1
|
Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, Mageed SSA, Moussa R, Mohammed OA, Abdel-Reheim MA, Doghish AS. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6349-6368. [PMID: 39825964 DOI: 10.1007/s00210-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26Th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Chattopadhyay S, Rajendran RL, Chatterjee G, Reyaz D, Prakash K, Hong CM, Ahn BC, ArulJothi KN, Gangadaran P. Mesenchymal stem cell-derived exosomes: A paradigm shift in clinical therapeutics. Exp Cell Res 2025; 450:114616. [PMID: 40414452 DOI: 10.1016/j.yexcr.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Mesenchymal stromal/stem cell (MSC)-derived exosomes are nanoscale extracellular vesicles that have emerged as promising candidates for therapeutic and diagnostic applications because of their unique bioactive cargo, including proteins, lipids, and nucleic acids. These vesicles mitigate concerns of immunogenicity and tumorigenicity associated with MSC-based therapies and offer enhanced stability, higher scalability, and ease of modification. However, the use of MSC-derived exosomes in clinical practice is associated with challenges, including difficulties in isolation, characterization, and standardization. This review explores the biogenesis and structural properties of MSC-derived exosomes and discusses the molecular mechanisms underlying their therapeutic effects. It also discusses ongoing clinical trials on their applications in cancer, cardiovascular, neurological, and regenerative medicine. Preclinical and clinical data have demonstrated the potential of MSC-derived exosomes in enhancing tissue repair, reducing inflammation, and modulating immune responses. Despite these advancements, gaps in scalable production methods, regulatory guidelines, and therapeutic consistency must be addressed. Future innovations in bioengineering, manufacturing, and regulatory frameworks are essential to realize the full potential of MSC-derived exosomes in mainstream medicine.
Collapse
Affiliation(s)
- Sayantani Chattopadhyay
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Gargii Chatterjee
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Danyal Reyaz
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Kruthika Prakash
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| | - Kandasamy Nagarajan ArulJothi
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, 603203, India.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Lu Y, Ruan X, Xiao G, Dai Y, Li G, Cai G, Zheng L, Guan Z, Sun W, Wang H. Lockd Enhances Mandibular Mesenchymal Stem Cell Proliferation While Inhibiting Osteogenic Capability via Binding With SUZ12 in the Inflammatory Microenvironment. J Clin Periodontol 2025; 52:171-185. [PMID: 39401094 DOI: 10.1111/jcpe.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024]
Abstract
AIM To investigate the role of lncRNA Lockd in mandibular mesenchymal stem cell (M-MSC) proliferation and osteogenic capability in the inflammatory microenvironment, focusing on its interaction with SUZ12. MATERIALS AND METHODS Using lncR Lockd knockdown/overexpression cell models and a murine periodontitis model, we explored Lockd's effects on M-MSC proliferation and osteogenic capability in the inflammatory microenvironment. Predictions from multiple databases and a series of rescue experiments revealed the regulatory role of the Lockd/SUZ12 signalling axis of M-MSC in the inflammatory microenvironment. RESULTS Lockd was found to stimulate M-MSC proliferation but impair osteogenic differentiation. The in vitro studies suggested that the activation of Lockd negatively inhibited the osteogenic differentiation process and may ultimately impact bone formation in periodontitis. Mechanistically, it was elucidated that Lockd interacts with SUZ12, a core component of the polycomb repressive complex 2 (PRC2), and may affect the PRC2 complex's role in osteogenic gene expression. CONCLUSIONS Lockd boosts the proliferation of M-MSCs but inhibits their osteogenic differentiation by interacting with SUZ12, potentially inhibiting osteogenic capability in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Yahui Lu
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Gang Xiao
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Yueming Dai
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Gen Li
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Guanhui Cai
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Lihe Zheng
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Zhaolan Guan
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
4
|
Yin X, Li J, Zhao J, Zheng W, Zhang A, Ma J. Epigenetic modifications involving ncRNAs in digestive system cancers: focus on histone modification. Clin Epigenetics 2024; 16:162. [PMID: 39563475 PMCID: PMC11577885 DOI: 10.1186/s13148-024-01773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, epigenetic modifications have been strongly linked to tumor development, with histone modifications representing a key epigenetic mechanism. In addition, non-coding RNAs (ncRNAs) play a critical role in regulating cancer-related pathways. The abnormal interaction between histone modifications and ncRNAs, both pivotal epigenetic regulators, has been widely observed across various cancer types. Here, we systematically explore the molecular mechanisms through which histone modifications and ncRNAs contribute in the pathogenesis of digestive system cancers, and aberrant ncRNA-mediated histone modifications manipulate various biological behaviors of tumor cells including proliferation, migration, angiogenesis, etc. In addition, we provide new insights into diagnostic, prognostic markers, therapeutic targets and chemoradiation resistance for digestive system cancers from the epigenetic perspective.
Collapse
Affiliation(s)
- Xiaodi Yin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Jingyi Li
- Intensive Care Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Weihan Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Aohua Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Jun Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China.
| |
Collapse
|
5
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
6
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
7
|
Li Y, Liu C, Xin L, Liu C, Cao J, Yue Z, Sheng J, Yuan Y, Zhou Q, Liu Z. Upregulation of E-cadherin by the combination of methionine restriction and HDAC2 intervention for inhibiting gastric carcinoma metastasis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:62-70. [PMID: 38143381 PMCID: PMC11000262 DOI: 10.3724/abbs.2023244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/27/2023] [Indexed: 12/26/2023] Open
Abstract
Invasion and metastasis are the leading causes of death in individuals with malignant tumors, including gastric cancer. In this study, we aim to explore the effect and related mechanisms of methionine restriction (MR) on gastric carcinoma metastasis. In the MR cell model, gastric carcinoma cells are cultured in the MR medium, and in the animal model, BALB/c nude rodents are administered with a methionine-free diet after receiving injections of MKN45 cells into the caudal vein. Transwell assay is used to detect cell invasion and migration. Chromatin immunoprecipitation is performed to investigate the levels of H3K9me2, H3K27Ac, and H3K27me3 in the E-cadherin promoter. The results show that MR inhibits gastric carcinoma cell migration, invasion, and lung metastasis. MR increases E-cadherin while reducing the H3K27me3 level in the E-cadherin promoter. E-cadherin expression in gastric carcinoma cells is adversely regulated by HDAC2. Overexpressing HDAC2 reduces the H3K27Ac level in the E-cadherin promoter, while interfering with HDAC2 increases the H3K27Ac level. HDAC2 interference under MR conditions further upregulates E-cadherin expression and inhibits gastric carcinoma cell migration, invasion, and lung metastasis. MR combined with HDAC2 interference promotes E-cadherin expression by mediating the methylation and acetylation of E-cadherin, thus inhibiting the invasion, migration, and lung metastasis of gastric carcinoma cells. Our study provides a new theoretical basis for the inhibitory effect of MR on gastric cancer.
