1
|
Baran K, Kordiak J, Jabłoński S, Brzeziańska-Lasota E. Panel of miR-150 and linc00673, regulators of CCR6/CCL20 may serve as non-invasive diagnostic marker of non-small cell lung cancer. Sci Rep 2023; 13:9642. [PMID: 37316552 DOI: 10.1038/s41598-023-36485-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
The C-C motif ligand 20 (CCL20) is a chemokine that specifically binds to the chemokine receptor 6 (CCR6) and the CCL20/CCR6 axis has been implicated in the non-small lung cancer (NSCLC) development and progression. Its expression is regulated by mutual interactions of non-coding RNAs (ncRNAs). This goals of presented study was to evaluate the expression level of CCR6/CCL20 mRNA in NSCLC tissue comparative to selected ncRNAs: miR-150, linc00673. The expression level of the studied ncRNAs was also assessed in serum extracellular vesicles (EVs). Thirty patients (n = 30) were enrolled as the study cohort. Total RNA was isolated from tumor tissue, adjacent macroscopically unchanged tissue and serum EVs. The expression level of studied genes and ncRNAs were estimated based on the qPCR method. Higher expression level of CCL20 mRNA but lower expression level of CCR6 mRNA were observed in tumor in comparison to control tissue. Relative to the smoking status, higher CCL20 (p < 0.05) and CCR6 mRNA (p > 0.05) expression levels were observed in current smokers than in never smokers. In serum EVs the expression level of miR-150 has a negative correlation with AJCC tumor staging, whereas the expression level of linc00673 positively correlated (p > 0.05). The lower expression level of miR-150 and higher expression level of linc00673 in serum EVs were observed in NSCLC patients with lymph nodes metastases (p > 0.05). Regarding the histopathological type, significantly lower expression level of miR-150 and higher expression level of linc00673 were observed in the serum EVs of patients with AC compared to patient with SCC. Our findings revealed that smoking significantly changed the expression level of CCL20 mRNA in NSCLC tissue. Changes in expression levels of miR-150 and linc00673 in the serum EVs of NSCLC patients in relation to presence of lymph node metastases and the stage of cancer development may serve as a non-invasive molecular biomarkers of tumor progression. Furthermore, expression levels of miR-150 and linc00673 may serve as non-intrusive diagnostic biomarkers differentiating adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland.
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Brookes MJ, Roundhill EA, Jeys L, Parry M, Burchill SA, Rankin KS. Membrane-type 1 matrix metalloproteinase as predictor of survival and candidate therapeutic target in Ewing sarcoma. Pediatr Blood Cancer 2022; 69:e29959. [PMID: 36106829 DOI: 10.1002/pbc.29959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ewing sarcoma (ES) is the second most common primary bone malignancy, with an urgent need for new treatments. ES is associated with high rates of progression and relapse, driven by drug-resistant cells capable of migration, self-renewal and single-cell tumorigenesis, termed cancer stem-like cells (CSCs). Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-bound proteolytic enzyme, which, via direct and indirect mechanisms, digests four of the main types of collagen. This can be hijacked in malignancy for invasion and metastasis, with high expression predicting decreased survival in multiple cancers. In this study, we have examined the hypothesis that MT1-MMP is expressed by ES cells and explored the relationship between expression and outcomes. PROCEDURE MT1-MMP expression in ES established cell lines, primary patient-derived cultures and daughter ES-CSCs was characterised by RNA sequencing, Western blotting, immunocytochemistry and flow cytometry. Immunohistochemistry was used to detect MT1-MMP in tumour biopsies, and the relationship between expression, event-free and overall survival examined. RESULTS MT1-MMP was detected at both RNA and protein levels in five of six established cell lines, all primary cultures (n = 25) and all daughter ES-CSCs (n = 7). Immunohistochemistry of treatment-naïve biopsy tissue demonstrated that high MT1-MMP expression predicted decreased event-free and overall survival (p = .017 and .036, respectively; n = 47); this was not significant in multivariate analysis. CONCLUSIONS MT1-MMP is expressed by ES cells, including ES-CSCs, making it a candidate therapeutic target. The level of MT1-MMP expression at diagnosis may be considered as a prognostic biomarker if validated by retrospective analysis of a larger cohort of clinical trial samples.
