1
|
Zhang W, Xu C. Exosomal SphK1 from colorectal cancer cells promotes cancer cell migration and activates hepatic stellate cells. Mol Med Rep 2025; 31:73. [PMID: 39930826 PMCID: PMC11795250 DOI: 10.3892/mmr.2025.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Exosomes are small extracellular vesicles that are naturally released into body fluids by cells. They are rich in bioactive molecules such as proteins. Sphingosine kinase 1 (SphK1) is an important potential drug target for the treatment of cancer due to its functions to regulate cancer cell migration, growth, apoptosis and angiogenesis. Tumor exosomes abundantly surround primary tumors, exchanging and transferring information between cells and modulating cancer progression. Given the importance of exosomes, the involvement of exosomal SphK1 from colorectal cancer (CRC) cells in the migration of these cells and the activation of hepatic stellate cells was investigated. Firstly, the plasma exosomal SphK1 protein expression, tested by ELISA, was compared between patients with CRC without metastasis and those with liver metastasis. The results revealed that plasma exosomal SphK1 levels were significantly upregulated in patients with liver metastasis of CRC. Secondly, exosomes with different expression levels of SphK1, which were regulated by cell transfection, were isolated from CRC cells to evaluate their effect on the expression levels of E‑cadherin and vimentin in these cells, as assessed by western blotting. The results demonstrated that depletion of exosomal SphK1 partially reversed the exosome‑induced migration of CRC cells, and caused decreased vimentin and increased E‑cadherin levels. Thirdly, the effects of exosomes from CRC cells, with different expression levels of SphK1, on hepatic stellate cell activation were investigated, with α‑SMA, TNF‑α and TGF‑β levels assessed by western blotting in LX‑2 cells. Moreover, AKT and phosphorylated (p‑)AKT levels were also assessed by western blotting. The results revealed that exosomes activated hepatic stellate cells by upregulating p‑AKT, and depletion of exosomal SphK1 partially reversed this effect. Furthermore, the application of an AKT agonist reversed the inhibition of hepatic stellate cell activation, which was induced by the depletion of exosomal SphK1. Finally, investigation of cell viability, analyzed by CCK‑8 assay, and assessment of PCNA as a proliferation marker, analyzed by western blot, revealed that the culture supernatant of the activated hepatic stellate cells promoted the viability of CRC cells. Overall, these results demonstrated that exosomal SphK1 increased the migration of CRC cells, and activated hepatic stellate cells by regulating p‑AKT. This suggests that exosomal SphK1 may serve a key role in the migration of CRC cells and potentially the liver metastasis of CRC.
Collapse
Affiliation(s)
- Wenlu Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Chunyan Xu
- Department of Gastroenterology and Institute of Digestive Diseases, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
2
|
Zhu L, Qiu X, Liang S, Huang S, Ning Q, Chen X, Chen N, Qin L, Huang J, Liu S. Identification of a novel signature based on RNA methylation-associated anoikis-related genes for predicting prognosis and characterizing immune landscape in colorectal cancer. Discov Oncol 2025; 16:239. [PMID: 40000539 PMCID: PMC11861771 DOI: 10.1007/s12672-025-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND RNA methylation is a potential target for cancer therapy, while anoikis, a form of programmed cell death, is linked to cancer metastasis. However, the prognostic and immune significance of RNA methylation- and anoikis-related genes in colorectal cancer (CRC) remains unknown. METHODS Transcriptomic and clinicopathological data for CRC were obtained from TCGA and the GEO databases. A novel signature was constructed based on RNA methylation- and anoikis-related genes using univariate and multivariate Cox regression as well as LASSO Cox regression methods. CRC patients were stratified into low- and high-risk groups based on this signature. Differences in prognosis, immune infiltration, and drug sensitivity between two groups were analyzed. Finally, immunohistochemistry, western blot, and RT-qPCR were employed to validate the expression of the key gene SERPINE1 in CRC tissues and cells, as well as the effect of FTO on its expression. RESULTS We identified 79 differentially expressed RNA methylation-associated anoikis-related genes (RMRARGs) in both cancerous and normal tissues. A signature composed of 9 key genes (BID, FASN, PLK1, CDKN3, MYC, EPHA2, SERPINE1, CD36, PDK4) was established. Kaplan-Meier analysis revealed a poorer prognosis in the high-risk group. Compared to the other three published models, this signature demonstrated superior predictive performance based on the ROC curve analysis. Functional analyses highlighted differences in drug sensitivities and signaling pathways between risk groups. Furthermore, immune analysis results showed that risk score was associated with some immune cells and immune checkpoints. Immunohistochemistry showed high SERPINE1 expression in CRC tissues, with FTO expression positively correlated with SERPINE1. Furthermore, RT-qPCR and western blot indicated FTO knockdown markedly downregulated SERPINE1 levels. CONCLUSION Our findings underscore the prognostic value of this signature in CRC patients and its utility in assessing immune status. Additionally, the m6A demethylase FTO regulates the expression of the anoikis-related gene SERPINE1.
