1
|
Zou J, Chen J, Deng L, Xu B, Yu T, Wang J, He C. Mechanistic insights into SENP1 and OCT4 interaction in promoting drug resistance and stem cell features in colon cancer. Am J Physiol Cell Physiol 2025; 328:C1260-C1278. [PMID: 40063360 DOI: 10.1152/ajpcell.00817.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
This study explores the molecular mechanism by which sentrin/SUMO-specific protease 1 (SENP1) promotes cisplatin (Cis) resistance and tumor stem cell characteristics in colon adenocarcinoma (COAD) through deSUMOylation-mediated modification of octamer-binding transcription factor 4 (OCT4). By analyzing single-cell and transcriptome sequencing datasets, we identified key genes and regulatory pathways in both resistant and sensitive COAD cells. Malignant cells were isolated and evaluated for stemness using the infercnv package, and differential genes between Cis-resistant and -sensitive groups were identified. Machine learning algorithms highlighted essential genes, and databases predicted interaction sites between OCT4 and SENP1. In vitro experiments using enriched HCT116 stem cells revealed that SENP1 and OCT4 expression significantly elevated CD44 and CD133 levels, enhancing stemness. Functional assays showed that SENP1's deSUMOylation of OCT4 intensified Cis resistance, migration, and invasion in cisplatin-resistant cell line 116 (Cis-116) cells. In vivo, SENP1 knockdown reduced tumor growth and stem cell markers, whereas OCT4 overexpression escalated tumor metastasis and structural damage. These findings demonstrate that SENP1's modulation of OCT4 is central to COAD's resistance and stem cell properties, offering a novel target for COAD therapy.NEW & NOTEWORTHY This study uncovers the critical role of SENP1 in regulating OCT4 through deSUMOylation, driving Cis resistance and tumor stemness in COAD. Targeting this pathway may provide novel therapeutic strategies for COAD management.
Collapse
Affiliation(s)
- Jun Zou
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Jing Chen
- Department of nursing, Nanchang Medical College, Nanchang, People's Republic of China
| | - Lei Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Bangran Xu
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Jun Wang
- General Surgery Department of the Trauma Center, Nanchang First Hospital, Nanchang, People's Republic of China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Juang U, Gwon S, Jung W, Nguyen H, Huang Q, Lee S, Lee B, Kwon SH, Kim SH, Park J. Exploring the various functions of PHD finger protein 20: beyond the unknown. Toxicol Res 2025; 41:1-11. [PMID: 39802118 PMCID: PMC11717773 DOI: 10.1007/s43188-024-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 01/16/2025] Open
Abstract
Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival. Given this regulatory effect, PHF20 is usually expressed not only in gliomas but also in breast cancers, colorectal cancers, and other diseases associated with skeletal muscle osteoblastosis and osteoporosis. Thus, PHF20 dysregulation and its downstream effects enhance the abnormalities associated with cancers or other diseases and encourage disease progression. Moreover, PHF20 serves as a nuclear factor kappa-light-chain enhancer of B cell activation, thus increasing pro-inflammatory cytokine production, associated with crosstalk involving the mouse double minute 2 homolog that in turn reduces the normal p53 levels not only in cancers but also in damaged or otherwise injured normal tissues. Despite the findings of various studies, the roles of PHF20 in terms of prognosis, diagnosis, and targeting of disease therapies remain unclear and should be further explored.
Collapse
Affiliation(s)
- Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Quingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
3
|
Fan T, Jiang L, Zhou X, Chi H, Zeng X. Deciphering the dual roles of PHD finger proteins from oncogenic drivers to tumor suppressors. Front Cell Dev Biol 2024; 12:1403396. [PMID: 38813086 PMCID: PMC11133592 DOI: 10.3389/fcell.2024.1403396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
PHD (plant homeodomain) finger proteins emerge as central epigenetic readers and modulators in cancer biology, orchestrating a broad spectrum of cellular processes pivotal to oncogenesis and tumor suppression. This review delineates the dualistic roles of PHD fingers in cancer, highlighting their involvement in chromatin remodeling, gene expression regulation, and interactions with cellular signaling networks. PHD fingers' ability to interpret specific histone modifications underscores their influence on gene expression patterns, impacting crucial cancer-related processes such as cell proliferation, DNA repair, and apoptosis. The review delves into the oncogenic potential of certain PHD finger proteins, exemplified by PHF1 and PHF8, which promote tumor progression through epigenetic dysregulation and modulation of signaling pathways like Wnt and TGFβ. Conversely, it discusses the tumor-suppressive functions of PHD finger proteins, such as PHF2 and members of the ING family, which uphold genomic stability and inhibit tumor growth through their interactions with chromatin and transcriptional regulators. Additionally, the review explores the therapeutic potential of targeting PHD finger proteins in cancer treatment, considering their pivotal roles in regulating cancer stem cells and influencing the immune response to cancer therapy. Through a comprehensive synthesis of current insights, this review underscores the complex but promising landscape of PHD finger proteins in cancer biology, advocating for further research to unlock novel therapeutic avenues that leverage their unique cellular roles.