Collapse
Affiliation(s)
- Marcus J Brookes
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Elizabeth A Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Northfield, Birmingham, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Northfield, Birmingham, UK
| | - Susan A Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Gargiuli C, De Cecco L, Mariancini A, Iannò MF, Micali A, Mancinelli E, Boeri M, Sozzi G, Dugo M, Sensi M. A Cross-Comparison of High-Throughput Platforms for Circulating MicroRNA Quantification, Agreement in Risk Classification, and Biomarker Discovery in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:911613. [PMID: 35928879 PMCID: PMC9343840 DOI: 10.3389/fonc.2022.911613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCirculating microRNAs (ct-miRs) are promising cancer biomarkers. This study focuses on platform comparison to assess performance variability, agreement in the assignment of a miR signature classifier (MSC), and concordance for the identification of cancer-associated miRs in plasma samples from non‐small cell lung cancer (NSCLC) patients.MethodsA plasma cohort of 10 NSCLC patients and 10 healthy donors matched for clinical features and MSC risk level was profiled for miR expression using two sequencing-based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra- and inter-platform variations were examined by correlation and concordance analysis. The MSC risk levels were compared with those estimated using a reference method. Differentially expressed ct-miRs were identified among NSCLC patients and donors, and the diagnostic value of those dysregulated in patients was assessed by receiver operating characteristic curve analysis. The downregulation of miR-150-5p was verified by qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation at the tissue level.ResultsThe intra-platform reproducibility was consistent, whereas the highest values of inter-platform correlations were among qPCR-based platforms. MSC classification concordance was >80% for four platforms. The dysregulation and discriminatory power of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with normal samples.ConclusionOverall, our studies provide a large performance analysis between five different platforms for miR quantification, indicate the solidity of MSC classifier, and identify two noninvasive biomarkers for NSCLC.
Collapse
Affiliation(s)
- Chiara Gargiuli
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- *Correspondence: Marialuisa Sensi, ; Loris De Cecco,
| | - Andrea Mariancini
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Federica Iannò
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arianna Micali
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisa Mancinelli
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mattia Boeri
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Platform of Integrated Biology Unit, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- *Correspondence: Marialuisa Sensi, ; Loris De Cecco,
| |
Collapse
|
4
|
Mizuno K, Tanigawa K, Misono S, Suetsugu T, Sanada H, Uchida A, Kawano M, Machida K, Asai S, Moriya S, Inoue H, Seki N. Regulation of Oncogenic Targets by Tumor-Suppressive miR-150-3p in Lung Squamous Cell Carcinoma. Biomedicines 2021; 9:biomedicines9121883. [PMID: 34944699 PMCID: PMC8698895 DOI: 10.3390/biomedicines9121883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Several recent studies have shown that both strands of certain miRNAs derived from miRNA duplexes are involved in cancer pathogenesis. Our own recent studies revealed that both strands of the miR-150 duplex act as tumor-suppressive miRNAs in lung adenocarcinoma (LUAD) through the targeting of several oncogenes. The aim of the study here was to further investigate the tumor-suppressive roles of miR-150-3p (the passenger strand) in lung squamous cell carcinoma (LUSQ) and its control of cancer-promoting genes in LUSQ cells. The downregulation of miR-150-3p in LUSQ tissues was confirmed by data in The Cancer Genome Atlas (TCGA). The ectopic expression of miR-150-3p attenuated cancer cell aggressive features, e.g., cell cycle arrest, migration and invasive abilities. Our target search strategy successfully identified a total of 49 putative targets that were listed as subjects of miR-150-3p regulation in LUSQ cells. Interestingly, among these targets, 17 genes were categorized as related to the “cell cycle” based on Gene Ontology (GO) classification, namely CENPA, CIT, CCNE1, CCNE2, TIMELESS, BUB1, MCM4, HELLS, SKA3, CDCA2, FANCD2, NUF2, E2F2, SUV39H2, CASC5, ZWILCH and CKAP2). Moreover, we show that the expression of HELLS (helicase, lymphoid specific) is directly controlled by miR-150-3p, and its expression promotes the malignant phenotype of LUSQ cells.