Collapse
Affiliation(s)
- Liye Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Xinze Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Shengmei Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Shanpei Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qiting Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Xingmei Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Ni Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Longjie Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
3
|
Hippee CE, Durnell LA, Kaufman JW, Murray E, Singh BK, Sinn PL. Epithelial-to-mesenchymal transition and live cell extrusion contribute to measles virus release from human airway epithelia. J Virol 2025; 99:e0122024. [PMID: 39791903 PMCID: PMC11852777 DOI: 10.1128/jvi.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell. We previously described the phenomenon in which infectious centers detach en masse from HAE and remain viable. Here, we investigate the mechanism of this cellular detachment. Via immunostaining, we observed loss of tight junction and cell adhesion proteins within infectious centers. These morphological changes indicate activation of epithelial-to-mesenchymal transition (EMT). EMT can contribute to wound healing in respiratory epithelia by mobilizing nearby cells. Inhibiting TGF-β, and thus EMT, reduced infectious center detachment. Compared with uninfected cells, MeV-infected cells also expressed increased levels of sphingosine kinase 1 (SK1), a regulator of live cell extrusion. Live cell extrusion encourages cells to detach from respiratory epithelia by contracting the actomyosin of neighboring cells. Inhibition or induction of live cell extrusion impacted infectious center detachment rates. Thus, these two related pathways contributed to infectious center detachment in HAE. Detached infectious centers contained high titers of virus that may be protected from the environment, allowing the virus to live on surfaces longer and infect more hosts.IMPORTANCEMeasles virus (MeV) is an extremely contagious respiratory pathogen that continues to cause large, disruptive outbreaks each year. Here, we examine mechanisms of detachment of MeV-infected cells. MeV spreads cell-to-cell in human airway epithelial cells (HAE) to form groups of infected cells, termed "infectious centers". We reported that infectious centers ultimately detach from HAE as a unit, carrying high titers of virus. Viral particles within cells may be more protected from environmental conditions, such as ultraviolet radiation and desiccation. We identified two host pathways, epithelial-to-mesenchymal transition and live cell extrusion, that contribute to infectious center detachment. Perturbing these pathways altered the kinetics of infectious center detachment. These pathways influence one another and contribute to epithelial wound healing, suggesting that infectious center detachment may be a usurped consequence of the host's response to infection that benefits MeV by increasing its transmissibility between hosts.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Eileen Murray
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Ramzy GM, Meister I, Rudaz S, Boccard J, Nowak-Sliwinska P. Identification of Lipid Species Signatures in FOLFOXIRI-Resistant Colorectal Cancer Cells. Int J Mol Sci 2025; 26:1169. [PMID: 39940937 PMCID: PMC11818583 DOI: 10.3390/ijms26031169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic drug treatment can alter the lipidome of cancer cells, potentially leading to significant biological changes, such as drug resistance or increased tumor aggressiveness. This study examines the lipidome profiles of four human colorectal cancer (CRC) cell lines, comparing treatment-naïve cells with the same cells after chronic exposure to a clinically used combination therapy (FOLFOXIRI: folinic acid, 5-fluorouracil, oxaliplatin, and irinotecan). Lipidomic profiling was obtained with untargeted liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). For data deconvolution and to interpret the multifactorial dataset generated, Analysis of Variance Multiblock Orthogonal Partial Least Squares (AMOPLS) was used. Our results indicate specific shifts in triglycerides (TGs), sphingolipids, and phospholipids in CRC cells resistant to FOLFOXIRI. The overall shift in TGs, phosphatidylcholine, and cholesteryl ester species was notably linked to FOLFOXIRI resistance (-R) in SW620 cells, whereas an increased abundance of phospholipids, mainly hexosylceramide and sphingomyelin, was present in the signatures of HCT116-R, LS174T-R, and DLD1-R cells. These altered lipid species may serve as potential prognostic markers in CRC following chemotherapy. Furthermore, lipid-targeting therapies aimed at reprogramming the lipid profiles of drug-resistant cells could play a crucial role in restoring drug sensitivity and improving patient survival.
Collapse
Affiliation(s)
- George M. Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (I.M.); (S.R.)
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (I.M.); (S.R.)
- Biomedical and Metabolomics Analysis Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (I.M.); (S.R.)
- Biomedical and Metabolomics Analysis Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (I.M.); (S.R.)
- Biomedical and Metabolomics Analysis Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (I.M.); (S.R.)
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
5
|
Janakiraman H, Gao Z, Zhu Y, Dong J, Becker SA, Janneh A, Ogretmen B, Camp ER. Targeting SNAI1-Mediated Colorectal Cancer Chemoresistance and Stemness by Sphingosine Kinase 2 Inhibition. World J Oncol 2024; 15:744-757. [PMID: 39328328 PMCID: PMC11424120 DOI: 10.14740/wjon1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT), cancer stem cells (CSCs), and colorectal cancer (CRC) therapy resistance are closely associated. Prior reports have demonstrated that sphingosine-1-phosphate (S1P) supports stem cells and maintains the CSC phenotype. We hypothesized that the EMT inducer SNAI1 drives S1P signaling to amplify CSC self-renewal capacity and chemoresistance. Methods CRC cell lines with or without ectopic expression of SNAI1 were used to study the role of S1P signaling as mediators of cancer stemness and 5-fluorouracil (5FU) chemoresistance. The therapeutic ability of sphingosine kinase 2 (SPHK2) was assessed using siRNA and ABC294640, a SPHK2 inhibitor. CSCs were isolated from patient-derived xenografts (PDXs) and assessed for SPHK2 and SNAI1 expression. Results Ectopic SNAI1 expressing cell lines demonstrated elevated SPHK2 expression and increased SPHK2 promoter activity. SPHK2 inhibition with siRNA or ABC294640 ablated in vitro self-renewal and sensitized cells to 5FU. CSCs isolated from CRC PDXs express increased SPHK2 relative to the non-CSC population. Combination ABC294640/5FU therapy significantly inhibited tumor growth in mice and enhanced 5FU response in therapy-resistant CRC patient-derived tumor organoids (PDTOs). Conclusions SNAI1/SPHK2 signaling mediates cancer stemness and 5FU resistance, implicating S1P as a therapeutic target for CRC. The S1P inhibitor ABC294640 holds potential as a therapeutic agent to target CSCs in therapy refractory CRC.