Collapse
Affiliation(s)
- Yifan Li
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Chenxi Liu
- Excellent Ophthalmology Class
221School of Ophthalmology & OptometryNanchang UniversityNanchang330006China
| | - Lin Xin
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Chuan Liu
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Jiaqing Cao
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Zhenqi Yue
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Jie Sheng
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Yiwu Yuan
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Qi Zhou
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Zhiyang Liu
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| |
Collapse
|
8
|
Wang H, Ma X, Jiang Z, Xia D, Sui F, Fu F, Dai Y. Estrogen promotes the proliferation and migration of endometrial cancer cells by upregulating the expression of lncRNA HOTAIR. Gynecol Endocrinol 2023; 39:2269248. [PMID: 37846544 DOI: 10.1080/09513590.2023.2269248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Estrogen (E2) is the main contributor to the progression of endometrial cancer (EC). The long noncoding RNA HOX antisense intergenic RNA (HOTAIR) is emerging as a new regulator in several cancer types. This study aimed to investigate the role of HOTAIR in EC development and identify the underlying molecular mechanisms. METHODS HOTAIR expression levels in human EC tissues and the corresponding adjacent tissues and human EC Ishikawa cells were determined by quantitative PCR. Ishikawa cells were treated with E2 or estrogen receptor (ER) inhibitor ICI182780, transfected with siHOTAIR oligo, or infected with lentivirus expressing shHOTAIR/shNC, alone or in combinations. The protein expression of polycomb repressive complex 2 (PRC2) was evaluated by western blotting, and cell migration was measured by transwell assays. A xenograft tumorigenic model was established by inoculating control or stable shHOTAIR-infected Ishikawa cells into nude mice and implanting 17β-estradiol release pellets. RESULTS HOTAIR expression was significantly elevated in human EC tissues. E2 exposure markedly increased HOTAIR levels in Ishikawa cells. Notably, E2 increased the protein expression of PRC2 and promoted EC cell migration, which were dependent on HOTAIR expression, as HOTAIR knockdown abolished these effects of E2. Similarly, E2 promoted the in vivo proliferation of grafted Ishikawa cells via upregulated HOTAIR expression in nude mice. CONCLUSIONS Human EC tissues highly express HOTAIR, and E2-induced EC progression depends on HOTAIR expression. This work suggests that the E2-HOTAIR axis is a potential therapeutic target in EC therapy.
Collapse
Affiliation(s)
- Huixiao Wang
- Department of Maternal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xulan Ma
- Department of Gynecology, Aerospace Center Hospital, Beijing, China
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing,China
| | - Di Xia
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing,China
| | - Feng Sui
- Department of Maternal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fengxian Fu
- Department of Gynecology, Aerospace Center Hospital, Beijing, China
| | - Yinmei Dai
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing,China
| |
Collapse
|
9
|
Chen P, Liu Z, Xiao H, Yang X, Li T, Huang W, Zhou H. Effect of tumor exosome-derived Lnc RNA HOTAIR on the growth and metastasis of gastric cancer. Clin Transl Oncol 2023; 25:3447-3459. [PMID: 37199906 DOI: 10.1007/s12094-023-03208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. METHODS Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. RESULTS The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. CONCLUSION LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Pan Chen
- The Animal Laboratory Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhenyang Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hua Xiao
- Hepatobiliary Surgery Department, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaolin Yang
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting Li
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Huang
- Department of Radiation Oncology, Research Center of Carcinogenesis and Targeted Therapy/National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Yang D, Shi M, You Q, Zhang Y, Hu Z, Xu J, Cai Q, Zhu Z. Tumor- and metastasis-promoting roles of miR-488 inhibition via HULC enhancement and EZH2-mediated p53 repression in gastric cancer. Cell Biol Toxicol 2023; 39:1341-1358. [PMID: 36449143 DOI: 10.1007/s10565-022-09760-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
Dysregulation of microRNAs (miRNAs or miRs) is implicated in the development of gastric cancer (GC), which is possibly related to their roles in targeting tumor-suppressive or tumor-promoting genes. Herein, the current study was intended to ascertain the function of miR-488 and its modulatory mechanism in GC. Initially, human GC cells were assayed for their in vitro malignancy after miRNA gain- or loss-of-function and RNA interference or overexpression. Also, tumorigenesis and liver metastasis were evaluated in nude mouse models. Results demonstrated that miR-488 elevation suppressed GC (MKN-45 and OCUM-1) cell proliferation, migration, and invasiveness in vitro and reduced their tumorigenesis and liver metastasis in vivo. The luciferase assay identified that miR-488 bound to HULC and inhibited its expression. Furthermore, HULC could enhance EZH2-H3K27me3 enrichment at the p53 promoter region and epigenetically repress the p53 expression based on the data from RIP- and ChIP-qPCR assay. Additionally, HULC was validated to enhance GC growth and metastasis in vitro and in vivo. Overall, HULC re-expression elicited by miR-488 inhibition can enhance EZH2-H3K27me3 enrichment in the p53 promoter and repress the p53 expression, thus promoting the growth and metastasis of GC.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Mengyao Shi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qing You
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
11
|
Chu DX, Jin Y, Wang BR, Jiao Y, Zhang CK, Guo ZH, Hu SZ, Li N. LncRNA HOTAIR Enhances Epithelial-to-mesenchymal Transition to Promote the Migration and Invasion of Liver Cancer by Regulating NUAK1 via Epigenetic Inhibition miR-145-5p Expression. J Cancer 2023; 14:2329-2343. [PMID: 37576402 PMCID: PMC10414040 DOI: 10.7150/jca.85335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
LncRNA HOTAIR play important roles in the epigenetic regulation of carcinogenesis and progression in liver cancer. Previous studies suggest that the overexpression of HOTAIR predicts poor prognosis. In this study, through transcriptome sequencing data and in vitro experiments, we found that HOTAIR were more highly expressed and there is significantly positive relationship between HOTAIR and NUAK1 in liver cancer tissues and cell lines. miR-145-5p was downregulated and showed negative correlation with HOTAIR and NUAK1. Transfect Sh-HOTAIR, LZRS-HOTAIR, miR-145 mimic, miR-145 inhibitor to change the expression of HOTAIR and miR-145-5p. The addition of HTH-01-015 inhibits the expression of NUAK1. HOTAIR knockdown, miR-145-5p upregulation and NUAK1 inhibition all repressed migration, invasion and metastasis and reversed the epithelial-to-mesenchymal transition in SNU-387 and HepG2 cells. We also showed that HOTAIR recruiting and binding PRC2 (EZH2) epigenetically represses miR-145-5p, which controls the target NUAK1, thus contributing to liver cancer cell-EMT process and accelerating tumor metastasis. Moreover, it is demonstrated that HOTAIR crosstalk with miR-145-5p/NUAK1 during epigenetic regulation. Our findings indicate that HOTAIR/miR-145-5p/NUAK1 axis acts as an EMT regulator and may be candidate prognostic biomarker and targets for new therapies in liver cancer.