Collapse
Affiliation(s)
- Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Kengo Tanigawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Minami Kawano
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan;
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
5
|
Yoon S, Yang H, Ryu HM, Lee E, Jo Y, Seo S, Kim D, Lee CH, Kim W, Jung KH, Park SR, Choi EK, Kim SW, Park KS, Lee DH. Integrin αvβ3 Induces HSP90 Inhibitor Resistance via FAK Activation in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Res Treat 2021; 54:767-781. [PMID: 34607394 PMCID: PMC9296920 DOI: 10.4143/crt.2021.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose HSP90 remains an important cancer target because of its involvement in multiple oncogenic protein pathways and biologic processes. Although many HSP90 inhibitors have been tested in the treatment of KRAS-mutant non-small cell lung cancer (NSCLC), most, including AUY922, have failed due to toxic effects and resistance generation, even though a modest efficacy has been observed for these drugs in clinical trials. In our present study, we investigated the novel mechanism of resistance to AUY922 to explore possible avenues of overcoming and want to provide some insights that may assist with the future development of successful next-generation HSP90 inhibitors. Materials and Methods We established two AUY922-resistant KRAS-mutated NSCLC cells and conducted RNA sequencing to identify novel resistance biomarker. Results We identified novel two resistance biomarkers. We observed that both integrin Av (ITGAv) and β3 (ITGB3) induce AUY922-resistance via focal adhesion kinase (FAK) activation, as well as an epithelial-mesenchymal transition (EMT), in both in vitro and in vivo xenograft model. mRNAs of both ITGAv and ITGB3 were also found to be elevated in a patient who had shown acquired resistance in a clinical trial of AUY922. ITGAv was induced by miR-142 downregulation, and ITGB3 was increased by miR-150 downregulation during the development of AUY922-resistance. Therefore, miR-150 and miR-142 overexpression effectively inhibited ITGAvB3-dependent FAK activation, restoring sensitivity to AUY922. Conclusion The synergistic co-targeting of FAK and HSP90 attenuated the growth of ITGAvB3-induced AUY922-resistant KRAS-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome acquired AUY922-resistance in KRAS-mutant NSCLC.
Collapse
Affiliation(s)
- Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun-Min Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eunjin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yujin Jo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Hoon Lee
- Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Wanlim Kim
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Center for Advancing Cancer Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Wu Y, Li L, Wang Q, Zhang L, He C, Wang X, Liu H. LINC00511 promotes lung squamous cell carcinoma proliferation and migration via inhibiting miR-150-5p and activating TADA1. Transl Lung Cancer Res 2020; 9:1138-1148. [PMID: 32953492 PMCID: PMC7481641 DOI: 10.21037/tlcr-19-701] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Recently, accumulating data have supported that long non-coding RNAs (lncRNAs) may contribute to tumorigenesis. LncRNA LINC00511 (LINC00511) has been proved to serve as an oncogene in several tumors. However, as a novel lncRNA, the crucial role and potential mechanism of LINC00511 in LUSC is largely unknown. Methods Here, we performed a differential gene expression analysis of the LINC00511 in LUSC using data from TCGA database. Loss-of-functional assays were used to gain further insights into the latter function of LINC00511 on the malignant phenotypes in vitro. Meanwhile, qRT-PCR, western blot, dual-luciferase reporter, and RIP assays were utilized to highlight the molecular basis of LINC00511 in LUSC. Results LINC00511 was upregulated in LUSC tissues in TCGA database compared to adjacent non-tumor counterparts, and its expression level was strongly associated with tumor stage. LINC00511 deficiency significantly suppressed LUSC cell proliferation and migration. Furthermore, mechanistic investigation demonstrated that LINC00511 accelerated LUSC progression partially through its up-regulation of TADA1 via targeting miR-150-5p. Conclusions our study highlights that LINC00511 facilitates LUSC progression via sequestering miR-150-5p and targeting TADA1, suggesting a need for development of a strategy for therapeutic targeting of LINC00511 in LUSC.
