1
|
Khan A, Sisodiya S, Aftab M, Tanwar P, Hussain S, Gupta V. Mechanisms and Therapeutic Strategies for Endocrine Resistance in Breast Cancer: A Comprehensive Review and Meta-Analysis. Cancers (Basel) 2025; 17:1653. [PMID: 40427153 PMCID: PMC12109706 DOI: 10.3390/cancers17101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background: As per recent scenarios, drug resistance is a significant challenge in treating breast cancer for several reasons, such as genetic mutations, altered signaling pathways, and tumor microenvironment. Endocrine resistance is one of the biggest significant barriers to treatment, particularly in hormone receptor-positive (HR+) breast cancers, which depends on estrogen or progesterone signaling for growth. While therapies such as tamoxifen, aromatase inhibitors, and selective estrogen receptor degraders (SERDs) have effectively targeted these pathways, many patients develop resistance, rendering them less effective over time, which is driving a need for innovative therapeutics to treat breast cancer and overcome drug resistance and better treatment outcomes. Recent studies suggest that combining the different therapies, including immunotherapy, targeted therapy, chemotherapy, etc., with endocrine therapy, may bypass the endocrine resistance. Methodology: We conducted a comprehensive systematic review and meta-analysis examining the molecular mechanisms of endocrine resistance and evaluating randomized clinical trial outcomes, overall survival and progression-free survival in endocrine-resistant breast cancer patients treated with endocrine therapy, targeted therapy, immunotherapy, or chemotherapy. Results: We have analyzed 35 randomized clinical trial studies for different therapies along with combination therapy, and our results demonstrated that supplementary or additional therapies in endocrine resistance breast cancer patients have better progression-free and overall survival. Conclusions: The current study has demonstrated that combination therapies may have good survival results and patient outcomes in endocrine resistance. Also, This review sheds light on current challenges in drug resistance and the future direction of cancer treatment through a comprehensive analysis of these emerging treatment approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Asiya Khan
- Multidisciplinary Research Unit, Government Institute of Medical Sciences, Greater Noida 201310, India;
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India
| | - Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR—National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India; (S.S.); (M.A.)
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune 412115, India
| | - Mehreen Aftab
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR—National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India; (S.S.); (M.A.)
| | - Pranay Tanwar
- Lab Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR—National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India; (S.S.); (M.A.)
| | - Vivek Gupta
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India
| |
Collapse
|
2
|
Hum M, Lee ASG. DNA methylation in breast cancer: early detection and biomarker discovery through current and emerging approaches. J Transl Med 2025; 23:465. [PMID: 40269936 PMCID: PMC12020129 DOI: 10.1186/s12967-025-06495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
Breast cancer remains one of the most common cancers in women worldwide. Early detection is critical for improving patient outcomes, yet current screening methods have limitations. Therefore, there is a pressing need for more sensitive and specific approaches to detect breast cancer in its earliest stages. Liquid biopsy has emerged as a promising non-invasive method for early cancer detection and management. DNA methylation, an epigenetic alteration that often precedes genetic changes, has been observed in precancerous or early cancer stages, making it a valuable biomarker. This review explores the role of DNA methylation in breast cancer and its potential for developing blood-based tests. We discuss advancements in DNA methylation detection methods, recent discoveries of potential DNA methylation biomarkers from both single-omics and multi-omics integration studies, and the role of machine learning in enhancing diagnostic accuracy. Challenges and future directions are also addressed. Although challenges remain, advances in multi-omics integration and machine learning continue to enhance the clinical potential of methylation-based biomarkers. Ongoing research is crucial to further refine these approaches and improve early detection and patient outcomes.
Collapse
Affiliation(s)
- Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
3
|
Jin S, Seonu S, Yin J, Son S, Choi J, Oh J, Kim K, Lee M. Antiproliferative, apoptosis-inducing, and GSTP1 demethylation activities of Ellagitannins isolated from Cornus alba L. Nat Prod Res 2025; 39:1411-1417. [PMID: 38135905 DOI: 10.1080/14786419.2023.2295918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to prove the prostate cancer chemopreventive activity of compounds isolated from CA. We evaluated these compounds using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and evaluated their NF-κB inhibitory activity and apoptosis-inducing activity using western blot analysis and flow cytometry, respectively. Their DNA methylation activity was also evaluated via a methylation-specific polymerase chain reaction in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines. Camptothin B (1), cornusiin B (2), and cornusiin A (3), which were isolated in our previous work, relatively reduced the protein expression levels in PCa cells. Among them, cornusiin B (2) exhibited excellent NF-κB inhibitory activity. Also, concentration-dependently increased the unmethylated DNA content and decreased the methylated DNA content in both PC-3 and LNCaP cells. Therefore, cornusiin B (2), which was isolated from CA, has the potential to act as a chemopreventive agent for prostate cancer.