Collapse
Affiliation(s)
- Dong-xia Chu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yu Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Bing-rong Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Chao-ke Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Zi-han Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Shao-zhuo Hu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Na Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
12
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
14
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Wang J, Zhao J, Hu P, Gao L, Tian S, He Z. Long Non-coding RNA HOTAIR in Central Nervous System Disorders: New Insights in Pathogenesis, Diagnosis, and Therapeutic Potential. Front Mol Neurosci 2022; 15:949095. [PMID: 35813070 PMCID: PMC9259972 DOI: 10.3389/fnmol.2022.949095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, neurodegenerative diseases, multiple sclerosis, traumatic brain injury, and corresponding neuropathological changes, often lead to death or long-term disability. Long non-coding RNA (lncRNA) is a class of non-coding RNA with a transcription length over 200 nt and transcriptional regulation. lncRNA is extensively involved in physiological and pathological processes through epigenetic, transcription, and post-transcriptional regulation. Further, dysregulated lncRNA is closely related to the occurrence and development of human diseases, including CNS disorders. HOX Transcript antisense RNA (HOTAIR) is the first discovered lncRNA with trans-transcriptional regulation. Recent studies have shown that HOTAIR may participate in the regulation of the occurrence and development of CNS disorders. In addition, HOTAIR has the potential to become a new biomarker for the diagnosis and prognosis assessment of CNS disorders and even provide a new therapeutic target for CNS disorders. Here, we reviewed the research results of HOTAIR in CNS disorders to provide new insights into the pathogenesis, diagnostic value, and therapeutic target potential of HOTAIR in human CNS disorders.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pan Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shen Tian
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhenwei He,
| |
Collapse
|
16
|
Ghanei M, Poursheikhani A, Aarabi A, Taghechian N, Abbaszadegan MR. Inconsistency in the expression pattern of a five-lncRNA signature as a potential diagnostic biomarker for gastric cancer patients in bioinformatics and in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:704-714. [PMID: 35949302 PMCID: PMC9320203 DOI: 10.22038/ijbms.2022.62181.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Due to diagnosis of gastric cancer in advanced stages as well as its poor prognosis, finding biomarkers is essential. In this study, using the TCGA RNAseq data of gastric cancer patients, we evaluated the diagnostic value of lncRNAs that had differential expression. MATERIALS AND METHODS We evaluated P-value, FDR, and log fold change for whole transcripts. Next, by comparison of the RNAseq gene names with the total known lncRNA names, we identified differential expressed lncRNAs. Following this, specificity and sensitivity for lncRNAs coming from the previous step were calculated. For more confirmation, we predicted target genes and performed GO and KEGG signaling pathway analysis. In the end, we examined reliability and consistency of expression of this signature in three gastric cancer cell lines and one of them in twenty tumors and tumor-adjacent normal tissue samples using qRT-PCR. RESULTS Five lncRNAs had proper sensitivity and specificity and had target genes involved in cancer-related signaling pathways; however, they showed different expression patterns in TCGA data and in vitro. CONCLUSION The results of our study demonstrated that the five-lncRNAs PART1, UCA1, DIRC3, HOTAIR, and HOXA11AS require more investigation to be confirmed as diagnostic biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Mahmoud Ghanei
- Medical Genetics and Molecular Medicine Department, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Poursheikhani
- Medical Genetics and Molecular Medicine Department, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Aarabi
- Human Genetics Division, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghechian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics and Molecular Medicine Department, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
18
|
Roy RK, Yadav R, Sharma U, Kaushal Wasson M, Sharma A, Tanwar P, Jain A, Prakash H. Impact of non-coding RNAs on cancer directed immune therapies: Now then and forever. Int J Cancer 2022; 151:981-992. [PMID: 35489027 DOI: 10.1002/ijc.34060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence demonstrates that the host genome's epigenetic modifications are essential for living organisms to adapt to extreme conditions. DNA methylation, covalent modifications of histone, and inter-association of non-coding RNAs facilitate the cellular manifestation of epigenetic changes in the genome. Out of various factors involved in the epigenetic programming of the host, non-coding RNAs (ncRNAs) such as microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA, snoRNA and piRNA are new generation non-coding molecules that influence a variety of cellular processes like immunity, cellular differentiation, and tumor development. During tumor development, temporal changes in miRNA/LncRNA rheostat influence sterile inflammatory responses accompanied by the changes in the carcinogenic signaling in the host. At the cellular level, this is manifested by the up-regulation of Inflammasome and inflammatory pathways, which promotes cancer-related inflammation. Given this, we discuss the potential of lncRNAs, miRNAs, circular RNA, snoRNA and piRNA in regulating inflammation and tumor development in the host. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | |
Collapse
|
19
|
Kong F, Ma L, Wang X, You H, Zheng K, Tang R. Regulation of epithelial-mesenchymal transition by protein lysine acetylation. Cell Commun Signal 2022; 20:57. [PMID: 35484625 PMCID: PMC9052664 DOI: 10.1186/s12964-022-00870-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2022] [Indexed: 01/01/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a vital driver of tumor progression. It is a well-known and complex trans-differentiation process in which epithelial cells undergo morphogenetic changes with loss of apical-basal polarity, but acquire spindle-shaped mesenchymal phenotypes. Lysine acetylation is a type of protein modification that favors reversibly altering the structure and function of target molecules via the modulation of lysine acetyltransferases (KATs), as well as lysine deacetylases (KDACs). To date, research has found that histones and non-histone proteins can be acetylated to facilitate EMT. Interestingly, histone acetylation is a type of epigenetic regulation that is capable of modulating the acetylation levels of distinct histones at the promoters of EMT-related markers, EMT-inducing transcription factors (EMT-TFs), and EMT-related long non-coding RNAs to control EMT. However, non-histone acetylation is a post-translational modification, and its effect on EMT mainly relies on modulating the acetylation of EMT marker proteins, EMT-TFs, and EMT-related signal transduction molecules. In addition, several inhibitors against KATs and KDACs have been developed, some of which can suppress the development of different cancers by targeting EMT. In this review, we discuss the complex biological roles and molecular mechanisms underlying histone acetylation and non-histone protein acetylation in the control of EMT, highlighting lysine acetylation as potential strategy for the treatment of cancer through the regulation of EMT. Video Abstract
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
20
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
21
|
HOTAIR Induces the Downregulation of miR-200 Family Members in Gastric Cancer Cell Lines. IRANIAN BIOMEDICAL JOURNAL 2022; 26:77-84. [PMID: 34923813 PMCID: PMC8784900 DOI: 10.52547/ibj.26.1.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Gastric cancer (GC) is the fourth most common human malignancy and the second reason for cancer morbidity worldwide. Long noncoding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) has recently emerged as a promoter of metastasis in various cancer types, including GC, through the epithelial‑mesenchymal transition (EMT) process. However, the exact mechanism of HOTAIR in promoting EMT is unknown. Aberrant expression of the miR-200 family has been linked to the occurrence and development of various types of malignant tumors. This study investigates the correlation between the HOTAIR and miR-200 family gene expression patterns in GC cell lines. We investigated the miR-200 and HOTAIR due to their common molecular features in the EMT process. Methods AGS and MKN45 cell lines were transfected with si-HOTAIR, along with a negative control. The effect of HOTAIR knockdown was also analyzed on cell viability and also on the expression of miR-200 family members, including miR-200a, -200b, and -200c, in cell lines using qRT-PCR. Statistical analysis was performed to find the potential correlation between the expression level of HOTAIR and miRs. Results Our results showed significant increased miR-200 family expression level in transfected AGS and MKN45 GC cells (fold changes > 2; p < 0.001). Moreover, a negative correlation was observed between HOTAIR and miR-200 expression levels in GC cell lines (p < 0.05). Conclusion Our findings showed a significant association between miR-200 family and HOTAIR expression levels in GC cell lines. Taken together, the HOTAIR-miR-200 axis seems to play a vital role in human GC, suggesting a potential therapeutic target in future GC treatment.