Collapse
Affiliation(s)
- Ying Wu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Li Li
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qun Wang
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Li Zhang
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Can He
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xihua Wang
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
7
|
Zhao YJ, Song X, Niu L, Tang Y, Song X, Xie L. Circulating Exosomal miR-150-5p and miR-99b-5p as Diagnostic Biomarkers for Colorectal Cancer. Front Oncol 2019; 9:1129. [PMID: 31750241 PMCID: PMC6842995 DOI: 10.3389/fonc.2019.01129] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Circulating exosomal miRNAs are potential non-invasive biomarkers for colorectal cancer. The present study aimed to validate the novel sensitive and specific exosomal miRNA biomarkers for diagnosing colorectal cancer (CRC). Patients and Methods: Exosomes isolated from the serum of CRC patients and healthy donors by ultracentrifugation were characterized using TEM, qNano, and immunoblotting. The exosomes from 2 healthy donors and 4 CRC patients were subjected to RNA isolation and miRNA sequencing. The differently expressed miRNAs from 165 primary CRC patients and 153 healthy donors were substantiated by RT-qPCR. Results: The RNA-sequence data analysis revealed that 29 exosomal miRNAs (20 downregulated and 9 upregulated) with >1.5-fold difference between CRC patients and healthy donors were selected. The serum exosomal miR-99b-5p and miR-150-5p levels were significantly downregulated in CRC patients as compared to healthy donors (p < 0.0001 and p < 0.0001, respectively) and benign disease (p = 0.009 and p < 0.0001, respectively). The expression levels of exosomal miR-99b-5p and miR-150-5p were significantly decreased in early CRC patients as compared to healthy donors (p < 0.0001 and p < 0.0001, respectively). The expression levels of exosomal miR-99b-5p and miR-150-5p were significantly increased postoperatively (p = 0.0058 and p < 0.0001, respectively). Conclusions: The present study demonstrated that serum exosomal miRNAs are promising, sensitive, specific, and non-invasive diagnostic biomarkers for CRC. Impact: This is the first study to specifically identify exosomal miR-99b-5p and miR-150-5p associated with CRC. This study, therefore, might deepen the understanding of tumor-derived exosomes for CRC diagnosis.
Collapse
Affiliation(s)
- Ya Jing Zhao
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Limin Niu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Youyong Tang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Quan X, Chen D, Li M, Chen X, Huang M. MicroRNA-150-5p and SRC kinase signaling inhibitor 1 involvement in the pathological development of gastric cancer. Exp Ther Med 2019; 18:2667-2674. [PMID: 31572515 DOI: 10.3892/etm.2019.7828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to assess the regulatory mechanism of microRNA-150-5p (miR-150-5p) in the pathogenesis of gastric cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of miR-150-5p in gastric cancer tissues and cell lines, which was revealed to be highly expressed in each. In addition, the expression of miR-150-5p was associated with advanced gastric cancer and lymph node metastasis. The current study then hypothesized that SRC kinase signaling inhibitor 1 (SRCIN1) was the target gene of miR-150-5p, a theory that was confirmed via a dual luciferase reporter gene assay. RT-qPCR and western blotting were then performed to verify the expression of SRCIN1 in gastric cancer tissues and cell lines. The results demonstrated that SRCIN1 was lowly expressed in gastric cancer tissues and cells. To assess the effect of miR-150-5p on gastric cancer cells, experiments were conducted with BGC-823 cells transfected with a miR-150-5p inhibitor or a miR-150-5p inhibitor+SRCIN1-small interfering (si)RNA respectively. A cell counting kit-8 assay and flow cytometry were also used to assess cell viability and apoptosis, respectively. Western blotting and RT-qPCR were further used to measure the expression of specific markers of epithelial mesenchymal transition (EMT), including epithelial cell markers (E-cadherin and zona occluding-1) and interstitial cell markers (vimentin, N-cadherin and β-catenin). The results revealed that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis, decreased the expression of interstitial cell markers and increased epithelial cell marker expression. However, all effects of the miR-150-5p inhibitor were reversed following SRCIN1-siRNA treatment. In summary, the current study indicated that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis and inhibited gastric cancer cell EMT by targeting SRCIN1.