Collapse
Affiliation(s)
- Siyeon Jin
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seoyeon Seonu
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jun Yin
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seyeon Son
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jinhyeok Choi
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jaeyoon Oh
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Kyungmi Kim
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju, South Korea
| | - Minwon Lee
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
4
|
Nik Amirah Auni NMA, Mohd Redzwan N, Fauzi AN, Yahya MM, Wong KK. Hypomethylating agents as emerging therapeutics for triple-negative breast cancer. Life Sci 2025; 363:123403. [PMID: 39824347 DOI: 10.1016/j.lfs.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties. In this review, the efficacy and anti-tumor immune responses triggered by HMAs in TNBC are presented and discussed. Essentially, overexpression of DNMTs is associated with poor prognosis and reduced TNBC survival rates, and these effects are negated by HMAs. In particular, HMAs could reverse epigenetic silencing of tumor suppressor genes and enhance immune recognition of TNBC cells. Clinical trials of HMAs in TNBCs are limited but early-stage trials indicate that HMAs are safe and tolerable. More clinical studies are required to establish the effectiveness of HMAs against the disease, as supported by preclinical data substantiating their effectiveness especially guadecitabine. Future research should focus on optimizing dosing and exploring combinations with immunotherapies to maximize the potential of HMAs in TNBC treatment.
Collapse
Affiliation(s)
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Agustine Nengsih Fauzi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
5
|
Taufalele PV, Kirkham HK, Reinhart-King CA. Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells. Cell Mol Bioeng 2025; 18:29-38. [PMID: 39949487 PMCID: PMC11813852 DOI: 10.1007/s12195-024-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/26/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose Altered tissue mechanics is a prominent feature of many pathological conditions including cancer. As such, much work has been dedicated to understanding how mechanical features of tissues contribute to pathogenesis. Interestingly, previous work has demonstrated that the tumor vasculature acquires pathological features in part due to enhanced tumor stiffening. To further understand how matrix mechanics may be translated into altered cell behavior and ultimately affect tumor vasculature function, we have investigated the effects of substrate stiffening on endothelial epigenetics. Specifically, we have focused on DNA methylation as recent work indicates DNA methylation in endothelial cells can contribute to aberrant behavior in a range of pathological conditions. Methods Human umbilical vein endothelial cells (HUVECs) were seeded on stiff and compliant collagen-coated polyacrylamide gels and allowed to form monolayers over 5 days. DNA methylation was assessed via 5-methylcytosine ELISA assays and immunofluorescent staining. Gene expression was assessed via qPCR on RNA isolated from HUVECs seeded on collagen-coated polyacrylamide gels of varying stiffness. Results Our work demonstrates that endothelial cells cultured on stiffer substrates exhibit lower levels of global DNA methylation relative to endothelial cells cultured on more compliant substrates. Interestingly, gene expression and DNA methylation dynamics suggest stiffness-mediated gene expression may play a role in establishing or maintaining differential DNA methylation levels in addition to enzyme activity. Additionally, we found that the process of passaging induced higher levels of global DNA methylation. Conclusions Altogether, our results underscore the importance of considering cell culture substrate mechanics to preserve the epigenetic integrity of primary cells and obtain analyses that recapitulate the primary environment. Furthermore, these results serve as an important launching point for further work studying the intersection tissue mechanics and epigenetics under pathological conditions.
Collapse
Affiliation(s)
- Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Hannah K. Kirkham
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Bioengineering Department, Rice University, Houston, TX USA
| |
Collapse
|
6
|
Pierozan P, Höglund A, Theodoropoulou E, Karlsson O. Perfluorooctanesulfonic acid (PFOS) induced cancer related DNA methylation alterations in human breast cells: A whole genome methylome study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174864. [PMID: 39032741 DOI: 10.1016/j.scitotenv.2024.174864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 μM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Dvorska D, Mazurakova A, Lackova L, Sebova D, Kajo K, Samec M, Brany D, Svajdlenka E, Treml J, Mersakova S, Strnadel J, Adamkov M, Lasabova Z, Biringer K, Mojzis J, Büsselberg D, Smejkal K, Kello M, Kubatka P. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Front Oncol 2024; 14:1463656. [PMID: 39435289 PMCID: PMC11491292 DOI: 10.3389/fonc.2024.1463656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. Hypothesis Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. Aims of the study and Methods Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. Results The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. Conclusion This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
Collapse
Affiliation(s)
- Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
8
|
Zhang J, He X, Guo X, Wang J, Gong X, Jiao D, Chen H, Liu Z. Identification potential biomarkers for diagnosis, and progress of breast cancer by using high-pressure photon ionization time-of-flight mass spectrometry. Anal Chim Acta 2024; 1320:342883. [PMID: 39142764 DOI: 10.1016/j.aca.2024.342883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In this study, exhaled breath testing has been considered a promising method for the detection and monitoring of breast cancer (BC). METHODS A high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) platform was used to detect volatile organic compounds (VOCs) in breath samples. Then, machine learning (ML) models were constructed on VOCs for the diagnosis of BC and its progression monitoring. Ultimately, 1981 women with useable breath samples were included in the study, of whom 937 (47.3 %) had been diagnosed with BC. VOC panels were used for ML model construction for BC detection and progression monitoring. RESULTS On the blinded testing cohort, this VOC-based model successfully differentiated patients with and without BC with sensitivity, specificity, and area under receiver operator characteristic curve (AUC) values of 85.9 %, 90.4 %, and 0.946. The corresponding AUC values when differentiating between patients with and without lymph node metastasis (LNM) or between patients with tumor-node-metastasis (TNM) stage 0/I/II or III/IV disease were 0.840 and 0.708, respectively. While developed VOC-based models exhibited poor performance when attempting to differentiate between patients based on pathological patterns (Ductal carcinoma in situ (DCIS) vs Invasive BC (IBC)) or molecular subtypes (Luminal vs Human epidermal growth factor receptor 2 (HER2+) vs Triple-negative BC (TNBC)) of BC. CONCLUSION Collectively, the HPPI-TOFMS-based breathomics approaches may offer value for the detection and progression monitoring of BC. Additional research is necessary to explore the fundamental mechanisms of the identified VOCs.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xixi He
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xuhui Guo
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jia Wang
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xilong Gong
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Dechuang Jiao
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100071, China.