Collapse
Affiliation(s)
| | - Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Zhu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiangling Dong
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott A Becker
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Alhaji Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - E Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Yu M, Zhang K, Wang S. High expression levels of S1PR3 and PDGFRB indicates unfavorable clinical outcomes in colon adenocarcinoma. Heliyon 2024; 10:e35532. [PMID: 39170287 PMCID: PMC11336742 DOI: 10.1016/j.heliyon.2024.e35532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Background Studies verified that sphingosine kinase 1 (SPHK1)/sphingosine 1-phosphate receptors (S1PRs) and platelet-derived growth factor receptors (PDGFRs) play important roles in tumor occurrence and progression. However, the expression and clinical value of SPHK1/S1PRs and PDGFRs in colon adenocarcinoma (COAD) remains unclear. This study aimed to explore the expression of SPHK1/S1PRs and PDGFRs in COAD and further investigate their roles in predicting the prognosis of patients with COAD. Methods SPHK1/S1PRs and PDGFRs expression in tissues from patient with COAD were analyzed using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Kaplan-Meier survival analysis was used to evaluate the prognostic roles of SPHK1/S1PRs and PDGFRs in patients with COAD. Spearman's correlation analysis was performed to assess the relationship between SPHK1/S1PRs and PDGFRs in COAD. Then, χ2 test was performed to analyze the correlation between SPHK1/S1PR3/PDGFRB and clinicopathological characteristics of the patients. Additionally, possible signaling pathways co-regulated by S1PR3 and PDGFRB were predicted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Least absolute shrinkage and selection operator (LASSO) regression was used to identify hub genes that co-regulated S1PR3 and PDGFRB expression. A prognostic model based on hub genes was constructed for patients with COPD. Finally, the relationship between the hub genes and tumor immune cell infiltration was investigated. Results The expression levels of SPHK1 and PDGFRB were significantly upregulated in COAD patient tissues (P < 0.001 and P < 0.001, respectively). Moreover, Kaplan-Meier analysis showed that patients with COAD with high expression levels of SPHK1 and S1PR3 had shorter overall survival (OS) than those with low expression levels (P = 0.013 and P = 0.005, respectively). Spearman's correlation analysis verified a strong positive correlation (P < 0.001, r = 0.790) between the expression of S1PR3 and PDGFRB. In addition, we found that high SPHK1 and PDGGRB expression levels were associated with perineural invasion (P < 0.001 and P = 0.011, respectively). High expression of S1PR3 and PDGGRB was prominently associated with N stage (P = 0.002 and P = 0.021, respectively). High levels of SPHK1, S1PR3, and PDGFRB were associated with lymph node invasion. (P = 0.018, P = 0.004, and P = 0.001, respectively). GO and KEGG results revealed that S1PR3 and PDGFRB may participate in COAD cell extracellular matrix organization and cellular signal transduction. Five hub genes, SFRP2, GPRC5B, RSPO3, FGF14, and TCF7L1, were identified using LASSO regression. Survival analysis showed that the OS in the high-risk group was remarkably shorter than that in the low-risk group. The results indicated that tumor immune cells were significantly increased in the high-risk group compared to those in the low-risk group. Conclusions S1PR3 and PDGFRB may be important markers for predicting lymphatic metastasis and poor prognosis in patients with COAD. The underlying mechanisms may involve immune cell infiltration.
Collapse
Affiliation(s)
- Mengsi Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kainan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Song Wang
- Department of Ophthalmology, General Hospital of Xinjiang Military Command, Urumqi, China
| |
Collapse
|
7
|
Chen D, Wu J, Qiu X, Luo S, Huang S, Wei E, Qin M, Huang J, Liu S. SPHK1 potentiates colorectal cancer progression and metastasis via regulating autophagy mediated by TRAF6-induced ULK1 ubiquitination. Cancer Gene Ther 2024; 31:410-419. [PMID: 38135696 PMCID: PMC10940154 DOI: 10.1038/s41417-023-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
A sphingolipid metabolite regulator, sphingosine kinase 1 (SPHK1), plays a critical role in the development of colorectal cancer (CRC). Studies have demonstrated that invasion and metastasis of CRC are promoted by SPHK1-driven autophagy. However, the exact mechanism of SPHK1 drives autophagy to promote tumor progression remains unclear. Here, immunohistochemical detection showed the expression of SPHK1 and tumor necrosis factor receptor-associated factor-6 (TRAF6) in human CRC tissues was stronger than in adjacent normal tissues, they were both associated with distance metastasis. It was discovered that knockdown of SPHK1 reduced the expression of TRAF6, inhibited autophagy, and inhibited the growth and metastasis of CRC cells in vitro. Moreover, the effects of SPHK1-downregulating were reversed by overexpression of TRAF6 in CRC cells transfected by double-gene. Overexpression of SPHK1 and TRAF6 promoted the expression of autophagy protein LC3 and Vimentin, while downregulated the expression of autophagy protein P62 and E-cadherin. The expression of autophagy-related ubiquitination protein ULK1 and Ubiquitin protein were significantly upregulated in TRAF6-overexpressed CRC cells. In addition, autophagy inhibitor 3-methyladenine (3MA) significantly inhibited the metastasis-promoting effect of SPHK1 and TRAF6, suppressed the expression of LC3 and Vimentin, and promoted the expression of P62 and E-cadherin, in CRC cells. Immunofluorescence staining showed SPHK1 and TRAF6 were co-localized in HT29 CRC cell membrane and cytoplasm. Immunoprecipitation detection showed SPHK1 was efficiently combined with the endogenous TRAF6, and the interaction was also detected reciprocally. Additionally, proteasome inhibitor MG132 treatment upregulated the expression of TRAF6 and the level of Ubiquitin protein, in SPHK1-downregulating CRC cells. These results reveal that SPHK1 potentiates CRC progression and metastasis via regulating autophagy mediated by TRAF6-induced ULK1 ubiquitination. SPHK1-TRAF6-ULK1 signaling axis is critical to the progression of CRC and provides a new strategy for the therapeutic control of CRC.
Collapse
Affiliation(s)
- Da Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jiangni Wu
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Xinze Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Shibo Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Shanpei Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Erdan Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China.
| |
Collapse
|
8
|
Shen Z, Zhang P, Zhang W, Luo F, Xu H, Chen S, Kang M. IL-1RA inhibits esophageal carcinogenesis and lymphangiogenesis via downregulating VEGF-C and MMP9. Funct Integr Genomics 2023; 23:164. [PMID: 37198330 PMCID: PMC10191916 DOI: 10.1007/s10142-023-01049-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Interleukin-1 receptor antagonist (IL-1RA) has been shown to play an important role in cancer progression. However, its pathogenic effects and molecular mechanism in the malignant progression of esophageal squamous cell carcinoma (ESCC) remain largely unknown. This study was designed to explore the function of IL-1RA in ESCC and determine the relationship between IL-1RA and lymph node metastasis in ESCC patients. The clinical relevance of IL-1RA in relation to the clinicopathological features and prognosis of 100 ESCC patients was analyzed. The function and underlying mechanisms of IL-1RA in the growth, invasion, and lymphatic metastasis in ESCC were explored both in vitro and in vivo. The therapeutic effect of anakinra, an IL-1 receptor antagonist, on ESCC was also evaluated in animal experiments. Downregulation of IL-1RA was observed in ESCC tissues and cells and was found to be strongly correlated with pathological stage (P = 0.034) and lymphatic metastasis (P = 0.038). Functional assays demonstrated that upregulation of IL-1RA reduced cell proliferation, migration, and lymphangiogenesis both in vitro and in vivo. Mechanistic studies revealed that overexpression of IL-1RA activated the epithelial-to-mesenchymal transition (EMT) in the ESCC cells through activation of MMP9 and regulation of the expression and secretion of VEGF-C through the PI3K/NF-κB pathway. Anakinra treatment resulted in significant inhibition of tumor growth, lymphangiogenesis, and metastasis. IL-1RA inhibits lymph node metastasis of ESCC by regulating the EMT through activation of matrix metalloproteinase 9(MMP9) and lymphangiogenesis, driven by VEGF-C and the NF-κB signaling pathway. Anakinra may be an effective drug for the inhibition of ESCC tumor formation and lymph node metastasis.