Collapse
|
22
|
Ma Q, Yang L, Tolentino K, Wang G, Zhao Y, Litzenburger UM, Shi Q, Zhu L, Yang C, Jiao H, Zhang F, Li R, Tsai MC, Chen JA, Lai I, Zeng H, Li L, Chang HY. Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis. eLife 2022; 11:79126. [PMID: 36579891 PMCID: PMC9831604 DOI: 10.7554/elife.79126] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
HOTAIR is a 2.2-kb long noncoding RNA (lncRNA) whose dysregulation has been linked to oncogenesis, defects in pattern formation during early development, and irregularities during the process of epithelial-to-mesenchymal transition (EMT). However, the oncogenic transformation determined by HOTAIR in vivo and its impact on chromatin dynamics are incompletely understood. Here, we generate a transgenic mouse model with doxycycline-inducible expression of human HOTAIR in the context of the MMTV-PyMT breast cancer-prone background to systematically interrogate the cellular mechanisms by which human HOTAIR lncRNA acts to promote breast cancer progression. We show that sustained high levels of HOTAIR over time increased breast metastatic capacity and invasiveness in breast cancer cells, promoting migration and subsequent metastasis to the lung. Subsequent withdrawal of HOTAIR overexpression reverted the metastatic phenotype, indicating oncogenic lncRNA addiction. Furthermore, HOTAIR overexpression altered both the cellular transcriptome and chromatin accessibility landscape of multiple metastasis-associated genes and promoted EMT. These alterations are abrogated within several cell cycles after HOTAIR expression is reverted to basal levels, indicating an erasable lncRNA-associated epigenetic memory. These results suggest that a continual role for HOTAIR in programming a metastatic gene regulatory program. Targeting HOTAIR lncRNA may potentially serve as a therapeutic strategy to ameliorate breast cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Karen Tolentino
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Guiping Wang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Yang Zhao
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Ulrike M Litzenburger
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Quanming Shi
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Lin Zhu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Chen Yang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiyuan Jiao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Miao-Chih Tsai
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Jun-An Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ian Lai
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States,Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States,Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States,Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
23
|
Chen J, Hou SF, Tang FJ, Liu DS, Chen ZZ, Zhang HL, Wang SH. HOTAIR/Sp1/miR-199a critically regulates cancer stemness and malignant progression of cutaneous squamous cell carcinoma. Oncogene 2022; 41:99-111. [PMID: 34697449 DOI: 10.1038/s41388-021-02014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
The long non-coding RNA (lncRNA), HOX antisense intergenic RNA (HOTAIR) is a well-characterized oncogene in multiple human cancers, but not in cutaneous squamous cell carcinoma (CSCC). In this study, we focused on investigating the potential role of HOTAIR in stemness of CSCC. By measuring its expression using RT-qPCR in CSCC vs. normal tissues, as well as in CSCC cell lines A431 or SCC13, A431- or SCC13-derived CSCC stem cells (CSCSCs), and normal skin fibroblasts (HSFs), we detected higher expression of HOTAIR in CSCC than in normal tissues, in recurrent than in non-recurrent CSCC tissues, in CSCCs and CSCSCs than in HSFs, and particularly, in CSCSCs than in CSCCs. Kaplan-Meier analysis suggested that higher expression of HOTAIR was positively correlated with worse overall survival of CSCC patients. Functional assays on colony formation, EdU incorporation, sphere formation, western blot on stem-cell biomarkers, and in vivo models showed that HOTAIR was essential in maintaining multiple stem cell phenotypes of CSCSCs in vitro and in vivo xenograft growth as well as metastasis. Mechanistically, HOTAIR directly interacted with and up-regulated Sp1. Sp1 then induced DNMT1-mediated promoter methylation and direct transcriptional repression of miR-199a-5p. Targeting Sp1 or DNMT1 further boosted the in vivo anti-tumor and anti-metastasis activities of targeting HOTAIR. In conclusion, HOTAIR, by up-regulating Sp1 and targeting miR-199a, promotes stemness and progression of CSCC. Targeting HOTAIR, Sp1 or the underlying mechanisms may thus benefit CSCC treatment.
Collapse
Affiliation(s)
- Jia Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Shu-Fen Hou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Feng-Jie Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Dai-Song Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zi-Zi Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Hong-Lian Zhang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Shao-Hua Wang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
24
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
26
|
Zhao H, Hu H, Chen B, Xu W, Zhao J, Huang C, Xing Y, Lv H, Nie C, Wang J, He Y, Wang SQ, Chen XB. Overview on the Role of E-Cadherin in Gastric Cancer: Dysregulation and Clinical Implications. Front Mol Biosci 2021; 8:689139. [PMID: 34422902 PMCID: PMC8371966 DOI: 10.3389/fmolb.2021.689139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third most common cause of cancer death all over the world. E-cadherin encoded by human CDH1 gene plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. Full-length E-cadhrin tethered on the cell membrane mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. After proteolysis, the extracellular fragment of the full-length E-cadhein is released into the extracellular environment and the blood, which is called soluble E-cadherin (sE-cadherin). sE-cadherin promots invasion and metastasis as a paracrine/autocrine signaling molecule in the progression of various types of cancer including gastric cancer. This review mainly summarizes the dysregulation of E-cadherin and the regulatory roles in the progression, invasion, metastasis, and drug-resistance, as well as its clinical applications in diagnosis, prognosis, and therapeutics of gastric cancer.