Collapse
Affiliation(s)
- Xiyun Quan
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Dongliang Chen
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Ming Li
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Xun Chen
- Department of Hepatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Meiyuan Huang
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
9
|
Li H, Liu J, Cao W, Xiao X, Liang L, Liu-Smith F, Wang W, Liu H, Zhou P, Ouyang R, Yuan Z, Liu J, Ye M, Zhang B. C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer. Am J Cancer Res 2019; 9:5134-5148. [PMID: 31410206 PMCID: PMC6691579 DOI: 10.7150/thno.34887] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022] Open
Abstract
Rationale: Lung cancer is the leading cause of cancer death worldwide, and treatment options are limited to mainly cytotoxic agents. Here we reveal a novel role of miR-150 in non-small cell lung cancer (NSCLC) development and seek potential new therapeutic targets. Methods: The miR-150-mediated autophagy dysfunction in NSCLC cells were examined using molecular methods in vitro and in vivo. The upstream regulatory element and downstream target of miR-150 were identified in vitro and validated in vivo. Potential therapeutic methods (anti-c-myc or anti-miR-150) were tested in vitro and in vivo. Clinical relevance of the c-myc/miR-150/EPG5 axis in NSCLC was validated in human clinical samples and large genomics database. Results: miR-150 blocked the fusion of autophagosomes and lysosomes through directly repressing EPG5. The miR-150-mediated autophagy defect induced ER stress and increased cellular ROS levels and DNA damage response, and promoted NSCLC cell proliferation and tumor growth. Knockdown of EPG5 promoted NSCLC cell proliferation, and attenuated the effects of miR-150. c-myc gene was identified as a miR-150 transcriptional factor which increased miR-150 accumulation, therefore pharmacologically or genetically inhibiting c-myc/miR-150 expression significantly inhibited NSCLC cell growth in vitro and in vivo. Both c-myc and miR-150 were significantly over-expressed in NSCLC, while EPG5 was down-regulated in NSCLC. Expression levels of these molecules were well correlated, and also well correlated with patient survival. Conclusions: Our findings suggest that c-myc/miR-150/EPG5 mediated dysfunction of autophagy contributes to NSCLC development, which may provide a potential new diagnostic and therapeutic target in NSCLC.
Collapse
|
10
|
Shen H, Wang L, Xiong J, Ren C, Gao C, Ding W, Zhu D, Ma D, Wang H. Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis. Cell Cycle 2019; 18:1110-1121. [PMID: 31084453 PMCID: PMC6592243 DOI: 10.1080/15384101.2019.1609829] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health and is the third most common malignancy in women worldwide. Recent studies indicate that the long non-coding RNA CCAT1 plays a role in the malignant behavior of many tumors. However, the role of CCAT1 in cervical cancer is still unknown. Our aim is to evaluate the expression and investigate the regulatory role and potential mechanism of CCAT1 in cervical cancer. CCAT1 expression was measured by qRT-PCR. In addition, CCK-8 assays, colony formation assays, qRT-PCR assays, Transwell assays and xenograft experiments were performed to determine the role of CCAT1 in the proliferation and invasion in cervical cancer cells. The expression of CCAT1 in the cervical cancer tissues was higher than in the adjacent normal tissues. Overexpressing CCAT1 promoted cervical cancer cell proliferation, colony formation, and invasion in vitro. Elevated CCAT1 suppressed miR-181a expression, which was accompanied by an increased expression of MMP14 and HB-EGF. In contrast, knocking down CCAT1 resulted in increased expression of miR-181a, along with decreased expression of MMP14 and HB-EGF. Thus, CCAT1 is a key oncogenic lncRNA associated with cervical cancer and plays a role in promoting cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis.
Collapse
Affiliation(s)
- Hui Shen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Liming Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jinfeng Xiong
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ci Ren
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chun Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Da Zhu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
11
|
Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11050601. [PMID: 31052206 PMCID: PMC6562801 DOI: 10.3390/cancers11050601] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
Based on our miRNA expression signatures, we focused on miR-150-5p (the guide strand) and miR-150-3p (the passenger strand) to investigate their functional significance in lung adenocarcinoma (LUAD). Downregulation of miR-150 duplex was confirmed in LUAD clinical specimens. In vitro assays revealed that ectopic expression of miR-150-5p and miR-150-3p inhibited cancer cell malignancy. We performed genome-wide gene expression analyses and in silico database searches to identify their oncogenic targets in LUAD cells. A total of 41 and 26 genes were identified as miR-150-5p and miR-150-3p targets, respectively, and they were closely involved in LUAD pathogenesis. Among the targets, we investigated the oncogenic roles of tensin 4 (TNS4) because high expression of TNS4 was strongly related to poorer prognosis of LUAD patients (disease-free survival: p = 0.0213 and overall survival: p = 0.0003). Expression of TNS4 was directly regulated by miR-150-3p in LUAD cells. Aberrant expression of TNS4 was detected in LUAD clinical specimens and its aberrant expression increased the aggressiveness of LUAD cells. Furthermore, we identified genes downstream from TNS4 that were associated with critical regulators of genomic stability. Our approach (discovery of anti-tumor miRNAs and their target RNAs for LUAD) will contribute to the elucidation of molecular networks involved in the malignant transformation of LUAD.