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
9
|
de Queiroz LF, Silva MSDME, Rosman FC, Rosas SLB, de Souza HSP, Carvalho MDGDC. Molecular monitoring by CDKN2A/p16INK4A and RB1 gene methylation in breast cancer. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231358. [PMID: 38716944 PMCID: PMC11068390 DOI: 10.1590/1806-9282.20231358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This prospective study aimed to provide a comprehensive analysis of the methylation status of two pivotal genes, CDKN2A/p16INK4A (cyclin-dependent kinase inhibitor 2A) and RB1 (retinoblastoma transcriptional corepressor 1), in breast cancer patients. METHODS Samples were obtained from 15 women diagnosed with breast cancer and who underwent a total mastectomy. DNA was extracted from the tumor, non-tumor tissue, and peripheral blood (circulating cell-free DNA). The methylation pattern of cell-free DNA extracted from blood collected on the day of mastectomy was compared with the methylation pattern of cell-free DNA from blood collected 1 year post-surgery. The methylation analysis was carried out by sodium bisulfite conversion and polymerase chain reaction, followed by electrophoresis. RESULTS Methylation of CDKN2A/p16INK4A was identified in 13 tumor samples and 12 non-tumor tissue samples. Two patients exhibited CDKN2A/p16INK4A methylation in the cell-free DNA of the first blood collection, while another showed methylation only in the cell-free DNA of the subsequent blood collection. Regarding RB1, 11 tumors and 8 non-tumor tissue samples presented methylation of the gene. CONCLUSION This study presents a novel approach for monitoring breast cancer patients through the analysis of cell-free DNA methylation. This analysis can detect changes in methylation patterns before any visible sign of cancer appears in breast tissue and could help predict the recurrence of malignant breast tumors.
Collapse
Affiliation(s)
- Luiz Fernando de Queiroz
- Universidade Federal do Rio de Janeiro, Faculty of Medicine, Postgraduate Program in Pathological Anatomy, Department of Pathology – Rio de Janeiro (RJ), Brazil
| | | | - Fernando Colonna Rosman
- Universidade Federal do Rio de Janeiro, Faculty of Medicine, Department of Pathology – Rio de Janeiro (RJ), Brazil
| | - Siane Lopes Bittencourt Rosas
- Universidade Federal do Rio de Janeiro, Faculty of Medicine, Department of Clinical Medicine – Rio de Janeiro (RJ), Brazil
| | | | | |
Collapse
|
10
|
Benincasa G, Strozziero MG, Di Pastena MA, Criscuolo C, Cetani G, Trama U, Napoli C. Epigenetic challenges on the horizon of chimeric antigen receptor-T. Cytotherapy 2024; 26:411-412. [PMID: 38466261 DOI: 10.1016/j.jcyt.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli," Naples, Italy.