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Han B, Chen J, Chen S, Shen X, Hou L, Fang J, Lian M. PPARG and the PTEN-PI3K/AKT Signaling Axis May Cofunction in Promoting Chemosensitivity in Hypopharyngeal Squamous Cell Carcinoma. PPAR Res 2024; 2024:2271214. [PMID: 38505269 PMCID: PMC10948231 DOI: 10.1155/2024/2271214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
It has been demonstrated that PPARG may interact with the PTEN-PI3K/AKT pathway, contributing to its involvement in the chemotherapy treatment of hypopharyngeal squamous cell carcinoma (HSCC). However, the underlying mechanism remains largely unknown. In this study, gene expression profiles of 17 HSCC patients, comprising 8 chemotherapy-sensitive patients (CSP) and 9 chemotherapy-nonsensitive patients (CNSP), were collected and analyzed to investigate expression patterns, correlations, influencing factors of the PPARG-PTEN-PI3K/AKT pathway, and its role in regulating chemosensitivity. The results revealed significantly increased expression (p < 0.04) of AKT1, AKT2, AKT3, PIK3CA, PPARG, and PTEN in the CSP group compared to the CNSP group. Specifically, AKT2 exhibited significant overexpression in tumor tissue (p = 0.01), while AKT2, AKT3, PPARG, and PTEN displayed significant increases in normal tissue (p ≤ 0.04). Positive correlations (R ∈ [0.43, 0.71], p < 0.014) were observed between PIK3CA, AKT1, AKT2, AKT3, and PTEN, with AKT2, AKT3, and PTEN also showing significant correlations with PPARG (R ∈ [0.35, 0.47], p < 0.04). Age, gender, and disease stage had no influence on PPARG, PIK3CA, and PTEN expression, but they may affect AKT expressions. Pathway analysis revealed that PPARG may interact with the PTEN-PI3K/AKT signaling pathway, playing a crucial role in regulating chemosensitivity in the normal tissue microenvironment. Our results suggest that AKT1 and PIK3CA may be associated with chemosensitivity in HSCC tumor cells, while PPARG and PTEN might exhibit a correlation with a specific segment of the PI3K/AKT pathway, potentially influencing chemosensitivity in the normal tissue microenvironment of HSCC patients.
Collapse
Affiliation(s)
- Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jiaming Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Shaoshi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
5
|
Kong F, Han B, Chen J, Shen X, Hou L, Fang J, Lian M. Role of PPARG in Chemosensitivity-Regulating Network for Hypopharyngeal Squamous Cell Carcinoma. PPAR Res 2023; 2023:6019318. [PMID: 37791141 PMCID: PMC10545467 DOI: 10.1155/2023/6019318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/10/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
PPARG has been reported to promote chemosensitivity in hypopharyngeal squamous cell carcinoma (HSCC). However, few studies tested its significance in the texture of a complex molecular network regulating chemosensitivity in HSCC. Here, we first employed RNA expression data analysis and literature data mining to uncover candidate genes related to HSCC chemosensitivity. Then, we constructed the molecular network regulating chemosensitivity in HSCC. After that, we employed degree centrality (DC) and weighted centrality (WC) to test the significance of PPARG within the regulating network. Pathway enrichment was done to study the cofunctions of PPARG and the rest of the genes within the network. The findings of our study contribute to the construction of a comprehensive network that regulates HSCC chemosensitivity, consisting of 57 genes, including PPARG. Notably, within this network, PPARG demonstrates a ranking of #5 and #13 based on DC and WC, respectively. Moreover, PPARG is connected to 29 out of the 57 genes and plays roles in multiple functional groups. These top related genes include AKT1, TP53, PTEN, MAPK1, NOTCH1, BECN1, PTGS2, SPP1, and RAC1. PPARG gets enriched in several key functional groups that have been implicated in the regulation of chemosensitivity, including those associated with the response to nutrients, vitamins, and peptides, the cellular response to chemical stress, and the regulation of hormone secretion and growth. Our results emphasize the involvement of PPARG and its interconnectedness with other genes in the regulation of HSCC chemosensitivity.