Collapse
|
12
|
Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H. Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11020258. [PMID: 30813343 PMCID: PMC6406917 DOI: 10.3390/cancers11020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
In the human genome, miR-451a is encoded close to the miR-144 on chromosome region 17q11.2. Our previous study showed that both strands of pre-miR-144 acted as antitumor miRNAs and were involved in lung squamous cell carcinoma (LUSQ) pathogenesis. Here, we aimed to investigate the functional significance of miR-451a and to identify its targeting of oncogenic genes in LUSQ cells. Downregulation of miR-451a was confirmed in LUSQ clinical specimens, and low expression of miR-451a was significantly associated with poor prognosis of LUSQ patients (overall survival: p = 0.035, disease-free survival: p = 0.029). Additionally, we showed that ectopic expression of miR-451a significantly blocked cancer cell aggressiveness. In total, 15 putative oncogenic genes were shown to be regulated by miR-451a in LUSQ cells. Among these targets, high kinesin family member 2A (KIF2A) expression was significantly associated with poor prognosis (overall survival: p = 0.043, disease-free survival: p = 0.028). Multivariate analysis showed that KIF2A expression was an independent prognostic factor in patients with LUSQ (hazard ratio = 1.493, p = 0.034). Aberrant KIF2A expression promoted the malignant transformation of this disease. Analytic strategies based on antitumor miRNAs and their target oncogenes are effective tools for identification of novel molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| |
Collapse
|
13
|
Zhang Y, Chen B, Wang Y, Zhao Q, Wu W, Zhang P, Miao L, Sun S. NOTCH3 Overexpression and Posttranscriptional Regulation by miR-150 Were Associated With EGFR-TKI Resistance in Lung Adenocarcinoma. Oncol Res 2019; 27:751-761. [PMID: 30732676 PMCID: PMC7848279 DOI: 10.3727/096504018x15372657298381] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acquired resistance remains a key challenge in epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) therapy in lung adenocarcinoma (LUAD). Recent studies have shown that Notch signaling is associated with drug resistance. However, its role and possible mechanisms in EGFR-TKI resistance are not yet clear. In our study, we found that among four members of NOTCH1-4, only NOTCH3 was upregulated in LUAD tissues and TKI-resistant cell line (HCC827GR6). Knockdown of NOTCH3 by siRNA significantly inhibited proliferative ability, and decreased colony and sphere formation in HCC827GR6 cells. Then miR-150 was identified as a posttranscriptional regulator of NOTCH3. Its expression was downregulated in LUAD tissues and negatively correlated with NOTCH3 mRNA. The cell proliferation and IC50 of gefitinib were decreased in HCC827GR6 cells transfected with miR-150 mimic, but was reversed when cotransfected with NOTCH3 overexpressed vector. Moreover, we also enrolled 20 patients with advanced LUAD who have taken TKIs as first-line therapy in this study. We found that collagen 1A1 (COL1A1) expression was increased significantly in LUAD tissues both at mRNA and protein levels, and positively correlated with NOTCH3 expression verified in our data and TCGA data. Univariate survival analysis showed that patients with high protein expression of NOTCH3 or COL1A1 were associated with shorter overall survival (OS). Taken together, these results suggest that miR-150/NOTCH3/COL1A1 axis contributed to EGFR-TKI resistance in LUAD, which provide a potential therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, P.R. China
| | - Bi Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, P.R. China
| | - Qi Zhao
- Department of Respiratory Medicine, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, P.R. China
| | - Weijun Wu
- Department of Clinical Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, P.R. China
| | - Peiying Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, P.R. China
| | - Sanyuan Sun
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
14
|
Uchida A, Seki N, Mizuno K, Misono S, Yamada Y, Kikkawa N, Sanada H, Kumamoto T, Suetsugu T, Inoue H. Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Sci 2019; 110:420-432. [PMID: 30375717 PMCID: PMC6317942 DOI: 10.1111/cas.13853] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
The prognosis of patients with advanced-stage lung squamous cell carcinoma (LUSQ) is poor, and effective treatment protocols are limited. Our continuous analyses of antitumor microRNAs (miRNAs) and their oncogenic targets have revealed novel oncogenic pathways in LUSQ. Analyses of our original miRNA expression signatures indicated that both strands of miR-144 (miR-144-5p, the passenger strand; miR-144-3p, the guide strand) showed decreased expression in cancer tissues. Additionally, low expression of miR-144-5p significantly predicted a poor prognosis in patients with LUSQ by The Cancer Genome Atlas database analyses (overall survival, P = 0.026; disease-free survival, P = 0.023). Functional assays revealed that ectopic expression of miR-144-5p and miR-144-3p significantly blocked the malignant abilities of LUSQ cells, eg, cancer