| | | | - Maria Assunta Di Pastena
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Clelia Criscuolo
- Division of Hematology, Hospital of Aversa (ASLCE), Aversa, Italy
| | - Giusy Cetani
- Division of Hematology, Antonio Cardarelli Hospital, Naples, Italy
| | - Ugo Trama
- Regional Pharmaceutical Unit, Campania Region, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli," Naples, Italy; U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
11
|
Trnkova L, Buocikova V, Mego M, Cumova A, Burikova M, Bohac M, Miklikova S, Cihova M, Smolkova B. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies. Biomed Pharmacother 2024; 174:116559. [PMID: 38603889 DOI: 10.1016/j.biopha.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer comprises a substantial proportion of cancer diagnoses in women and is a primary cause of cancer-related mortality. While hormone-responsive cases generally have a favorable prognosis, the aggressive nature of triple-negative breast cancer presents challenges, with intrinsic resistance to established treatments being a persistent issue. The complexity intensifies with the emergence of acquired resistance, further complicating the management of breast cancer. Epigenetic changes, encompassing DNA methylation, histone and RNA modifications, and non-coding RNAs, are acknowledged as crucial contributors to the heterogeneity of breast cancer. The unique epigenetic landscape harbored by each cellular component within the tumor microenvironment (TME) adds great diversity to the intricate regulations which influence therapeutic responses. The TME, a sophisticated ecosystem of cellular and non-cellular elements interacting with tumor cells, establishes an immunosuppressive microenvironment and fuels processes such as tumor growth, angiogenesis, and extracellular matrix remodeling. These factors contribute to challenging conditions in cancer treatment by fostering a hypoxic environment, inducing metabolic stress, and creating physical barriers to drug delivery. This article delves into the complex connections between breast cancer treatment response, underlying epigenetic changes, and vital interactions within the TME. To restore sensitivity to treatment, it emphasizes the need for combination therapies considering epigenetic changes specific to individual members of the TME. Recognizing the pivotal role of epigenetics in drug resistance and comprehending the specificities of breast TME is essential for devising more effective therapeutic strategies. The development of reliable biomarkers for patient stratification will facilitate tailored and precise treatment approaches.
Collapse
Affiliation(s)
- Lenka Trnkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia; 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia; Regenmed Ltd., Medena 29, Bratislava 811 01, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava 811 08, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia.
| |
Collapse
|
12
|
Iavarone I, Molitierno R, Fumiento P, Vastarella MG, Napolitano S, Vietri MT, De Franciscis P, Ronsini C. MicroRNA Expression in Endometrial Cancer: Current Knowledge and Therapeutic Implications. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:486. [PMID: 38541212 PMCID: PMC10972089 DOI: 10.3390/medicina60030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives: An extracellular vesicle is part of a class of submicron particles derived from cells, mediating cellular crosstalk through microRNA (miRNA). MiRNA is a group of RNA molecules, each of which consists of 15-22 nucleotides and post-transcriptionally modulates gene expression. The complementary mRNAs-onto which the miRNAs hybridize-are involved in processes such as implantation, tumor suppression, proliferation, angiogenesis, and metastasis that define the entire tumor microenvironment. The endometrial biopsy is a standard technique used to recognize cellular atypia, but other non-invasive markers may reduce patient discomfort during the use of invasive methods. The present study aims to examine the distribution and the regulation of the differentially expressed miRNAs (DEMs) and EV-derived substances in women with endometrial cancer. Materials and Methods: We systematically searched the PubMed, EMBASE, Scopus, Cochrane Library, and ScienceDirect databases in April 2023, adopted the string "Endometrial Neoplasms AND Exosomes", and followed the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We selected all the studies that included patients with endometrial cancer and that described the regulation of miRNA molecules in that context. The differences in molecule expression between patients and controls were evaluated as significant when the proteins had a fold change of ±1.5. Results: Seventeen records fulfilled the inclusion criteria: a total of 371 patients and 273 controls were analyzed. The upregulated molecules that had the widest delta between endometrial cancer patients and controls-relative expression ≥ 1 > 3 log2(ratio)-were miR-20b-5p, miR-204-5p, miR-15a-5p, and miR-320a. In particular, miR-20b-5p and miR-204-5p were extracted from both serum and endometrial specimens, whereas miR-15a-5p was only isolated from plasma, and miR-320a was only extracted from the endometrial specimens. In parallel, the most downregulated miRNA in the endometrial cancer patients compared to the healthy subjects was miR-320a, which was found in the endometrial specimens. Conclusions: Although their epigenetic regulation remains unknown, these upregulated molecules derived from EVs are feasible markers for the early detection of endometrial cancer. The modulation of these miRNA molecules should be assessed during different treatments or if recurrence develops in response to a targeted treatment modality.
Collapse
Affiliation(s)
- Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Rossella Molitierno
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Pietro Fumiento
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Maria Giovanna Vastarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| |
Collapse
|
13
|
Kurzava Kendall L, Ma Y, Yang T, Lubecka K, Stefanska B. Epigenetic Effects of Resveratrol on Oncogenic Signaling in Breast Cancer. Nutrients 2024; 16:699. [PMID: 38474826 DOI: 10.3390/nu16050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The crosstalk between oncogenic signaling pathways plays a crucial role in driving cancer development. We previously demonstrated that dietary polyphenols, specifically resveratrol (RSV) and other stilbenoids, epigenetically target oncogenes for silencing via DNA hypermethylation in breast cancer. In the present study, we identify signal transduction regulators among RSV-hypermethylated targets and investigate the functional role of RSV-mediated DNA hypermethylation in the regulation of Hedgehog and Wnt signaling. Non-invasive ER-positive MCF-7 and highly invasive triple-negative MCF10CA1a human breast cancer cell lines were used as experimental models. Upon 9-day exposure to 15 µM RSV, pyrosequencing and qRT-PCR were performed to assess DNA methylation and expression of GLI2 and WNT4, which are upstream regulators of the Hedgehog and Wnt pathways, respectively. Our results showed that RSV led to a DNA methylation increase within GLI2 and WNT4 enhancers, which was accompanied by decreases in gene expression. Consistently, we observed the downregulation of genes downstream of the Hedgehog and Wnt signaling, including common targets shared by both pathways, CCND1 and CYR61. Further analysis using chromatin immunoprecipitation identified increased H3K27 trimethylation and decreased H3K9 and H3K27 acetylation, along with abolishing OCT1 transcription factor binding. Those changes indicate a transcriptionally silent chromatin state at GLI2 and WNT4 enhancers. The inhibition of the Wnt signal transduction was confirmed using a phospho-antibody array that demonstrated suppression of positive and stimulation of negative Wnt regulators. In conclusion, our results provide scientific evidence for dietary polyphenols as epigenetics-modulating agents that act to re-methylate and silence oncogenes, reducing the oncogenic signal transduction. Targeting such an action could be an effective strategy in breast cancer prevention and/or adjuvant therapy.
