate catechin enhanced the MAL-PDT effect, increasing levels of protoporphyrin IX and ROS, and killing 100% of resistant cells. The resistant MAL-PDT model of skin cancer squamous cells (HSC-1) is a reliable and useful tool to understand PDT cytotoxicity and cellular response. These resistant cells were successfully sensitized with epigallocatechin gallate catechin. The in vitro epigallocatechin gallate catechin effect as an enhancer of MAL-PDT in resistant cells is promising in the treatment of difficult skin cancer lesions.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Kurt Buchegger
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Department of Basic Sciences, School of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Temuco 4810101, Chile; (R.S.); (I.R.)
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Temuco 4810101, Chile; (R.S.); (I.R.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Bárbara Mora-Lagos
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Louise Zanella
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Fabiola Schafer
- Department of Medical Specialties, School of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970, São Paulo, Brazil;
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Carmen Ili
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Correspondence: (C.I.); (P.B.); Tel.: +56-45-2-596693 (C.I.); +56-45-2-596583 (P.B.)
| | - Priscilla Brebi
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Correspondence: (C.I.); (P.B.); Tel.: +56-45-2-596693 (C.I.); +56-45-2-596583 (P.B.)
| |
Collapse
|
16
|
Chen Y, Yin H, Tao Y, Zhong S, Yu H, Li J, Bai Z, Ou Y. Antitumor effects and mechanisms of pyropheophorbide‑α methyl ester‑mediated photodynamic therapy on the human osteosarcoma cell line MG‑63. Int J Mol Med 2020; 45:971-982. [PMID: 32124948 PMCID: PMC7053850 DOI: 10.3892/ijmm.2020.4494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for osteosarcoma, and pyropheophorbide-α methyl ester (MPPa) is a second-generation photosensitizer for tumor treatment. The present study aimed to determine the efficacy and possible mechanisms of MPPa-PDT in the treatment of osteosarcoma MG-63 cells. Flow cytometry and western blotting were used to detect cell cycle-related indicators Cyclin D1, Cyclin E, Cyclin A and Cyclin B1. Cell migration and invasion abilities were detected using wound-healing and Transwell chamber assays. Cellular endoplasmic reticulum stress (ERS), autophagy and apoptosis-related indicators were detected by flow cytometry and western blotting. The results demonstrated that MPPa-PDT blocked the MG-63 cell cycle and inhibited cell migration and invasion. Additionally, MPPa-PDT inhibited the activation of the Akt/mammalian target of rapamycin (mTOR) pathway. MG-63 cells underwent ERS-induced apoptosis following MPPa-PDT treatment. Pretreatment with the mTOR phosphorylation inhibitor rapamycin affected the autophagy of MPPa-PDT-induced osteosarcoma MG-63 cells and enhanced apoptosis through targeting mTOR.
Collapse
Affiliation(s)
- Yanyang Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Yin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yong Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jianxiao Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Khot MI, Downey CL, Armstrong G, Svavarsdottir HS, Jarral F, Andrew H, Jayne DG. The role of ABCG2 in modulating responses to anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 29:101579. [PMID: 31639455 DOI: 10.1016/j.pdpdt.2019.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
The ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) transmembrane protein transporter is known for conferring resistance to treatment in cancers. Photodynamic therapy (PDT) is a promising anti-cancer method involving the use of light-activated photosensitisers to precisely induce oxidative stress and cell death in cancers. ABCG2 can efflux photosensitisers from out of cells, reducing the capacity of PDT and limiting the efficacy of treatment. Many studies have attempted to elucidate the relationship between the expression of ABCG2 in cancers, its effect on the cellular retention of photosensitisers and its impact on PDT. This review looks at the studies which investigate the effect of ABCG2 on a range of different photosensitisers in different pre-clinical models of cancer. This work also evaluates the approaches that are being investigated to address the role of ABCG2 in PDT with an outlook on potential clinical validation.
Collapse
Affiliation(s)
- M Ibrahim Khot
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Candice L Downey
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Gemma Armstrong
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Fazain Jarral
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Helen Andrew
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - David G Jayne
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Bao Z, Cheng Z, Chai D. The expressions of CD133, ALDH1, and vasculogenic mimicry in osteosarcoma and their clinical significance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3656-3663. [PMID: 31949746 PMCID: PMC6962889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/14/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND PURPOSE Osteosarcoma is an aggressive malignant bone tumor in children and adolescents, which is more likely to recur and metastasize at the early stages. Cancer stem cells (CSC, CD133 is a biomarker of cancer stem cells), angiogenesis, and vasculogenic mimicry (VM) are closely related to tumor metastasis and recurrence. In this study, we investigated the associations among CD133, aldehyde dehydrogenase 1 (ALDH1), and VM in osteosarcoma, and their associations with clinical characteristics. METHODS Positive rates of CD133, ALDH1, and VM in 96 whole osteosarcoma tissue samples were detected by immunohistochemistry (IHC) and histochemistry staining. Patients' clinical data were also collected. RESULTS Positive rates of CD133, ALDH1, and VM were significantly higher in osteosarcoma tissues compared with the control tissues. Positive rates of CD133, ALDH1, and VM were positively associated with lymph node metastasis, distant metastasis, Enneking stages, and patients' overall survival (OS). A multivariate analysis indicated that the positive rates of CD133, ALDH1, and VM, as well as the Enneking stages were independent prognostic factors of osteosarcoma. CONCLUSION The positive rates of CD133, ALDH1, and VM could represent potential biomarkers for metastasis and prognosis, which suggests these molecules might be promising therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhengqi Bao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
| | - Zenong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| |
Collapse
|