cell proliferation, migration, and invasion. In LUSQ cells, 13 and 15 genes were identified as possible oncogenic targets that might be regulated by miR-144-5p and miR-144-3p, respectively. Among these targets, we identified 3 genes (SLC44A5, MARCKS, and NCS1) that might be regulated by both strands of miR-144. Interestingly, high expression of NCS1 predicted a significantly poorer prognosis in patients with LUSQ (overall survival, P = 0.013; disease-free survival, P = 0.048). By multivariate analysis, NCS1 expression was found to be an independent prognostic factor for patients with LUSQ patients. Overexpression of NCS1 was detected in LUSQ clinical specimens, and its aberrant expression enhanced malignant transformation of LUSQ cells. Our approach, involving identification of antitumor miRNAs and their targets, will contribute to improving our understanding of the molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Naohiko Seki
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Keiko Mizuno
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Shunsuke Misono
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Yasutaka Yamada
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Naoko Kikkawa
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Hiroki Sanada
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Tomohiro Kumamoto
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Takayuki Suetsugu
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Hiromasa Inoue
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
15
|
Chen X, Xu X, Pan B, Zeng K, Xu M, Liu X, He B, Pan Y, Sun H, Wang S. miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging (Albany NY) 2018; 10:3421-3437. [PMID: 30476901 PMCID: PMC6286841 DOI: 10.18632/aging.101656] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
MicroRNA-150-5p (miR-150-5p) has been implicated in tumor initiation and progression in a variety of cancers. However, its roles in colorectal cancer (CRC) remain largely unknown. In our study, a decreased miR-150-5p expression in CRC tissues was found to be associated with poor overall survival. Moreover, miR-150-5p inhibited CRC cell proliferation, migration, invasion and angiogenesis in vitro and in vivo, and its inhibitory effect could be reversed by transfection of vascular epithelial growth factor A (VEGFA) expression plasmid. Lastly, we demonstrated that miR-150-5p inactivated VEGFA/VEGFR2 and the downstream Akt/mTOR signaling pathway in CRC. Based on these results, we conclude that miR-150-5p may function as a tumor suppressor in CRC, and miR-150-5p/VEGFA axis may be a potential therapeutic target candidate in CRC treatment.
Collapse
Affiliation(s)
- Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
- Medical College, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xueni Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
- Medical College, Southeast University, Nanjing 210009, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kaixuan Zeng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
- Medical College, Southeast University, Nanjing 210009, Jiangsu, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| |
Collapse
|
16
|
Misono S, Seki N, Mizuno K, Yamada Y, Uchida A, Arai T, Kumamoto T, Sanada H, Suetsugu T, Inoue H. Dual strands of the miR-145 duplex (miR-145-5p and miR-145-3p) regulate oncogenes in lung adenocarcinoma pathogenesis. J Hum Genet 2018; 63:1015-1028. [PMID: 30082847 DOI: 10.1038/s10038-018-0497-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022]
Abstract
Our original microRNA (miRNA) expression signatures (based on RNA sequencing) revealed that both strands of the miR-145 duplex (miR-145-5p, the guide strand, and miR-145-3p, the passenger strand) were downregulated in several types of cancer tissues. Involvement of passenger strands of miRNAs in cancer pathogenesis is a new concept in miRNA biogenesis. In our continuing analysis of lung adenocarcinoma (LUAD) pathogenesis, we aimed here to identify important oncogenes that were controlled by miR-145-5p and miR-145-3p. Downregulation of miR-145-5p and miR-145-3p was confirmed in LUAD clinical specimens. Functional assays showed that miR-145-3p significantly blocked the malignant abilities in LUAD cells, e.g., cancer cell proliferation, migration and invasion. Thus, the data showed that expression of the passenger strand of the miR-145-duplex acted as an anti-tumor miRNA. In LUAD cells, we identified four possible target genes (LMNB2, NLN, SIX4, and DDC) that might be regulated by both strands of miR-145. Among the possible targets, high expression of LMNB2 predicted a significantly poorer prognosis of LUAD patients (disease-free survival, p = 0.0353 and overall survival, p = 0.0017). Overexpression of LMNB2 was detected in LUAD clinical specimens and its aberrant expression promoted malignant transformation of LUAD cells. Genes regulated by anti-tumor miR-145-5p and miR-145-3p are closely involved in the molecular pathogenesis of LUAD. We suggest that they are promising prognostic markers for this disease. Our approach, based on the roles of anti-tumor miRNAs, will contribute to improved understanding of the molecular pathogenesis of LUAD.