Collapse
Affiliation(s)
- Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Fei Luo
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350122, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
9
|
Clinical relevance of CERK and SPHK1 in breast cancer and their association with metastasis and drug resistance. Sci Rep 2022; 12:18239. [PMID: 36309544 PMCID: PMC9617946 DOI: 10.1038/s41598-022-20976-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Despite numerous reports on the altered sphingolipids metabolism in human cancers, their clinical significance in breast cancer remains obscure. Previously, we identified the high levels of sphingolipids, ceramide phosphates and sphingosine phosphates, and the genes involved in their synthesis, CERK and SPHK1, in breast cancer patients. The present study aimed to determine the correlations of CERK and SPHK1 with clinical outcomes as well as metastasis and drug resistance markers. Both local and TCGA cohorts were analysed. High-confidence regulatory interaction network was constructed to find association of target genes with metastasis and drug resistance. Furthermore, correlations of CERK and SPHK1 with selected metastasis and drug resistance markers were validated in both cohorts. Overexpression of CERK and SPHK1 was associated with nodal metastasis, late tumor stage and high proliferation potency. In addition, increased CERK expression was also indicative of poor patient survival. Computational network analysis revealed the association of CERK and SPHK1 with known metastasis markers MMP-2 and MMP-9 and drug resistance markers ABCC1 and ABCG2. Correlation analysis confirmed the associations of target genes with these markers in both local as well as TCGA cohort. The above findings suggest clinical utility of CERK and SPHK1 as potential biomarkers in breast cancer patients and thus could provide novel leads in the development of therapeutics.
Collapse
|
10
|
Li RZ, Wang XR, Wang J, Xie C, Wang XX, Pan HD, Meng WY, Liang TL, Li JX, Yan PY, Wu QB, Liu L, Yao XJ, Leung ELH. The key role of sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance. Front Oncol 2022; 12:941643. [PMID: 35965565 PMCID: PMC9364366 DOI: 10.3389/fonc.2022.941643] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.
Collapse
Affiliation(s)
- Run-Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Xuan-Run Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jian Wang
- Department of Oncology, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
| | - Xing-Xia Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Wei-Yu Meng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Tu-Liang Liang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jia-Xin Li
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Pei-Yu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Qi-Biao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Xiao-Jun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
- Breast Surgery, Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| |
Collapse
|
11
|
Increased Sphingosine Kinase 1 Expression Is Associated with Poor Prognosis in Human Solid Tumors: A Meta-Analysis. DISEASE MARKERS 2022; 2022:8443932. [PMID: 35126792 PMCID: PMC8816543 DOI: 10.1155/2022/8443932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Methods PubMed, Web of Science, Embase, CNKI, and Wanfang databases were thoroughly searched for eligible studies, in which the relationship between SPHK1 expression and cancer prognosis was evaluated. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled to estimate the impact of SPHK1 expression on cancer patients' survival. Odds ratios (ORs) and 95% CIs were combined to assess the association between SPHK1 expression and clinicopathological characteristics of cancer patients. The certainty of evidence was evaluated by Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Results Thirty studies comprising 32 cohorts with 5965 patients were included in this meta-analysis. The outcomes indicated that elevated SPHK1 expression was associated with worse overall survival (OS) (HR = 1.71, 95% CI: 1.45-2.01, P < 0.001) and disease-free survival (DFS) (HR = 1.34, 95% CI: 1.13-1.59, P = 0.001). What is more, SPHK1 overexpression was significantly correlated with certain phenotypes of tumor aggressiveness, such as clinical stage (OR = 2.07, 95% CI: 1.39-3.09, P < 0.001), tumor invasion (OR = 2.16, 95% CI: 1.47-3.18, P < 0.001), lymph node metastasis (OR = 2.04, 95% CI: 1.71-2.44, P < 0.001), and distant metastasis (OR = 3.16, 95% CI: 2.44-4.09, P < 0.001). The quality of the evidence for both OS and DFS was low. Conclusions Increased SPHK1 expression is related to poor prognosis in human cancers and may serve as a promising prognostic marker and therapeutic target for malignant patients. However, conclusions need to be treated with caution because of lack of high quality of evidence.
Collapse
|
12
|
McGowan EM, Lin Y, Chen S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers (Basel) 2022; 14:cancers14030535. [PMID: 35158806 PMCID: PMC8833440 DOI: 10.3390/cancers14030535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Incidence of gastrointestinal (GI) cancers is increasing, and late-stage diagnosis makes these cancers difficult to treat. Chronic and low-grade inflammation are recognized risks for most GI cancers. The GI mucosal immune system maintains healthy homeostasis and signalling molecules made from saturated fats, bioactive sphingolipids, play essential roles in healthy GI immunity. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is a key mediator in a balanced GI immune response. Disruption in the S1P pathway underlies systemic chronic metabolic inflammatory disorders, including diabetes and GI cancers, providing a strong rationale for using modulators of the S1P pathway to treat pathological inflammation. Here, we discuss the effects of bioactive sphingolipids in immune homeostasis with a focus on S1P in chronic low-grade inflammation associated with increased risk of GI carcinogenesis. Contemporary information on S1P signalling involvement in cancers of the digestive system, from top to bottom, is reviewed. Further, we discuss the use of novel S1P receptor modulators currently in clinical trials and their potential as first-line drugs in the clinic for chronic inflammatory diseases. Recently, ozanimod (ZeposiaTM) and etrasimod have been approved for clinical use to treat ulcerative colitis and eosinophilic oesophagitis, respectively, which may have longer term benefits in reducing risk of GI cancers.