Collapse
Affiliation(s)
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
14
|
Lin LH, Tran I, Yang Y, Shen G, Miah P, Cotzia P, Roses D, Schnabel F, Darvishian F, Snuderl M. DNA Methylation Identifies Epigenetic Subtypes of Triple-Negative Breast Cancers With Distinct Clinicopathologic and Molecular Features. Mod Pathol 2023; 36:100306. [PMID: 37595637 DOI: 10.1016/j.modpat.2023.100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
Triple-negative breast cancers (TNBC) include diverse carcinomas with heterogeneous clinical behavior. DNA methylation is a useful tool in classifying a variety of cancers. In this study, we analyzed TNBC using DNA methylation profiling and compared the results to those of mutational analysis. DNA methylation profiling (Infinium MethylationEPIC array, Illumina) and 50-gene panel-targeted DNA sequencing were performed in 44 treatment-naïve TNBC. We identified 3 distinct DNA methylation clusters with specific clinicopathologic and molecular features. Cluster 1 (phosphoinositide 3-kinase/protein kinase B-enriched cluster; n = 9) patients were significantly older (mean age, 71 years; P = .008) with tumors that were more likely to exhibit apocrine differentiation (78%; P < .001), a lower grade (44% were grade 2), a lower proliferation index (median Ki-67, 15%; P = .002), and lower tumor-infiltrating lymphocyte fractions (median, 15%; P = .0142). Tumors carried recurrent PIK3CA and AKT1 mutations and a higher percentage of low HER-2 expression (89%; P = .033). Cluster 3 (chromosomal instability cluster; n = 28) patients were significantly younger (median age, 57 years). Tumors were of higher grade (grade 3, 93%), had a higher proliferation index (median Ki-67, 75%), and were with a high fraction of tumor-infiltrating lymphocytes (median, 30%). Ninety-one percent of the germline BRCA1/2 mutation carriers were in cluster 3, and these tumors showed the highest level of copy number alterations. Cluster 2 represented cases with intermediate clinicopathologic characteristics and no specific molecular profile (no specific molecular profile cluster; n = 7). There were no differences in relation to stage, recurrence, and survival. In conclusion, DNA methylation profiling is a promising tool to classify patients with TNBC into biologically relevant groups, which may result in better disease characterization and reveal potential targets for emerging therapies.
Collapse
Affiliation(s)
- Lawrence Hsu Lin
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Ivy Tran
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Yiying Yang
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Guomiao Shen
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Pabel Miah
- Department of Surgery, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Paolo Cotzia
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Daniel Roses
- Department of Surgery, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Freya Schnabel
- Department of Surgery, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Farbod Darvishian
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York.
| |
Collapse
|
15
|
Corsaro L, Gambino VS. Notch, SUMOylation, and ESR-Mediated Signalling Are the Main Molecular Pathways Showing Significantly Different Epimutation Scores between Expressing or Not Oestrogen Receptor Breast Cancer in Three Public EWAS Datasets. Cancers (Basel) 2023; 15:4109. [PMID: 37627137 PMCID: PMC10452656 DOI: 10.3390/cancers15164109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that, although not completely homogeneous, differ in biological characteristics, clinical behaviour, and therapeutic options. The study, based on three publicly available EWAS (Epigenetic Wide Association Study) datasets, focuses on the comparison between these two groups of breast cancer using an epimutation score. The score is calculated not only based on the presence of the epimutation, but also on the deviation amplitude of the methylation outlier value. For each dataset, we performed a functional analysis based first on the functional gene region of each annotated gene (we aggregated the data per gene region TSS1500, TSS200, first-exon, and body-gene identified by the information from the Illumina Data Sheet), and then, we performed a pathway enrichment analysis through the REACTOME database based on the genes with the highest epimutation score. Thus, we blended our results and found common pathways for all three datasets. We found that a higher and significant epimutation score due to hypermethylation in ER-positive BC is present in the promoter region of the genes belonging to the SUMOylation pathway, the Notch pathway, the IFN-γ signalling pathway, and the deubiquitination protease pathway, while a higher and significant level of epimutation due to hypomethylation in ER-positive BC is present in the promoter region of the genes belonging to the ESR-mediated pathway. The presence of this state of promoter hypomethylation in the ESR-mediated signalling genes is consistent and coherent with an active signalling pathway mediated by oestrogen function in the group of ER-positive BC. The SUMOylation and Notch pathways are associated with BC pathogenesis and have been found to play distinct roles in the two BC subgroups. We speculated that the altered methylation profile may play a role in regulating signalling pathways with specific functions in the two subgroups of ER BC.