Collapse
Affiliation(s)
- Fanyong Kong
- Department of Otorhinolaryngology, Beijing Shunyi District Hospital, Shunyi Teaching Hospital of Capital Medical University, Beijing 101300, China
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jiaming Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
6
|
PHF20 is a Novel Prognostic Biomarker and Correlated with Immune Status in Breast Cancer. Biochem Genet 2023:10.1007/s10528-022-10321-5. [PMID: 36598702 DOI: 10.1007/s10528-022-10321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Increasing evidence has demonstrated that enhanced PHF20 expression plays a crucial role in cancer development and progression. However, little is known about the prognostic value of PHF20 expression in breast cancer (BRCA). In this study, we attempted to explore the expression pattern of PHF20 and its associations with prognosis and immune status in BRCA. The gene expression data and clinical information of 1109 BRCA samples were downloaded from TCGA database. The expression level of PHF20 protein was determined using UALCAN and HPA database. Kaplan-Meier method and CIBERSORT algorithm were used to analyze the associations of PHF20 expression with overall survival (OS) and immune microenvironment, respectively. Besides, GSEA analysis was conducted to explore potential biological functions and molecular mechanisms of PHF20 in BRCA. Moreover, starBase database was applied to construct a ceRNA nework. PHF20 was highly expressed in BRCA samples both at the transcriptional and protein level, and was strongly correlated with the OS and immune status. Univariable and multivariate Cox regression analyses identified PHF20 as an independent prognostic factor. Additionally, GSEA analysis showed that high PHF20 expression was closely associated with TGF-β signaling pathway, Wnt signaling pathway, and adherens junction. Furthermore, three ceRNA networks (AC037198.1/hsa-miR-223-3p/PHF20, CBR3-AS1/hsa-miR-223-3p/PHF20, and ZNF561-AS1/hsa-miR-223-3p/PHF20) were identified by starBase analysis. Functional experiments validated that PHF20 knockdown inhibited the cell viability and progression in BRCA cells. PHF20 overexpression was significantly associated with poor prognosis and immune status in BRCA, and could act as a potential novel prognostic biomarker for BRCA.
Collapse
|
7
|
Wang D, Wang Q, Zuo Z, Dong Z, He J, Ye X, Tang H, Zou J. Koumine induces apoptosis in Cyprinus carpio liver cells by regulating JAK-STAT and p53 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108475. [PMID: 36496140 DOI: 10.1016/j.fsi.2022.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Koumine is an alkaloid with significant anti-anxiety, anticancer cell proliferation, and analgesic activities, and our previous studies have shown that koumine can be used as an immunostimulant in aquaculture, but the molecular mechanism of its effect remains unclear. We fed a basal diet with 0, 0.2, 2, and 20 mg/kg koumine to C. carpio for 10 weeks, and comprehensive studies of the histological and biochemical parameters and transcriptomes of the four groups were performed. Histological results indicated that the number of apoptotic cells in the liver increased with increasing koumine concentration. Compared with those of the control group, the malondialdehyde, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase, and lactate dehydrogenase levels of the treatment group increased to varying degrees. In total, 100.11 GB of clean data, 4774 DEGs, and 138 differentially expressed genes were obtained from the transcriptome data. Differentially expressed genes were classified into 187 signalling pathways, and the circadian rhythm signalling pathway, the JAK-STAT signalling pathway, the p53 signalling pathway and the PPAR signalling pathway were the top enriched pathways. The qRT-PCR results confirmed that the key genes ifnar1, socs3l, epoa, ghra, cMyc, mcl-1, shisa4, and gtse1 involved in balancing cell proliferation and apoptosis were enriched in these pathways. We discovered that the JAK-STAT and p53 pathways are important targets of koumine. Such information contributes to a better understanding of the potential mechanism by which koumine regulates hepatic immunity as well as to lays the theoretical foundation for its application.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhiheng Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jiayang He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiangchen Ye
- Aquatic Species Introduction and Breeding Centre of Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
8
|
Zhou J, Wang Y, Zhang L, Chen Q, Zhu X, Jiang P, Jiang N, Zhao W, Li B. Engineered Exosomes-Mediated Transfer of hsa-miR-320a Overcomes Chemoresistance in Cervical Cancer Cells via Targeting MCL1. Front Pharmacol 2022; 13:883445. [PMID: 35444548 PMCID: PMC9013939 DOI: 10.3389/fphar.2022.883445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
In cervical cancer (CC), cisplatin resistance greatly restricts the application in clinical. Here, we report that engineered exosomes-mediated transfer of hsa-miR-320a overcomes chemoresistance in cervical cancer cells via targeting Myeloid Cell Leukemia Sequence 1 (MCL1). In DDP resistant CC tissues, as well as cell lines, it was found that miR-320a expression is lower, engineered miR-320a exosomes were used to attenuate DDP resistance in Hela/DDP and Caski/DDP cells. Mechanistically, we find that MCL1, which is a target of miR-320a, overcomes DDP resistance in Hela/DDP cells and in mice. In conclusion, we report that the engineered miR-320a exosomes is proved to be effective and safe.
Collapse
Affiliation(s)
- Jinling Zhou
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanhe Wang
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhu Zhang
- Institute of Nanjing Nanxin Pharmaceutical Technology Research, Nanjing, China
| | - Qin Chen
- Department of Pathology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Zhu
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyue Jiang
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Baohua Li
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|