Collapse
Affiliation(s)
- Eileen M. McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
- Correspondence: ; Tel.: +86-614-0581-4048
| | - Yiguang Lin
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Size Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
13
|
Differential Expression of the Sphingolipid Pathway Is Associated with Sensitivity to the PP2A Activator FTY720 in Colorectal Cancer Cell Lines. J Clin Med 2021; 10:jcm10214999. [PMID: 34768523 PMCID: PMC8584763 DOI: 10.3390/jcm10214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed intracellular serine/threonine phosphatase. Deregulation of PP2A is a common event associated with adenocarcinomas of the colon and rectum. We have previously shown that breast cancer cell lines are sensitive to the PP2A activator FTY720, and that sensitivity is predicted by high Aurora kinase A (AURKA) mRNA expression. In this study, we hypothesized that high relative AURKA expression could predict sensitivity to FTY720-induced apoptosis in colorectal cancer (CRC). The CRC cell lines NCI H716, COLO320DM, DLD-1, SW480, and HT-29 show a high relative AURKA expression as compared to LS411N, T84, HCT116, SW48, and LOVO. Following viability assays, LS411N, T84, HCT116, and SW480 were shown to be sensitive to FTY720, whereas DLD-1 and HT-29 were non-sensitive. Hence, AURKA mRNA expression does not predict sensitivity to FTY720 in CRC cell lines. Differentially expressed genes (DEGs) were obtained by comparing the sensitive CRC cell lines (LS411N and HCT116) against the non-sensitive (HT-29 and DLD-1). We found that 253 genes were significantly altered in expression, and upregulation of CERS4, PPP2R2C, GNAZ, PRKCG, BCL2, MAPK12, and MAPK11 suggests the involvement of the sphingolipid signaling pathway, known to be activated by phosphorylated-FTY720. In conclusion, although AURKA expression did not predict sensitivity to FTY720, it is evident that specific CRC cell lines are sensitive to 5 µM FTY720, potentially because of the differential expression of genes involved in the sphingolipid pathway.
Collapse
|
14
|
Chahar KR, Kumar V, Sharma PK, Brünnert D, Kaushik V, Gehlot P, Shekhawat I, Kumar S, Sharma AK, Kumari S, Goyal P. Sphingosine kinases negatively regulate the expression of matrix metalloproteases ( MMP1 and MMP3) and their inhibitor TIMP3 genes via sphingosine 1-phosphate in extravillous trophoblasts. Reprod Med Biol 2021; 20:267-276. [PMID: 34262394 PMCID: PMC8254167 DOI: 10.1002/rmb2.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Extracellular matrix remodeling is essential for extravillous trophoblast (EVT) cell migration and invasion during placental development and regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). Sphingosine kinases (SPHK1 and SPHK2) synthesize sphingosine-1-phosphate (S1P), which works either intracellularly or extracellularly via its receptors S1PR1-5 in an autocrine or paracrine manner. The role of SPHKs/S1P in regulating the expression of MMPs and TIMPs in EVT is mostly unknown and forms the primary objective of the study. METHODS HTR-8/SVneo cells were used as a model of EVT. To inhibit the expression of SPHKs, cells were treated with specific inhibitors, SK1-I and SKI-II, or gene-specific siRNAs. The expressions of MMPs and TIMPs were estimated by qPCR. RESULTS We demonstrated that SPHK1, MMP1-3, and TIMP1-3 were highly expressed in HTR-8/SVneo cells. We found that treatment of cells with SK1-I, SKI-II, and knockdown of SPHK1 or SPHK2 increased the expression of MMP1, MMP3, and TIMP3. The addition of extracellular S1P inhibits the upregulation of MMPs and TIMPs in treated cells. CONCLUSIONS SPHKs negatively regulate the expression of MMP1, MMP3, and TIMP3. The level of intracellular S1P acts as a negative feedback switch for MMP1, MMP3, and TIMP3 expression in EVT cells.
Collapse
Affiliation(s)
- Kirti R. Chahar
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Vijay Kumar
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Phulwanti K. Sharma
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Daniela Brünnert
- Comprehensive Cancer Center MainfrankenTranslational OncologyUniversity Hospital of WürzburgWürzburgGermany
| | - Vibha Kaushik
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Pragya Gehlot
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Indu Shekhawat
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Suman Kumar
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Ajay Kumar Sharma
- Department of Obstetrics & GynecologyJ. L. N. Medical CollegeAjmerIndia
| | - Sandhya Kumari
- Department of Obstetrics & GynecologyJ. L. N. Medical CollegeAjmerIndia
| | - Pankaj Goyal
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| |
Collapse
|
15
|
Lou HF, Ma CM, Fu YZ, Zhang S. Detection of TU M2PK, COX-2, and Vimentin expression in stool by colloidal gold method in patients with colorectal cancer and its clinical significance. Shijie Huaren Xiaohua Zazhi 2021; 29:601-608. [DOI: 10.11569/wcjd.v29.i11.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer is often diagnosed at middle or late stage, which brings great difficulties to the treatment and postoperative recoverys. How to find the lesion at the early stage of the disease is the key to treatment. Colloidal gold method is a rapid, simple, accurate, and economical method for the early diagnosis of colorectal cancer. Combined with the changes of related factors in feces at the early stage of disease, it provides a basis for the early diagnosis of colorectal cancer.
AIM To detect tumor M2 pyruvate kinase (TU M2PK), cyclooxygenase-2 (COX-2), and Vimentin expression in feces of patients with colorectal cancer by colloidal gold method and analyze its clinical significanced.
METHODS From January 2013 to January 2017, 124 patients with colorectal cancer diagnosed at our hospital were selected as an observation group, and 41 patients with negative colonoscopy during the same period were selected as a control group. The positive rates of TU M2PK, COX-2, and Vimentin between the two groups and patients with different pathological characteristics were compared, and factors related to the survival of patients with colorectal cancer were analyzed.
RESULTS The positive expression rates of TU M2PK, COX-2, and Vimentin in the observation group were significantly higher than those in the control group (P < 0.05). The positive expression of TU M2PK, COX-2, and Vimentin in patients with colorectal cancer were significantly different among patients with different Dukes stages and tumor differentiation degrees (P < 0.05). There were statistically significant differences in the 1-year survival of patients with different Dukes stages, degrees of differentiation, and TU M2PK, COX-2, and Vimentin expression (P < 0.05). After incorporating Cox regression analysis and adjusting for other confounding factors, the hazard ratio (HR) was 3.774 for Dukes stage B, 4.433 for stage C, and 5.536 for stage D. The HR value was 0.414 for moderate differentiation and 0.295 for high differentiation; . The HR value was 5.006 for TU M2PK expression, 4.997 for COX-2 expression, and 4.671 for Vimentin expression. The 1-year survival rate of patients with positive expression of TU M2PK, COX-2, and Vimentin was significantly lower than that of patients with negative expression (P < 0.05).