Collapse
Affiliation(s)
- Luigi Corsaro
- Centro Diagnostico Italiano, Università di Pavia, 20100 Milan, Italy
| | | |
Collapse
|
16
|
Lee RS, Sad K, Fawwal DV, Spangle JM. Emerging Role of Epigenetic Modifiers in Breast Cancer Pathogenesis and Therapeutic Response. Cancers (Basel) 2023; 15:4005. [PMID: 37568822 PMCID: PMC10417282 DOI: 10.3390/cancers15154005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer pathogenesis, treatment, and patient outcomes are shaped by tumor-intrinsic genomic alterations that divide breast tumors into molecular subtypes. These molecular subtypes often dictate viable therapeutic interventions and, ultimately, patient outcomes. However, heterogeneity in therapeutic response may be a result of underlying epigenetic features that may further stratify breast cancer patient outcomes. In this review, we examine non-genetic mechanisms that drive functional changes to chromatin in breast cancer to contribute to cell and tumor fitness and highlight how epigenetic activity may inform the therapeutic response. We conclude by providing perspectives on the future of therapeutic targeting of epigenetic enzymes, an approach that holds untapped potential to improve breast cancer patient outcomes.
Collapse
Affiliation(s)
- Richard Sean Lee
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
- Department of Biology, Emory College, Atlanta, GA 30322, USA
| | - Kirti Sad
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
| | - Dorelle V. Fawwal
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30311, USA
| | - Jennifer Marie Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
| |
Collapse
|
17
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
18
|
Lu Y, Cao Q, Yu Y, Sun Y, Jiang X, Li X. Pan-cancer analysis revealed H3K4me1 at bivalent promoters premarks DNA hypermethylation during tumor development and identified the regulatory role of DNA methylation in relation to histone modifications. BMC Genomics 2023; 24:235. [PMID: 37138231 PMCID: PMC10157937 DOI: 10.1186/s12864-023-09341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND DNA hypermethylation at promoter CpG islands (CGIs) is a hallmark of cancers and could lead to dysregulation of gene expression in the development of cancers, however, its dynamics and regulatory mechanisms remain elusive. Bivalent genes, that direct development and differentiation of stem cells, are found to be frequent targets of hypermethylation in cancers. RESULTS Here we performed comprehensive analysis across multiple cancer types and identified that the decrease in H3K4me1 levels coincides with DNA hypermethylation at the bivalent promoter CGIs during tumorigenesis. Removal of DNA hypermethylation leads to increment of H3K4me1 at promoter CGIs with preference for bivalent genes. Nevertheless, the alteration of H3K4me1 by overexpressing or knockout LSD1, the demethylase of H3K4, doesn't change the level or pattern of DNA methylation. Moreover, LSD1 was found to regulate the expression of a bivalent gene OVOL2 to promote tumorigenesis. Knockdown of OVOL2 in LSD1 knockout HCT116 cells restored the cancer cell phenotype. CONCLUSION In summary, our work identified a universal indicator that can pre-mark DNA hypermethylation in cancer cells, and dissected the interplay between H3K4me1 and DNA hypermethylation in detail. Current study also reveals a novel mechanism underlying the oncogenic role of LSD1, providing clues for cancer therapies.
Collapse
Affiliation(s)
- Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
19
|
Soghli N, Yousefi H, Naderi T, Fallah A, Moshksar A, Darbeheshti F, Vittori C, Delavar MR, Zare A, Rad HS, Kazemi A, Bitaraf A, Hussen BM, Taheri M, Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 243:154341. [PMID: 36739754 DOI: 10.1016/j.prp.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.
