1
|
Zhu K, Ma X, Guan X, Tong Y, Xie S, Wang Y, Zheng H, Guo L, Lu R. Germ cell-specific gene 2 accelerates cell cycle in epithelial ovarian cancer by inhibiting GSK3α-p27 cascade. J Mol Histol 2024; 55:241-251. [PMID: 38613588 PMCID: PMC11102877 DOI: 10.1007/s10735-024-10185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/25/2024] [Indexed: 04/15/2024]
Abstract
Epithelial ovarian cancer (EOC) is one of the most common malignant gynecological tumors with rapid growth potential and poor prognosis, however, the molecular mechanism underlying its outgrowth remained elusive. Germ cell-specific gene 2 (GSG2) was previously reported to be highly expressed in ovarian cancer and was essential for the growth of EOC. In this study, GSG2-knockdown cells and GSG2-overexpress cells were established through lentivirus-mediated transfection with Human ovarian cancer cells HO8910 and SKOV3. Knockdown of GSG2 inhibited cell proliferation and induced G2/M phase arrest in EOC. Interestingly, the expression of p27, a well-known regulator of the cell cycle showed a most significant increase after GSG2 knockdown. Further phosphorylation-protein array demonstrated the phosphorylation of GSK3αSer21 decreased in GSG2-knockdown cells to the most extent. Notably, inhibiting GSK3α activity effectively rescued GSG2 knockdown's suppression on cell cycle as well as p27 expression in EOC. Our study substantiates that GSG2 is able to phosphorylate GSK3α at Ser21 and then leads to the reduction of p27 expression, resulting in cell cycle acceleration and cell proliferation promotion. Thus, GSG2 may have the potential to become a promising target in EOC.
Collapse
Affiliation(s)
- Keyu Zhu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Guan
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Abd El-Rahman YA, Chen PJ, ElHady AK, Chen SH, Lin HC, El-Gamil DS, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. Development of 5-hydroxybenzothiophene derivatives as multi-kinase inhibitors with potential anti-cancer activity. Future Med Chem 2024; 16:1239-1254. [PMID: 38989990 PMCID: PMC11249150 DOI: 10.1080/17568919.2024.2342708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Chemoresistance in cancer challenges the classical therapeutic strategy of 'one molecule-one target'. To combat this, multi-target therapies that inhibit various cancer-relevant targets simultaneously are proposed. Methods & results: We introduce 5-hydroxybenzothiophene derivatives as effective multi-target kinase inhibitors, showing notable growth inhibitory activity across different cancer cell lines. Specifically, compound 16b, featuring a 5-hydroxybenzothiophene hydrazide scaffold, emerged as a potent inhibitor, displaying low IC50 values against key kinases and demonstrating significant anti-cancer effects, particularly against U87MG glioblastoma cells. It induced G2/M cell cycle arrest, apoptosis and inhibited cell migration by modulating apoptotic markers. Conclusion: 16b represents a promising lead for developing new anti-cancer agents targeting multiple kinases with affinity to the hydroxybenzothiophene core.
Collapse
Affiliation(s)
- Yara A Abd El-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan
- Graduate Institute of Medicine, I-Shou University, Kaohsiung, 824410, Taiwan
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung, 831301, Taiwan
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, 824410, Taiwan
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, 12451, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical & Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
3
|
Geng C, Wang Q, Xing PF, Wang M, Tong SD, Zhou JY. Effects and mechanisms of GSG2 in esophageal cancer progression. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04260-2. [PMID: 35939116 DOI: 10.1007/s00432-022-04260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Esophageal cancer was recognized as one of the malignant tumors with poor prognosis. Germ cell associated 2 (GSG2) has been reported to be of great significance in cell growth and tumor formation. This study aimed to investigate the biological function and molecular mechanism of GSG2 in esophageal cancer. METHODS First, relationship between GSG2 expression and tumor characteristics in esophageal cancer patients was analyzed through immunohistochemical (IHC) staining. MTT assay, flow cytometry, cloning formation assay, wound-healing assay and Transwell assay were used to determine proliferation, apoptosis and migration of esophageal cancer cell with GSG2 knockdown in vitro. Expression of apoptosis related proteins and downstream pathway proteins after GSG2 knockdown were detected through Human Apoptosis Antibody Array and western blot analysis. The GSG2 knockdown function in vivo was explored through a xenograft tumor model. RESULTS GSG2 was highly expressed in tumor tissues, which has clinical significance in predicting the malignant degree of patients with esophageal cancer. In addition, GSG2 knockdown significantly inhibited a variety of malignant biological behaviors of esophageal cancer cells, such as inhibiting proliferation, reducing colony formation, promoting apoptosis, hindering migration. The decrease of GSG2 expression in esophageal cancer cells can inhibit the xenograft tumor growth. CONCLUSIONS In conclusion, GSG2 was involved in esophageal cancer progression and development, which may provide an effective molecular target for the treatment of esophageal cancer in the future.