CONCLUSION TU M2PK, COX-2, and Vimentin are abnormally expressed in the stool of patients with colorectal cancer. The detection of the above indicators by colloidal gold method has potential application value in screening for colorectal cancer and assessing the survival of patients.
Collapse
Affiliation(s)
- He-Fei Lou
- Clinical Laboratory of Pan'an Traditional Chinese Medical Hospital, Jinhua 322300, Zhejiang Province, China
| | - Chun-Mei Ma
- Clinical Laboratory of Pan'an Traditional Chinese Medical Hospital, Jinhua 322300, Zhejiang Province, China
| | - Ying-Zhi Fu
- Clinical Laboratory of Pan'an Traditional Chinese Medical Hospital, Jinhua 322300, Zhejiang Province, China
| | - Shu Zhang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| |
Collapse
|
16
|
Hanker LC, El-Balat A, Drosos Z, Kommoss S, Karn T, Holtrich U, Gitas G, Graeser-Mayer M, Anglesio M, Huntsman D, Rody A, Gevensleben H, Hoellen F. Sphingosine-kinase-1 expression is associated with improved overall survival in high-grade serous ovarian cancer. J Cancer Res Clin Oncol 2021; 147:1421-1430. [PMID: 33660008 PMCID: PMC8021516 DOI: 10.1007/s00432-021-03558-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Purpose Sphingosine-kinase-1 (SPHK1) is a key enzyme of sphingolipid metabolism which is involved in ovarian cancer pathogenesis, progression and mechanisms of drug resistance. It is overexpressed in a variety of cancer subtypes. We investigated SPHK1 expression as a prognostic factor in epithelial ovarian cancer patients. Methods Expression analysis of SPHK1 was performed on formalin-fixed paraffin-embedded tissue from 1005 ovarian cancer patients with different histological subtypes using immunohistochemistry. Staining intensity of positive tumor cells was assessed semi-quantitatively, and results were correlated with clinicopathological characteristics and survival. Results In our ovarian cancer collective, high levels of SPHK1 expression correlated significantly with complete surgical tumor resection (p = 0.002) and lower FIGO stage (p = 0.04). Progression-free and overall survival were further significantly longer in patients with high-grade serous ovarian cancer and overexpression of SPHK1 (p = 0.002 and p = 0.006, respectively). Conclusion Our data identify high levels of SPHK1 expression as a potential favorable prognostic marker in ovarian cancer patients. Supplementary Information The online version of this article (10.1007/s00432-021-03558-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L C Hanker
- Department of Gynecology and Obstetrics, University Hospital Luebeck, Luebeck, Germany.
| | - A El-Balat
- Department of Obstetrics and Gynecology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Z Drosos
- Department of Gynecology and Obstetrics, University Hospital Luebeck, Luebeck, Germany
| | - S Kommoss
- Department of Woman's Health, Tuebingen University Hospital, Tuebingen, Germany
| | - T Karn
- Department of Obstetrics and Gynecology, Goethe-University Frankfurt, Frankfurt, Germany
| | - U Holtrich
- Department of Obstetrics and Gynecology, Goethe-University Frankfurt, Frankfurt, Germany
| | - G Gitas
- Department of Gynecology and Obstetrics, University Hospital Luebeck, Luebeck, Germany
| | - M Graeser-Mayer
- Evangelical Hospital Bethesda, Lower Rhine Breast Center, Moenchengladbach, Germany
| | - M Anglesio
- Department of Molecular Oncology, BCCA Cancer Research Centre, Vancouver, Canada
| | - D Huntsman
- Department of Molecular Oncology, BCCA Cancer Research Centre, Vancouver, Canada
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital Luebeck, Luebeck, Germany
| | - H Gevensleben
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - F Hoellen
- Department of Gynecology and Obstetrics, University Hospital Luebeck, Luebeck, Germany
| |
Collapse
|
17
|
Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer zu Heringdorf D. Dissecting G q/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells 2020; 9:cells9102201. [PMID: 33003441 PMCID: PMC7599897 DOI: 10.3390/cells9102201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCβ3, but accelerated by wild-type PLCβ3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCβ3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100–105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCβ and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCβ/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Ralf Frederik Claas
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Justin L. Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette, West Lafayette, IN 47907-2054, USA;
| | - Stefan Offermanns
- Abteilung für Pharmakologie, Max-Planck-Institut für Herz- und Lungenforschung, 61231 Bad Nauheim, Germany;
| | - Thomas Wieland
- Experimentelle Pharmakologie Mannheim, European Center for Angioscience, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
- Correspondence: ; Tel.: +49-69-6301-3906
| |
Collapse
|
18
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF. The Roles of Tissue Rigidity and Its Underlying Mechanisms in Promoting Tumor Growth. Cancer Invest 2020; 38:445-462. [PMID: 32713210 DOI: 10.1080/07357907.2020.1802474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Centre for Healthy Ageing and Wellness, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Gayathri Thevi Selvarajah
- Faculty of Veterinary Medicine, Department of Veterinary Clinical Studies, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Siti Fathiah Masre
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Pan K, Xie Y. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca 2+-FAK signal pathway. Cell Death Dis 2020; 11:434. [PMID: 32513911 PMCID: PMC7280533 DOI: 10.1038/s41419-020-2633-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed, which are involved in tumorigenesis and metastasis in colorectal cancer (CRC). FOXC2 antisense RNA 1 (FOXC2-AS1) was reported, facilitating the proliferation and progression in several cancers. However, the role of FOXC2-AS1 in CRC cell migration and metastasis is not unclear. In this study, we observed that lncRNA FOXC2-AS1 was upregulated in CRC tissues, and its high expression indicated the poor survival in CRC patients. Meanwhile, FOXC2-AS1 was higher in CRC tissues with metastasis than that of nonmetastatic tumor tissues. We found that FOXC2-AS1 was predominately expressed in the nucleus of tissues and cells. FOXC2-AS1 knockdown suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo. Moreover, FOXC2-AS1 could positively regulate the neighboring gene FOXC2 and stabilized FOXC2 mRNA by forming a RNA duplex. Meanwhile, ectopic expression of FOXC2 could obviously alleviate the suppressed effects caused by silencing FOXC2-AS1. For the mechanism, FOXC2-AS1 knockdown could reduce intracellular Ca2+ levels, inhibited FA formation and FAK signaling, and these suppressed effects were mitigated by increasing FOXC2 expression. These results demonstrated that FOXC2-AS1 enhances FOXC2 mRNA stability to promote CRC proliferation, migration, and invasion by activation of Ca2+-FAK signaling, which implicates that FOXC2-AS1 may represent a latent effective therapeutic target for CRC progression.