Collapse
Affiliation(s)
- Negin Soghli
- Babol University of Medical Sciences, Faculty of Dentistry, Babol, Iran
| | - Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA; Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moshksar
- University of Texas Medical Branch (UTMB), Interventional Radiology, Galveston, TX, USA
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cecilia Vittori
- Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Sadeghi Rad
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Abtin Kazemi
- Fasa University of Medical Sciences, School of Medicine, Fasa, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Cui S, Liu W, Wang W, Miao K, Guan X. Advances in the Diagnosis and Prognosis of Minimal Residual Lesions of Breast Cancer. Pathol Res Pract 2023; 245:154428. [PMID: 37028109 DOI: 10.1016/j.prp.2023.154428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE To review the latest research of minimal residual disease (MRD) in breast cancer as well as some emerging or potential detection methods for MRD in breast cancer. METHODS Springer, Wiley, and PubMed databases were searched for the electronic literature with search terms of breast cancer, minimal residual disease, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, etc. RESULTS: Minimal residual disease refers to the occult micrometastasis or minimal residual lesions detected in patients with tumor after radical treatment. An early and dynamic monitoring of breast cancer MRD can contribute to clinical treatment decision-making, improving the diagnosis accuracy and prognosis of breast cancer patients. The updated knowledge regarding MRD in breast cancer diagnosis and prognosis were summarized, followed by the review of several emerging or potential detection technologies for MRD in breast cancer. With the developed new MRD detection technologies referring to CTCs, ctDNA and exosomes, the role of MRD in breast cancer has been growingly verified, which is expected to serve as a new risk stratification factor and prognostic indicator for breast cancer. CONCLUSION This paper systematically reviews the research progress, opportunities and challenges in MRD in breast cancer in recent years.
Collapse
Affiliation(s)
- Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weici Liu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wenxiang Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Keyan Miao
- Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
21
|
Kim DH, Binder AM, Zhou H, Jung SY. DNA methylation patterns associated with breast cancer prognosis that are specific to tumor subtype and menopausal status. Front Genet 2023; 14:1133443. [PMID: 36936429 PMCID: PMC10018014 DOI: 10.3389/fgene.2023.1133443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Tumor subtype and menopausal status are strong predictors of breast cancer (BC) prognosis. We aimed to find and validate subtype- or menopausal-status-specific changes in tumor DNA methylation (DNAm) associated with all-cause mortality or BC progression. Associations between site-specific tumor DNAm and BC prognosis were estimated among The Cancer Genome Atlas participants (n = 692) with Illumina Infinium HumanMethylation450 BeadChip array data. All-cause mortality and BC progression were modeled using Cox proportional hazards models stratified by tumor subtypes, adjusting for age, race, stage, menopausal status, tumor purity, and cell type proportion. Effect measure modification by subtype and menopausal status were evaluated by incorporating a product term with DNAm. Site-specific inference was used to identify subtype- or menopausal-status-specific differentially methylated regions (DMRs) and functional pathways. The validation of the results was carried out on an independent dataset (GSE72308; n = 180). We identified a total of fifteen unique CpG probes that were significantly associated ( P ≤ 1 × 10 - 7 with survival outcomes in subtype- or menopausal-status-specific manner. Seven probes were associated with overall survival (OS) or progression-free interval (PFI) for women with luminal A subtype, and four probes were associated with PFI for women with luminal B subtype. Five probes were associated with PFI for post-menopausal women. A majority of significant probes showed a lower risk of OS or BC progression with higher DNAm. We identified subtype- or menopausal-status-specific DMRs and functional pathways of which top associated pathways differed across subtypes or menopausal status. None of significant probes from site-specific analyses met genome-wide significant level in validation analyses while directions and magnitudes of coefficients showed consistent pattern. We have identified subtype- or menopausal-status-specific DNAm biomarkers, DMRs and functional pathways associated with all-cause mortality or BC progression, albeit with limited validation. Future studies with larger independent cohort of non-post-menopausal women with non-luminal A subtypes are warranted for identifying subtype- and menopausal-status-specific DNAm biomarkers for BC prognosis.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexandra M. Binder
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Alexandra M. Binder,
| | - Hua Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, Koklesova L, Kudela E, Kubatka P. Genetic Heterogeneity, Tumor Microenvironment and Immunotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232314937. [PMID: 36499265 PMCID: PMC9735793 DOI: 10.3390/ijms232314937] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Heterogeneity of triple-negative breast cancer is well known at clinical, histopathological, and molecular levels. Genomic instability and greater mutation rates, which may result in the creation of neoantigens and enhanced immunogenicity, are additional characteristics of this breast cancer type. Clinical outcome is poor due to early age of onset, high metastatic potential, and increased likelihood of distant recurrence. Consequently, efforts to elucidate molecular mechanisms of breast cancer development, progression, and metastatic spread have been initiated to improve treatment options and improve outcomes for these patients. The extremely complex and heterogeneous tumor immune microenvironment is made up of several cell types and commonly possesses disorganized gene expression. Altered signaling pathways are mainly associated with mutated genes including p53, PIK3CA, and MAPK, and which are positively correlated with genes regulating immune response. Of note, particular immunity-associated genes could be used in prognostic indexes to assess the most effective management. Recent findings highlight the fact that long non-coding RNAs also play an important role in shaping tumor microenvironment formation, and can mediate tumor immune evasion. Identification of molecular signatures, through the use of multi-omics approaches, and effector pathways that drive early stages of the carcinogenic process are important steps in developing new strategies for targeted cancer treatment and prevention. Advances in immunotherapy by remodeling the host immune system to eradicate tumor cells have great promise to lead to novel therapeutic strategies. Current research is focused on combining immune checkpoint inhibition with chemotherapy, PARP inhibitors, cancer vaccines, or natural killer cell therapy. Targeted therapies may improve therapeutic response, eliminate therapeutic resistance, and improve overall patient survival. In the future, these evolving advancements should be implemented for personalized medicine and state-of-art management of cancer patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Smolar