Collapse
Affiliation(s)
- Huichen Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Huang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yishu Xing
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiao-Bing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Son SW, Yun BD, Song MG, Lee JK, Choi SY, Kuh HJ, Park JK. The Hypoxia-Long Noncoding RNA Interaction in Solid Cancers. Int J Mol Sci 2021; 22:ijms22147261. [PMID: 34298879 PMCID: PMC8307739 DOI: 10.3390/ijms22147261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs. In this review, we focus attention on the relationship between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate molecules for controlling cancer.
Collapse
Affiliation(s)
- Seung Wan Son
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Ba Da Yun
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Mun Gyu Song
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Jin Kyeong Lee
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
28
|
Ahadi A. Functional roles of lncRNAs in the pathogenesis and progression of cancer. Genes Dis 2021; 8:424-437. [PMID: 34179307 PMCID: PMC8209321 DOI: 10.1016/j.gendis.2020.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as regulators of gene expression and pivotal transcriptional regulators in cancer cells via diverse mechanisms. lncRNAs involves a variety of pathological and biological activities, such as apoptosis, cell proliferation, metastasis, and invasion. By using microarray and RNA sequencing, it was identified that dysregulation of lncRNAs affects the tumorigenesis process. Taken together, these lncRNAs are putative biomarker and therapeutic target in human malignancies. In this review, I discuss the latest finding regarding the dysregulation of some important lncRNAs and their diverse mechanisms of these lncRNAs in the pathogenesis and progression of certain cancers; also, I summarize the possible roles of lncRNAs in clinical application for diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198396-3113, Iran
| |
Collapse
|
29
|
Bure IV, Nemtsova MV. Methylation and Noncoding RNAs in Gastric Cancer: Everything Is Connected. Int J Mol Sci 2021; 22:ijms22115683. [PMID: 34073603 PMCID: PMC8199097 DOI: 10.3390/ijms22115683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress, gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Aberrant DNA methylation pattern and deregulation of noncoding RNA expression appear in the early stages of gastric cancer. Numerous investigations have confirmed their significant role in gastric cancer tumorigenesis and their high potential as diagnostic and prognostic biomarkers. Currently, it is clear that these epigenetic regulators do not work alone but interact with each other, generating a complex network. The aim of our review was to summarize the current knowledge of this interaction in gastric cancer and estimate its clinical potential for the diagnosis, prognosis, and treatment of the disease.
Collapse
Affiliation(s)
- Irina V. Bure
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +49-915-069-2721
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
30
|
Zhang F, Yan Y, Cao X, Zhang J, Li Y, Guo C. Methylation of microRNA-338-5p by EED promotes METTL3-mediated translation of oncogene CDCP1 in gastric cancer. Aging (Albany NY) 2021; 13:12224-12238. [PMID: 33882457 PMCID: PMC8109089 DOI: 10.18632/aging.103822] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/14/2020] [Indexed: 11/25/2022]
Abstract
Unmasking the complex regulatory pathways that mediate the malignant phenotypes of cancer cells can provide novel targets for therapies that could limit the recurrence and metastasis of gastric cancer (GC). Herein, we intended to clarify the role of embryonic ectoderm development protein (EED), microRNA-228-5p (miR-338-5p), methyltransferase like 3 (METTL3) and CUB domain containing protein 1 (CDCP1) in GC. Differentially expressed miRNAs and their target genes were extracted by in silico analysis. The studies revealed high expression of EED in GC tissues and cell lines and it high expression in GC patients was shown to be associated with poor prognosis. The chromatin immunoprecipitation assay identified that EED methylated miR-338-5p to inhibit its expression. EED knockdown could restrain the proliferative and invasive abilities of GC cells by inducing miR-338-5p. Furthermore, miR-338-5p targeted m6A methylase METTL3, while METTL3 amplified the translation of CDCP1 via m6A activity which led to accelerated proliferation and invasion of GC cells. Moreover, in vivo experiments validated that EED promoted the progression of GC through mediating the miR-338-5p/METTL3/CDCP1 axis. Collectively, EED downregulated miR-338-5p through histone methylation, which in turn impaired miR-338-5p-dependent METTL3 inhibition and enhanced CDCP1 translation, therefore contributing to the development of GC.
Collapse
Affiliation(s)
- Fangbin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yan Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xinguang Cao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yingxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Changqing Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
31
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol 2021; 14:101036. [PMID: 33588137 PMCID: PMC7901038 DOI: 10.1016/j.tranon.2021.101036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
HOTAIR recruited SNAIL and reduced the expression of HNF4α to promote EMT of colorectal cancer. Provided potential novel long non-coding RNA-directed early diagnosis and therapy for colorectal cancer. Provided further insight into the regulatory mechanism of HOTAIR in colorectal cancer.
Colorectal cancer causes severe burdensome on the health by its high fatality and poor prognosis. Hox transcript antisense intergenic RNA (HOTAIR) was believed closely related with the genesis and development of colorectal cancer, but the regulatory mechanism is still to be investigated. The expression of HOTAIR was analyzed in colorectal cancer using both qRT-PCR and ISH assay. The cell viability, migration, invasion and apoptosis rate were evaluated using MTT, BrdU,Transwell and flow cytometryexperiments. The interaction between HOTAIR and SNAIL was detected using RIP and RNA pull-down. The binding of SNAIL to HNF4α promoter was assessed by ChIP. The cell lines that knock down HOTAIR, SNAIL or overexpress HNF4α were constructed using retroviral vector system. The tumorigenic and metastatic capacity of colorectal cancer cells after knocking down HOTAIR were evaluated based on xenograft assay and liver metastases model. HOTAIR was highly expressed in both tissue and cell lines of colorectal cancer, indicated a regulatory function in colorectal cancer. Knock-down of HOTAIR suppressed cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer cells in vitro, and inhibited the growth and metastasis of colorectal tumor in nude mice. We further found that HOTAIR suppressed HNF4α via recruiting SNAIL, and the overexpression of HNF4α inhibited cell viability, migration, invasion and EMT of colorectal cancer cells. We demonstrated that HOTAIR regulates the level of HNF4α via recruiting SNAIL, knocking down HOTAIR repressed the cell viability and metestasis of colorectal cancer cell line in vitro, and suppressed the tomorgenesis and migration/invasion of colorectal cancer in vivo.