Collapse
Affiliation(s)
- Chong Geng
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Province, No.188 Shizi street, Suzhou, 215006, China
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Peng-Fei Xing
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Min Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Shao-Dong Tong
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Province, No.188 Shizi street, Suzhou, 215006, China.
| |
Collapse
|
4
|
Yu C, Fan Y, Zhang Y, Liu L, Guo G. LINC00893 inhibits the progression of prostate cancer through miR-3173-5p/SOCS3/JAK2/STAT3 pathway. Cancer Cell Int 2022; 22:228. [PMID: 35818076 PMCID: PMC9275192 DOI: 10.1186/s12935-022-02637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most common malignant tumors in the male urinary system. In recent years, the morbidity and mortality of PCa have been increasing due to the limited effects of existing treatment strategies. Long non-coding RNA (lncRNA) LINC00893 was reported to inhibit the proliferation and metastasis of papillary thyroid cancer cells, but its role in PCa has not been reported. This study aims to investigate the role and underlying mechanism of LINC00893 in regulating the progression of PCa cells. Methods We first compared LINC00893 expression levels between PCa tissues and normal prostate tissues through TCGA database. The relative LINC00893 expression levels were further validated in 66 pairs of PCa tissues and para-cancerous normal tissues, as well as in PCa cell lines. Gain-of-function experiment was performed by transfecting PCa cell with LINC00893 expression vector, and CCK (Cell count kit)-8, 5-Ethynyl-2′-deoxyuridine (EdU) incorporation, colony information and transwell assays were conducted to assess the functional phenotypes. Dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP) and RNA pull-down assays were performed to evaluate the molecular interactions. Results LINC00893 was downregulated in PCa tissues and cell lines, and patients with low expression of LINC00893 were associated with a poorer overall survival rate. LINC00893 overexpression hindered the proliferation, epithelial-mesenchymal transition (EMT) as well as the migratory ability of PCa cells, and suppressed the tumorigenesis of PCa cells in nude mice. We further demonstrated that LINC00893 acted as a sponge for miR-3173-5p and inhibited its activity, which in turn regulated the suppressor of cytokine signaling 3 (SOCS3)/Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling axis. Conclusions Our study demonstrated that LINC00893 suppresses the progression of PCa cells through targeting miR-3173-5p/SOCS3/JAK2/STAT3 axis. Our data uncovers a novel tumor-suppressor role of LINC00893 in PCa, which may serve as a potential strategy for targeted therapy in PCa. Grapical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02637-4.
Collapse
Affiliation(s)
- Chuigong Yu
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Yu Fan
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Yu Zhang
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Lupeng Liu
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Gang Guo
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
5
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
6
|
Zhou J, Nie W, Yuan J, Zhang Z, Mi L, Wang C, Huang R. GSG2 knockdown suppresses cholangiocarcinoma progression by regulating cell proliferation, apoptosis and migration. Oncol Rep 2021; 45:91. [PMID: 33846801 PMCID: PMC8042665 DOI: 10.3892/or.2021.8042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 01/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of hepatocellular carcinoma characterized by high aggressiveness and extremely poor patient prognosis. The germ cell-specific gene 2 protein (GSG2) is a histone H3 threonine-3 kinase required for normal mitosis. Nevertheless, the role and mechanism of GSG2 in the progression and development of CCA remain elusive. In the present study, the association between GSG2 and CCA was elucidated. Firstly, we demonstrated that GSG2 was overexpressed in CCA specimens and HCCC-9810 and QBC939 cells by immunohistochemical (IHC) staining. It was further revealed that high expression of GSG2 in CCA had significant clinical significance in predicting disease deterioration. Subsequently, cell proliferation, apoptosis, cell cycle distribution and migration were measured by MTT, flow cytometry, and wound healing assays, respectively in vitro. The results demonstrated that downregulation of GSG2 decreased proliferation, promoted apoptosis, arrested the cell cycle and weakened migration in the G2 phase of CCA cells. Additionally, GSG2 knockdown inhibited CCA cell migration by suppressing epithelial-mesenchymal transition (EMT)-related proteins, such as N-cadherin and vimentin. Mechanistically, GSG2 exerted effects on CCA cells by modulating the PI3K/Akt, CCND1/CDK6 and MAPK9 signaling pathways. In vivo experiments further demonstrated that GSG2 knockdown suppressed tumor growth. In summary, GSG2 was involved in the progression of CCA, suggesting that GSG2 may be a potential therapeutic target for CCA patients.