Collapse
Affiliation(s)
- Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| |
Collapse
|
17
|
Chen YT, Yao JN, Qin YT, Hu K, Wu F, Fang YY. Biological role and clinical value of miR-99a-5p in head and neck squamous cell carcinoma (HNSCC): A bioinformatics-based study. FEBS Open Bio 2018; 8:1280-1298. [PMID: 30087832 PMCID: PMC6070648 DOI: 10.1002/2211-5463.12478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/19/2018] [Accepted: 06/11/2018] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are confirmed to be tumor promoters or suppressors in multiple squamous cell carcinomas (SCCs). miR‐99a‐5p has been demonstrated to be downregulated in cancerous tissues, but its functional role in head and neck SCC (HNSCC) and its mechanism of action have not been fully elucidated. Here, we studied the expression of miR‐99a‐5p in HNSCC and performed a clinical value assessment and then extracted mature expression data from The Cancer Genome Atlas (TCGA) and microarrays from Gene Expression Omnibus (GEO). Furthermore, biological analysis was constructed via online prediction tools. The results revealed that miR‐99a‐5p expression was markedly lower in HNSCC tissues than in normal tissues, which also showed significance in the prognosis of HNSCC. However, its diagnostic value could not be verified due to the lack of body fluid samples. Additionally, miR‐99a‐5p was expressed at higher levels in patients with low histological grade neoplasms than those with high histological grade neoplasms. The age of the patient might also be a possible clinical parameter affecting miR‐99a‐5p expression. Furthermore, miR‐99a‐5p significantly influenced HNSCC progression by regulating the PI3K‐Akt signaling pathway, in which the key target genes were upregulated in 519 HNSCC tissues compared to 44 normal tissues, as determined by the Gene Expression Profiling Interactive Analysis (GEPIA). In conclusion, our study may provide insights into the expression and mechanism of miR‐99a‐5p in HNSCC. Further studies are required to elucidate the role of miR‐99a‐5p and its potential clinical applications for HNSCC.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jian-Ni Yao
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yu-Tao Qin
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Kai Hu
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Fang Wu
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Ye-Ying Fang
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
18
|
Abstract
miR-150 has been demonstrated to inhibit tumor progression in various human cancers, including colorectal cancer, ovarian cancer, and thyroid cancer. However, the role of miR-150 in melanoma remains to be determined. In this study, we found that miR-150 was underexpressed in melanoma tissues and cell lines. Through transfection of miR-150 mimics, we found that miR-150 significantly inhibited the proliferation, migration, and invasion of melanoma cells. In mechanism, we found that MYB was a target of miR-150 in melanoma cells. Overexpression of miR-150 significantly inhibited mRNA and protein levels of MYB in melanoma cells. Moreover, there was an inverse correlation between the expression of miR-150 and MYB in melanoma tissues. We also showed that MYB was upregulated in melanoma tissues and cell lines. Through functional experiments, we found that restoration of MYB in miR-150-overexpressed melanoma cells rescued the proliferation, migration, and invasion. Therefore, our findings demonstrated that miR-150 suppressed the proliferation, migration, and invasion of melanoma cell by downregulating MYB.
Collapse
Affiliation(s)
- Xiyan Sun
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong Province, P.R. China
| | - Chao Zhang
- Department of Dermatology, Shanxian Central Hospital, Heze, Shandong Province, P.R. China
| | - Yang Cao
- Department of Dermatology, Shanxian Central Hospital, Heze, Shandong Province, P.R. China
| | - Erbiao Liu
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong Province, P.R. China
| |
Collapse
|