Collapse
|
33
|
Liu W, Zhang Y, Luo B. Long Non-coding RNAs in Gammaherpesvirus Infections: Their Roles in Tumorigenic Mechanisms. Front Microbiol 2021; 11:604536. [PMID: 33519750 PMCID: PMC7843584 DOI: 10.3389/fmicb.2020.604536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression at the epigenetic, transcriptional, or posttranscriptional level by interacting with protein, DNA, and RNA. Emerging evidence suggests that various lncRNAs are abnormally expressed and play indispensable roles in virus-triggered cancers. Besides, a growing number of studies have shown that virus-encoded lncRNAs participate in tumorigenesis. However, the functions of most lncRNAs in tumors caused by oncogenic viruses and their underlying mechanisms remain largely unknown. In this review, we summarize current findings regarding lncRNAs involved in cancers caused by Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV). Additionally, we discuss the contribution of lncRNAs to tumor occurrence, development, invasion, and metastasis; the roles of lncRNAs in key signaling pathways and their potential as biomarkers and therapeutic targets for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Paço A, Aparecida de Bessa Garcia S, Leitão Castro J, Costa-Pinto AR, Freitas R. Roles of the HOX Proteins in Cancer Invasion and Metastasis. Cancers (Basel) 2020; 13:E10. [PMID: 33375038 PMCID: PMC7792759 DOI: 10.3390/cancers13010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis correspond to the foremost cause of cancer-related death, and the molecular networks behind these two processes are extremely complex and dependent on the intra- and extracellular conditions along with the prime of the premetastatic niche. Currently, several studies suggest an association between the levels of HOX genes expression and cancer cell invasion and metastasis, which favour the formation of novel tumour masses. The deregulation of HOX genes by HMGA2/TET1 signalling and the regulatory effect of noncoding RNAs generated by the HOX loci can also promote invasion and metastasis, interfering with the expression of HOX genes or other genes relevant to these processes. In this review, we present five molecular mechanisms of HOX deregulation by which the HOX clusters products may affect invasion and metastatic processes in solid tumours.
Collapse
Affiliation(s)
- Ana Paço
- BLC3—Biomassa Lenho-Celulósica de 3ª Geração, Campus of Technology and Innovation, 3405-169 Oliveira do Hospital, Portugal
| | - Simone Aparecida de Bessa Garcia
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Joana Leitão Castro
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Ana Rita Costa-Pinto
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
Hu L, Liu J, Meng Y, Zheng H, Ding C, Wang H, Charwudzi A, Li M, Li J, Zhai Z, Xiong S. Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol 2020; 18:1434-1444. [PMID: 33241756 DOI: 10.1080/15476286.2020.1854520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA HOTAIR has been reported to play a key role in regulating various biological processes in various cancers. However, the roles and mechanisms of HOTAIR in acute myeloid leukaemia (AML) are still unclear and need to be investigated. In this study, we induced differentiation of four AML cell lines by all-trans retinoic acid (ATRA) and found HOTAIR was significantly upregulated in the process. Chromatin immunoprecipitation (ChIP) assays indicated that C/EBPβ upregulated HOTAIR during ATRA induced differentiation in HL-60 cells. By gain- and loss-of-function analysis, we then observed that HOTAIR expression was positively correlated with ATRA-induced differentiation and negatively regulated G1 phase arrest in HL-60 cells. In addition, we found that HOTAIR promoted ATRA-induced differentiation via the regulation of the cell cycle regulator p21 via miR-17-5p. Moreover, we detected the expression of HOTAIR in 84 de novo AML patients, HOTAIR was found significantly downregulated in the AML patients compared to the iron deficiency anaemia (IDA) control group, negatively correlated with the platelet level in M2 patients. In all, our data suggest that HOTAIR may be subtype-specific in AML-M2 patients, also HOTAIR regulates AML differentiation by C/EBPBβ/HOTAIR/miR-17-5p/p21 pathway. The findings of the present study provide a novel insight into the mechanism of lncRNA-mediated differentiation and indicate that HOTAIR may be a promising therapeutic target for leukaemia, especially for AML with M2 type.Abbreviation: AML: acute myeloid leukaemia; APL: acute promyelocytic leukaemia; ATRA: all-trans retinoic acid; CCK8: cell Counting Kit-8; CDKs: cyclin-dependent kinases ; CeRNA: competing endogenous RNAs; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; FAB: French-American-British; FCM: flow cytometry; HOTAIR: HOX transcript antisense RNA; IDA: iron-deficiency anemia; lncRNA: long non-coding RNA; 3'UTR: 3'untranslated region; MT: Mutation type; WT: Wild type; qRT-PCR: Quantitative real-time PCR.
Collapse
Affiliation(s)
- Linhui Hu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Liu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huimin Zheng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chen Ding
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Manman Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
36
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
37
|
Reddy PC, Gungi A, Ubhe S, Galande S. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics Chromatin 2020; 13:43. [PMID: 33046126 PMCID: PMC7552563 DOI: 10.1186/s13072-020-00364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
38
|
Zhang Y, Zhang J, Mao L, Li X. Long noncoding RNA HCG11 inhibited growth and invasion in cervical cancer by sponging miR-942-5p and targeting GFI1. Cancer Med 2020; 9:7062-7071. [PMID: 32794340 PMCID: PMC7541137 DOI: 10.1002/cam4.3203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as essential regulators in cancer tumorigenesis. Our study aimed to explore the underlying mechanism of lncRNA human leukocyte antigen complex group 11 (HCG11) in cervical cancer (CC) progression. Long noncoding RNA HCG11 was downregulated in CC. Functional assays demonstrated that lncRNA HCG11 inhibited CC cell proliferation and invasion. Then, we confirmed that lncRNA HCG11 could directly bind to miR-942-5p. Moreover, inhibition of miR-942-5p suppressed the growth and invasion of CC cells, and growth factor-independent transcription repressor 1 (GFI1) gene was the target gene of miR-942-5p. Long noncoding RNA HCG11 increased the expression of GFI1 and suppressed cell proliferation and invasion by acting as a miR-942-5p sponge. Finally, the overexpression of lncRNA HCG11 suppressed the proliferation and metastasis of CC cells in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lin Mao
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xing Li
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
39
|
Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:187. [PMID: 32928281 PMCID: PMC7490906 DOI: 10.1186/s13046-020-01700-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Natural antisense transcripts (NATs), which are transcribed from opposite strands of DNA with partial or complete overlap, affect multiple stages of gene expression, from epigenetic to post-translational modifications. NATs are dysregulated in various types of cancer, and an increasing number of studies focusing on NATs as pivotal regulators of the hallmarks of cancer and as promising candidates for cancer therapy are just beginning to unravel the mystery. Here, we summarize the existing knowledge on NATs to highlight their underlying mechanisms of functions in cancer biology, discuss their potential roles in therapeutic application, and explore future research directions.