Collapse
Affiliation(s)
- Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yong Xie
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Grbčić P, Sedić M. Sphingosine 1-Phosphate Signaling and Metabolism in Chemoprevention and Chemoresistance in Colon Cancer. Molecules 2020; 25:E2436. [PMID: 32456134 PMCID: PMC7287727 DOI: 10.3390/molecules25102436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is the leading cause of cancer-related deaths worldwide. Despite advances in prevention and treatment modalities for CRC, rapidly developing resistance to chemotherapy limits its effectiveness. For that reason, it is important to better understand the mechanisms that undergird the process of chemoresistance to enable design of novel anticancer agents specifically targeting malignant properties of cancer cells. Over recent decades, bioactive sphingolipid species have come under the spotlight for their recognized role in cancer development and progression, and the evidence has surfaced to support their role as regulators of anti-cancer drug resistance. Colon cancer is characterized by a shift in sphingolipid balance that favors the production and accumulation of oncogenic species such as sphingosine 1-phosphate (S1P). S1P is known to govern the processes that facilitate cancer cell growth and progression including proliferation, survival, migration, invasion and inflammation. In this review paper, we will give a comprehensive overview of current literature findings on the molecular mechanisms by which S1P turnover, transport and signaling via receptor-dependent and independent pathways shape colon cancer cell behavior and influence treatment outcome in colon cancer. Combining available modulators of S1P metabolism and signaling with standard chemotherapy drugs could provide a rational approach to achieve enhanced therapeutic response, diminish chemoresistance development and improve the survival outcome in CRC patients.
Collapse
Affiliation(s)
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| |
Collapse
|
21
|
Wang N, Chang LL. Maspin suppresses cell invasion and migration in gastric cancer through inhibiting EMT and angiogenesis via ITGB1/FAK pathway. Hum Cell 2020; 33:663-675. [PMID: 32409959 DOI: 10.1007/s13577-020-00345-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
This study aims to investigate how Maspin affects the EMT and angiogenesis of gastric cancer (GC) cells via ITGB1/FAK pathway. Immunohistochemistry was used to evaluate the expressions of Maspin, ITGB1, FAK, E-cadherin, Vimentin, D2-40, and CD34 in GC and adjacent normal tissues from 160 patients. Then, the human GC cells with different degree of differentiation were transfected with Maspin CRISPR activation plasmid, ITGB1 siRNA and/or Maspin siRNA, followed by the following experiments, including qRT-PCR, western blotting, tube formation assay, Transwell assay and wound healing. GC tumor tissues manifested decreased Maspin with the activated ITGB1/FAK pathway. In tumor tissues, Maspin was negatively correlated with the expressions of ITGB1 and FAK, as well as Lauren's classification, differentiation degree, and TNM stage. Besides, Maspin was negatively related with lymphatic vessel density (LVD) and microvessel density (MVD), Vimentin and VEGF, but was positive correlated with E-cadherin. Maspin expression decreased, but ITGB1 and p-FAK expressions increased gradually in MKN-28 (well differentiated), SGC-7901 (moderate differentiated), and MKN-45 (poorly differentiated). Maspin CRISPR and ITGB1 siRNA increased E-cadherin with the decreased Vimentin, VEGF and bFGF, and the reductions of tube length. In comparison with the ITGB1 siRNA group, cells in the Maspin siRNA + ITGB1 siRNA group presented the more evident EMT and angiogenesis. Furthermore, ITGB1 siRNA reduced the malignancies of GC cells, which could be restored by Maspin siRNA. Maspin was downregulated in GC tissues, which could inhibit the EMT and angiogenesis by blocking the ITGB1/FAK pathway, thereby decreasing cell invasion and migration of GC.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gastroenterology, No. 1 Ward, ShiJiaZhuang No. 1 Hospital, No. 36, Fanxi Road, Chang'an District, Shijiazhuang, 050011, China
| | - Li-Li Chang
- Department of Gastroenterology, No. 1 Ward, ShiJiaZhuang No. 1 Hospital, No. 36, Fanxi Road, Chang'an District, Shijiazhuang, 050011, China.
| |
Collapse
|
22
|
Zhang F, Jiang Z. Downregulation of OSR1 Promotes Colon Adenocarcinoma Progression via FAK-Mediated Akt and MAPK Signaling. Onco Targets Ther 2020; 13:3489-3500. [PMID: 32425550 PMCID: PMC7191353 DOI: 10.2147/ott.s242386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Odd-skipped related transcription factor 1 (OSR1) is a newly identified tumor suppressor in many tumor types. However, the role and mechanism of OSR1 in colon adenocarcinoma (COAD) remain unknown. Methods OSR1 expression was detected in COAD tissues and cells. COAD cells with OSR1 overexpression or knockdown were analyzed by in vitro CCK-8, transwell and flow cytometry assays, and by in vivo xenograft model. Results OSR1 expression was downregulated in COAD and low expression level of OSR1 was positively correlated with tumor stage and lymph node metastasis. Furthermore, low OSR1 expression was significantly associated with poor overall survival (OS) and distant metastasis-free survival (DMFS). Lentivirus-mediated restoration of OSR1 expression-inhibited proliferation, invasion and migration while induced cell cycle arrest and apoptosis in COAD cells in vitro, and inhibited tumor growth in vivo. In contrast, OSR1 knockdown promoted proliferation, invasion and migration in COAD cells in vitro. Mechanistically, OSR1 exerted anticancer effects by inhibiting FAK-mediated activation of Akt and MAPK pathways. Conclusion Our findings suggest that OSR1 functions as a tumor suppressor in COAD by suppressing FAK-mediated activation of Akt and MAPK pathways.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zheng Jiang
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
23
|
El Jamal A, Bougault C, Mebarek S, Magne D, Cuvillier O, Brizuela L. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone 2020; 130:115087. [PMID: 31648078 DOI: 10.1016/j.bone.2019.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
Sphingolipids display important functions in various pathologies such as cancer, obesity, diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate (S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite sphingosine into S1P. The balance between the levels of S1P and its metabolic precursors ceramide and sphingosine has been considered as a switch that could determine whether a cell proliferates or dies. This balance, also called « sphingolipid rheostat », is mainly under the control of SKs. Several studies have recently pointed out the contribution of SK/S1P metabolic pathway in skeletal development, mineralization and bone homeostasis. Indeed, SK/S1P metabolism participates in different diseases including rheumatoid arthritis, spondyloarthritis, osteoarthritis, osteoporosis, cancer-derived bone metastasis or calcification disorders as vascular calcification. In this review, we will summarize the most important data regarding the implication of SK/S1P axis in bone and joint diseases and ectopic calcification, and discuss the therapeutic potential of targeting SK/S1P metabolism for the treatment of these pathologies.