Collapse
Affiliation(s)
- Jun Zhou
- Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Jiajia Yuan
- Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zeyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Liangliang Mi
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Changfa Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Ranglang Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
7
|
Zhang T, Chen X, Sun L, Guo X, Cai T, Wang J, Zeng Y, Ma J, Ding X, Xie Z, Niu L, Zhang M, Tao N, Yang F. Proteomics reveals the function reverse of MPSSS-treated prostate cancer-associated fibroblasts to suppress PC-3 cell viability via the FoxO pathway. Cancer Med 2021; 10:2509-2522. [PMID: 33704935 PMCID: PMC7982613 DOI: 10.1002/cam4.3825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer‐associated fibroblasts (prostate CAFs) are essential components of the tumor microenvironment and can promote tumor progression through their immunosuppressive functions. MPSSS, a novel polysaccharide purified from Lentinus edodes, has been reported to have anti‐tumor activity. MPSSS could also inhibit the immunosuppressive function of prostate CAFs, which has been demonstrated through that the secretome of MPSSS‐treated prostate CAFs could inhibit the proliferation of T cells. However, how the secretome of MPSSS‐treated prostate CAFs influence prostate cancer progression is still unclear. Interestingly, we found that the low molecular weight (3–100kD) secretome of prostate CAFs (lmwCAFS) could promote the growth of PC‐3 cells, while that of MPSSS‐treated prostate CAFs (MT‐lmwCAFS) could inhibit their growth. We carried out comparative secretomic analysis of lmwCAFS and MT‐lmwCAFS to identify functional molecules that inhibit the growth of PC‐3 cells, and proteomic analysis of lmwCAFS‐treated PC‐3 cells and MT‐lmwCAFS‐treated PC‐3 cells to investigate the underlying molecular mechanism. These analyses suggest that TGF‐β3 from MT‐lmwCAFS may inhibit the growth of PC‐3 cells. The validated experiments revealed that TGF‐β3 from MT‐lmwCAFS activated p21 expression in PC‐3 cells by regulating the FoxO pathway thereby inducing G0/G1 cell cycle arrest of PC‐3 cells. Overall, our data demonstrated that MPSSS reversed the ability of prostate CAFs to suppress the cell viability of PC‐3 cells, which might provide a potential therapeutic strategy to prevent prostate cancer progression.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanqiong Zeng
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Jing Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Huang Y, Liu Y, Zhu K, Ma X, Lu R, Zhang M. GSG2 Promotes Development and Predicts Poor Prognosis of Ovarian Cancer. Cancer Manag Res 2021; 13:499-508. [PMID: 33500663 PMCID: PMC7826093 DOI: 10.2147/cmar.s274807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose Ovarian cancer is one of the most common malignant tumors in gynecology, whose treatment was seriously limited by the unclear understanding of molecular mechanism in disease development. GSG2, also known as Haspin, is a novel molecule found to be involved in human cancers. Materials and Methods In this study, immunohistochemical analysis was used to detect GSG2 expression in ovarian cancer tissues and corresponding normal tissues. Statistical analysis was performed to construct relationship between GSG2 and tumor characteristics as well as prognosis. Ovarian cell model with GSG2 knockdown was constructed through lentivirus-mediated transfection of shRNA, which was used in MTT assay, colony formation assay and flow cytometry for investigating the role of GSG2 in ovarian cancer. A human apoptosis antibody array was used to identify potential downstream apoptosis-related proteins of GSG2. Results The results demonstrated the upregulation of GSG2 in ovarian cancer, whose expression was positively related to tumor grade and AJCC stage, and negatively correlated with patients’ prognosis. Moreover, knockdown of GSG2 inhibited ovarian cancer development through suppressing cell growth and inducing cell apoptosis. Further exploration revealed that a variety of apoptosis-related and PI3K signaling pathway-related proteins may be implicated in the GSG2 induced regulation of ovarian cancer. Conclusion In summary, it was illustrated that GSG2 was involved in the development of ovarian cancer, which has the potential to become therapeutic target and prognostic indicator in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yixuan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Keyu Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Xiaolu Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Renquan Lu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Meiqin Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|