Collapse
|
40
|
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife 2020; 9:e59053. [PMID: 32730204 PMCID: PMC7392603 DOI: 10.7554/elife.59053] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi VanvitelliNaplesItaly
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi VanvitelliNaplesItaly
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi VanvitelliNaplesItaly
| |
Collapse
|
41
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
42
|
Chen H, Hou G, Yang J, Chen W, Guo L, Mao Q, Ge J, Zhang X. SOX9-activated PXN-AS1 promotes the tumorigenesis of glioblastoma by EZH2-mediated methylation of DKK1. J Cell Mol Med 2020; 24:6070-6082. [PMID: 32329150 PMCID: PMC7294137 DOI: 10.1111/jcmm.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/26/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence has validated the essential regulation of long non-coding RNAs (lncRNAs) in the biological process of tumours. LncRNA PXN-AS1 has been discovered to be as a tumour suppressor in pancreatic cancer; however, its function and mechanism remain greatly unknown in glioblastoma (GBM). Our present study indicated that PXN-AS1 was highly expressed in GBM tissues and cells. Besides, the knock-down of PXN-AS1 was closely associated with the inhibitory proliferation and inducing apoptosis of GBM cells. PXN-AS1 inhibition was also found to restrain GBM tumour growth. Importantly, SOX9 functioned as a transcription factor and activated PXN-AS1 expression, and overexpressed PXN-AS1 rescued the inhibitory role of down-regulated SOX9 in GBM cell growth. Subsequently, it was discovered that PXN-AS1 activated Wnt/β-catenin pathway. DKK1 was widely known as an inhibitor gene of Wnt/β-catenin pathway, and its expression was negatively associated with PXN-AS1 and SOX9. Interestingly, we found that PXN-AS1 could recruit EZH2 to mediate the H3K27me3 level of DKK1 promoter. Restoration experiments manifested that DKK1 knock-down counteracted PXN-AS1 depletion-mediated repression in GBM cell growth. All facts pointed out that PXN-AS1 might be of importance in exploring the therapeutic strategies of GBM.
Collapse
Affiliation(s)
- Hongjin Chen
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Guoqiang Hou
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Jian Yang
- Department of Pediatric NeurosurgeryXin Hua Hospital affiliated to School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weilin Chen
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Liemei Guo
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Qin Mao
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Jianwei Ge
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Xiaohua Zhang
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| |
Collapse
|
43
|
Zheng F, Li J, Ma C, Tang X, Tang Q, Wu J, Chai X, Xie J, Yang XB, Hann SS. Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J Cell Mol Med 2020; 24:5578-5592. [PMID: 32248643 PMCID: PMC7214156 DOI: 10.1111/jcmm.15214] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
HOTAIR is an important carcinogenic lncRNA and involves in tumorigenesis, and invasion. MiR-34a-5p functions as a tumour suppressor. However, the underlying mechanism of HOTAIR regulation especially in association with miR-34a-5p in non-small-cell lung cancer (NSCLC) has not been explored. Herein, we performed series of in vitro experiments, including viability, migration, invasion, apoptosis and in vivo xenograft model, and identified that HOTAIR was remarkably elevated in NSCLC cells. Enforced HOTAIR expression promoted migration and invasion, while depleted HOTAIR diminished the ability of migration and invasion of NSCLC cells. We also observed that miR-34a-5p was dramatically inhibited in NSCLC cells and the binding correlation between HOTAIR and miR-34a-5p was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. We also showed that induction of miR-34a-5p and reduction of HOTAIR, and the interaction between miR-34a-5p and HOTAIR resulted in the suppression of epithelial-mesenchymal transition (EMT) as illustrated by induction of key epithelial markers E-cadherin expression, reduction of vimentin and EMT-inducing transcription factor snail. Excessive expression of snail resisted miR-34a-5p-inhibited cell growth. Snail binds to E-cadherin promoter and regulates E-cadherin expression. There was a synergy in combination of berberine and gefinitib in this process. Similar findings were also observed in a tumour xenograft model. Collectively, this is the first report demonstrating reciprocal interaction of miR-34a-5p- and HOTAIR-mediated regulation of snail resulting in inhibition of EMT process by the combination of berberine and gefitinib suggesting that regulation of miR-34a-5p- and HOTAIR-mediated inhibition of EMT may provide novel treatment paradigms for lung cancer.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Human Resource, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ChangJu Ma
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoJuan Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JingJing Wu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoSu Chai
- Department of Medical Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Bo Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J Transl Med 2020; 18:152. [PMID: 32245498 PMCID: PMC7119166 DOI: 10.1186/s12967-020-02320-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Despite considering vast majority of the transcribed molecules as merely noise RNA in the last decades, recent advances in the field of molecular biology revealed the mysterious role of long non-coding RNAs (lncRNAs), as a massive part of functional non-protein-coding RNAs. As a crucial lncRNA, HOX antisense intergenic RNA (HOTAIR) has been shown to participate in different processes of normal cell development. Aberrant overexpression of this lncRNA contributes to breast cancer progression, through different molecular mechanisms. In this review, we briefly discuss the structure of HOTAIR in the context of genome and impact of this lncRNA on normal human development. We subsequently summarize the potential role of HOTAIR overexpression on different processes of breast cancer development. Ultimately, the relationship of this lncRNA with different therapeutic approaches is discussed.