Collapse
Affiliation(s)
- Alaeddine El Jamal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Carole Bougault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS UMR 5089, F-31077, Toulouse, France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France.
| |
Collapse
|
24
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
25
|
Li Q, Xu A, Chu Y, Chen T, Li H, Yao L, Zhou P, Xu M. Rap1A promotes esophageal squamous cell carcinoma metastasis through the AKT signaling pathway. Oncol Rep 2019; 42:1815-1824. [PMID: 31545475 PMCID: PMC6775818 DOI: 10.3892/or.2019.7309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Ras‑associated protein 1A (Rap1A) is a member of the Ras subfamily of small GTP‑binding proteins and is found to promote metastasis in several types of cancer. However, the functional role and molecular mechanism of action in Rap1A in esophageal squamous cell carcinoma (ESCC) is not fully understood. In the present study, Rap1A was found to be upregulated in ESCC tissues and its expression was correlated with cancer stage. Functional studies revealed that Rap1A could promote ESCC metastasis by stimulating cell migration and invasion in vivo and in vitro. Further study indicated that the transcriptional factor SP1 increased Rap1A expression via promoter binding and transcription activation. Furthermore, Rap1A promoted epithelial‑to‑mesenchymal transition, possibly through the AKT signaling pathway. Hence, the findings of the present study indicated that Rap1A may be a potential prognostic marker or therapeutic target for ESCC.
Collapse
Affiliation(s)
- Qinfang Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Aiping Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuan Chu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tao Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hongqi Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Liqing Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Meidong Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
26
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
27
|
Lin Z, Zhang L, Zhou J, Zheng J. Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition. Mol Med Rep 2019; 20:3735-3745. [PMID: 31485652 PMCID: PMC6755154 DOI: 10.3892/mmr.2019.10597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
The aberrant expression of tumor suppressor Smad4 often occurs in colorectal cancer (CRC), and this phenomenon is believed to be associated with drug resistance. The present study aimed to investigate the effects of Smad4 on the sensitivity of CRC cells to cetuximab, and the possible mechanism underlying such an effect. A total of 629 colorectal adenocarcinoma cases were downloaded from The Cancer Genome Atlas (TCGA) database, and a Smad4 mutation rate of ~21% was demonstrated among the cases. Low expression of Smad4 was present in CRC tissues analyzed by TCGA and in four CRC cell lines, as determined by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Cell Counting kit‑8 (CCK‑8) was used to measure the effects of different concentrations of cetuximab on SW480 cell viability at 24 and 48 h. The results demonstrated that treatment of SW480 cells with 20 µg/ml cetuximab for 48 h markedly reduced cell viability. In addition, plasmids were transfected into SW480 cells to induce Smad4 silencing or overexpression. Silencing Smad4 attenuated the sensitivity of SW480 CRC cells to cetuximab; this effect was reflected in increased cell viability and slightly increased migration and invasion, as determined by CCK‑8, wound scratch and Transwell analyses. RT‑qPCR and western blotting was performed to assess the expression levels of apoptosis‑ and epithelial‑mesenchymal transition (EMT)‑related genes. Silencing Smad4 partly reversed the effects of cetuximab on the mRNA and protein expression levels of vimentin, Bax/Bcl‑2 and E‑cadherin. However, Smad4 overexpression enhanced SW480 cell sensitivity to cetuximab. In conclusion, Smad4 may serve a vital role in the sensitivity of CRC cells to chemotherapeutic drugs by promoting EMT.
Collapse
Affiliation(s)
- Zhenlv Lin
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lin Zhang
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junfeng Zhou
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jiantao Zheng
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
28
|
Wu X, Wu Q, Zhou X, Huang J. SphK1 functions downstream of IGF-1 to modulate IGF-1-induced EMT, migration and paclitaxel resistance of A549 cells: A preliminary in vitro study. J Cancer 2019; 10:4264-4269. [PMID: 31413745 PMCID: PMC6691691 DOI: 10.7150/jca.32646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/25/2019] [Indexed: 12/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) -induced epithelial-mesenchymal transition (EMT) plays a key role in the metastasis and drug resistance of non-small cell lung cancer (NSCLC). Sphingosine kinase-1 (SphK1) is also involved in EMT of NSCLC. However, the interaction between SphK1 and IGF-1 in the EMT of NSCLC is largely unknown. To clarify this issue, we examined the involvement of SphK1 in IGF-1-induced EMT using human lung cancer cell line A549, and its paclitaxel-resistant subline. Cell viability was evaluated by cell counting kit-8 assay; Migratory ability was examined using scratch wound healing test; Protein expression levels of SphK1, vimentin, fibronectin, N-cadherin and E-cadherin were detected by western blot analysis, respectively. The results showed that, IGF-1 treatment of A549 cells stimulated the expression of SphK1, the activation of ERK and AKT, the cell migration, and the expression of EMT hallmark proteins, while inhibition of SphK1 by its specific inhibitor SKI-II suppressed all the above changes and increased the sensitivity of A549 cells to paclitaxel. Our data demonstrate that SphK1 acts as a downstream effector of IGF-1 and plays a critical role in IGF-1-induced EMT, cell migration and paclitaxel resistance of A549 cells, suggesting that SphK1 might be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xingping Wu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Jiangsu, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, P.R. China.,Department of Respirology, the First People's Hospital of Lianyungang, Jiangsu, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, P.R. China
| | - Xiqiao Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Jiangsu, P.R. China
| |
Collapse
|