Collapse
|
45
|
Liu K, Gao L, Ma X, Huang JJ, Chen J, Zeng L, Ashby CR, Zou C, Chen ZS. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer 2020; 19:54. [PMID: 32164712 PMCID: PMC7066752 DOI: 10.1186/s12943-020-01162-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Lin Gao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Xiaoshi Ma
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Juan-Juan Huang
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Juan Chen
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
46
|
Shen E, Wang X, Liu X, Lv M, Zhang L, Zhu G, Sun Z. MicroRNA-93-5p promotes epithelial-mesenchymal transition in gastric cancer by repressing tumor suppressor AHNAK expression. Cancer Cell Int 2020; 20:76. [PMID: 32190000 PMCID: PMC7066804 DOI: 10.1186/s12935-019-1092-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common cause of cancer-related mortality worldwide, and microRNAs (miRNAs) have been shown to play an important role in GC development. This study aims to explore the effect of microRNA-93-5p (miR-93-5p) on the epithelial-mesenchymal transition (EMT) in GC, via AHNAK and the Wnt signaling pathway. METHODS Microarray-based gene expression analysis was performed to identify GC-related differentially expressed miRNAs and genes. Then the expression of the miR-93-5p was examined in GC tissues and GC cell lines. The targeting relationship between miR-93-5p and AHNAK was verified by a dual luciferase reporter gene assay. In an attempt to ascertain the contributory role of miR-93-5p in GC, miR-93-5p mimic or inhibitor, as well as an AHNAK overexpression vector, were introduced to HGC-27 cells. HGC-27 cell migration and invasive ability, and EMT were assayed using Transwell assay and western blot analysis. Regulation of the Wnt signaling pathway was also assessed using TOP/FOP flash luciferase assay. RESULTS miR-93-5p was highly expressed in GC tissue samples and cells. Notably, miR-93-5p could target and negatively regulate AHNAK. Down-regulation of miR-93-5p or overexpression of AHNAK could suppress the migration and invasion abilities, in addition to EMT in GC cells via inactivation of the Wnt signaling pathway. CONCLUSION Taken together, downregulation of miR-93-5p attenuated GC development via the Wnt signaling pathway by targeting AHNAK. These findings provide an enhanced understanding of miR-93-5p as a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Erdong Shen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
- Department of Oncology, Yueyang First People’s Hospital, Yueyang, 414000 P. R. China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Xin Liu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Mingyue Lv
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital, Shenyang, 110001 P. R. China
| | - Guolian Zhu
- Department of Oncology, Shenyang Fifth People Hospital, Shenyang, 110001 P. R. China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
47
|
Liu K, Gao L, Ma X, Huang JJ, Chen J, Zeng L, Ashby CR, Zou C, Chen ZS. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer 2020. [PMID: 32164712 DOI: 10.1186/s12943-020-01162-0.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Lin Gao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Xiaoshi Ma
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Juan-Juan Huang
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Juan Chen
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
48
|
Song P, Wu L, Guan W. Genome-Wide Identification and Characterization of DNA Methylation and Long Non-Coding RNA Expression in Gastric Cancer. Front Genet 2020; 11:91. [PMID: 32174965 PMCID: PMC7056837 DOI: 10.3389/fgene.2020.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Abnormal DNA methylation, an epigenetic modification, has increasingly been linked to the pathogenesis of many human cancers. However, there has been little focus on the DNA methylation patterns of genes encoding long noncoding RNAs (lncRNAs) in gastric cancer (GC). This study comprehensively determined DNA methylation and lncRNA expression profiles in GC through genome-wide analysis. Differentially methylated loci and lncRNAs were identified by integrating multi-omics data. In total, 548 differentially methylated CpG sites in lncRNA promoters and 2,399 differentially expressed lncRNAs were screened that were capable of distinguishing GC from normal tissues. Among them, 22 differentially methylation sites in 17 lncRNAs were inversely related to expression levels. Further analysis of DNA methylation status and gene expression level in GC revealed that three CpG sites (cg01550148, cg22497867, and cg20001829) and two lncRNAs (RP11-366F6.2 and RP5-881L22.5) were significantly associated with GC patient overall survival. Molecular function analysis showed that these abnormally methylated lncRNAs were mainly involved in transcriptional activator activity. Our study identified several lncRNAs regulated by aberrant DNA methylation that have clinical utility as novel prognostic biomarkers in GC. These findings help improve the understanding of methylated patterns of lncRNAs and further our knowledge of the role of epigenetics in cancer development.
Collapse
Affiliation(s)
- Peng Song
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
49
|
Zhao M, Xin XF, Zhang JY, Dai W, Lv TF, Song Y. LncRNA GMDS-AS1 inhibits lung adenocarcinoma development by regulating miR-96-5p/CYLD signaling. Cancer Med 2019; 9:1196-1208. [PMID: 31860169 PMCID: PMC6997056 DOI: 10.1002/cam4.2776] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
According to the global cancer statistic, lung cancer is one of the most dangerous tumors, which poses a serious threat to human health. Exploration the mechanism of lung cancer and new targeted therapeutic measures is always the hot topic. Long noncoding RNA (lncRNA) is an important factor affecting the development of tumors. However, the research on the mechanism of lncRNA in the progress of lung cancer needs to be further expanded. In this study, we found that the expression of lncRNA GMDS-AS1 was significantly reduced in lung adenocarcinoma (LUAD) tissues and cells. Upregulated GMDS-AS1 can significantly inhibit the proliferation of LUAD cells and promote cell apoptosis in vitro and in vivo. The results indicate that GMDS-AS1 acts as a tumor suppressor gene to affect the development of LUAD. Further studies revealed that GMDS-AS1 is a target gene of miR-96-5p, and GMDS-AS1 regulates proliferation and apoptosis of LUAD cells in association with miR-96-5p. In addition, we also confirmed that CYLD lysine 63 deubiquitinase (CYLD) is also a target gene of miR-96-5p. Through various validations, we confirmed that GMDS-AS1 can act as a ceRNA to upregulate the expression of CYLD by sponging miR-96-5p. Moreover, the intervention of GMDS-AS1/miR-96-5p/CYLD network can regulate the proliferation and apoptosis of LUAD cells. In this study, we revealed that the GMDS-AS1/miR-96-5p/CYLD network based on ceRNA mechanism plays an important role in the development of LUAD and provides a new direction and theoretical basis for targeted therapy of LUAD.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Respiratory Medicine, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Xiao-Feng Xin
- Department of Respiratory Medicine, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Jian-Ya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Wei Dai
- Department of Respiratory Medicine, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Tang-Feng Lv
- Department of Respiratory Medicine, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Second Military Medical University, Nanjing, China
| |
Collapse
|
50
|
DGCR8/ZFAT-AS1 Promotes CDX2 Transcription in a PRC2 Complex-Dependent Manner to Facilitate the Malignant Biological Behavior of Glioma Cells. Mol Ther 2019; 28:613-630. [PMID: 31813799 DOI: 10.1016/j.ymthe.2019.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022] Open
Abstract
Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells. DGCR8 or CDX2 knockdown or ZFAT-AS1 overexpression suppressed glioma cell proliferation, migration, and invasion and facilitated apoptosis. DGCR8 might decrease ZFAT-AS1 expression by attenuating its stability in a manner of inducing its cleavage. Importantly, ZFAT-AS1 could inhibit CDX2 transcription by mediating the methylation of histone H3 on lysine 27 (H3K27me3) modification induced by PRC2 in the CDX2 promoter region. In addition, CDX2 transcriptionally activated DGCR8 expression by binding to its promoter regions, forming a positive feedback loop of DGCR8/ZFAT-AS1/CDX2. In conclusion, DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells.
Collapse
|