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence:
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
23
|
Kalinkin AI, Sigin VO, Nemtsova MV, Strelnikov VV. Identification of prognostically significant DNA methylation signatures in patients with various breast cancer types. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of female mortality. The development of prognostic models based on multiomics data is the main goal of precision oncology. Aberrant DNA methylation in BC is a diagnostic marker of carcinogenesis. Despite the existing factors of BC prognosis, introduction of methylation markers would make it possible to obtain more accurate prognostic scores. The study was aimed to assess DNA methylation signatures in various BC subtypes for clinical endpoints and patients' clinicopathological characteristics. The data on methylation of CpG dinucleotides (probes) and clinical characteristics of BC samples were obtained from The Cancer Genome Atlas Breast Cancer database. CpG dinucleotides associated with the selected endpoints were chosen by univariate Cox regression method. The LASSO method was used to search for stable probes, while further signature construction and testing of the clinical characteristics independence were performed using multivariate Cox regression. The dignostic and prognostic potential of the signatures was assessed using ROC analysis and Kaplan–Meier curves. It has been shown that the signatures of selected probes have a significant diagnostic (AUC 0.76–1) and prognostic (p < 0.05) potential. This approach has made it possible to identify 47 genes associated with good and poor prognosis, among these five genes have been described earlier. If the genome-wide DNA analysis results are available, the research approach applied can be used to study molecular pathogenesis of BC and other disorders.
Collapse
Affiliation(s)
- AI Kalinkin
- Research Centre for Medical Genetics, Moscow, Russia
| | - VO Sigin
- Research Centre for Medical Genetics, Moscow, Russia
| | - MV Nemtsova
- Research Centre for Medical Genetics, Moscow, Russia
| | - VV Strelnikov
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
24
|
Montisci A, Palmieri V, Vietri MT, Sala S, Maiello C, Donatelli F, Napoli C. Big Data in cardiac surgery: real world and perspectives. J Cardiothorac Surg 2022; 17:277. [PMID: 36309702 PMCID: PMC9617748 DOI: 10.1186/s13019-022-02025-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Big Data, and the derived analysis techniques, such as artificial intelligence and machine learning, have been considered a revolution in the modern practice of medicine. Big Data comes from multiple sources, encompassing electronic health records, clinical studies, imaging data, registries, administrative databases, patient-reported outcomes and OMICS profiles. The main objective of such analyses is to unveil hidden associations and patterns. In cardiac surgery, the main targets for the use of Big Data are the construction of predictive models to recognize patterns or associations better representing the individual risk or prognosis compared to classical surgical risk scores. The results of these studies contributed to kindle the interest for personalized medicine and contributed to recognize the limitations of randomized controlled trials in representing the real world. However, the main sources of evidence for guidelines and recommendations remain RCTs and meta-analysis. The extent of the revolution of Big Data and new analytical models in cardiac surgery is yet to be determined.
Collapse
|
25
|
Increased Risk of Hereditary Prostate Cancer in Italian Families with Hereditary Breast and Ovarian Cancer Syndrome Harboring Mutations in BRCA and in Other Susceptibility Genes. Genes (Basel) 2022; 13:genes13101692. [PMID: 36292577 PMCID: PMC9601514 DOI: 10.3390/genes13101692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Hereditary prostate cancer (HPCa) has the highest heritability of any cancer in men. Interestingly, it occurs in several hereditary syndromes, including breast and ovarian cancer (HBOC) and Lynch syndrome (LS). Several gene mutations related to these syndromes have been identified as biomarkers in HPCa. The goal of this study was to screen for germline mutations in susceptibility genes by using a multigene panel, and to subsequently correlate the results with clinical and laboratory parameters. This was undertaken in 180 HBOC families, which included 217 males with prostate cancer (PCa). Mutational analysis was further extended to 104 family members of mutated patients. Screening of HBOC families revealed that 30.5% harbored germline mutations in susceptibility genes, with 21.6% harboring pathogenic variants (PVs) and 8.9% having variants of uncertain significance (VUS). We found PVs at similar frequency in BRCA1 and BRCA2 genes (8.8% and 9.4%, respectively), while 0.56% of PVs were present in well-established susceptibility genes PALB2, TP53 and RAD51C. Moreover, 0.56% of monoallelic PVs were present in MUTYH, a gene whose function in tumorigenesis in the context of PCa is still unclear. Finally, we reported double heterozygosity (DH) in BRCA1/2 genes in a single family, and found double mutation (DM) present in BRCA2 in a separate family. There was no significant difference between the mean age of onset of PCa in HBOC families with or without germline mutations in susceptibility genes, while the mean survival was highest in mutated patients compared to wild type. Furthermore, PCa is the second most recurrent cancer in our cohort, resulting in 18% of cases in both mutated and non-mutated families. Our investigation shows that PVs were located mostly in the 3′ of BRCA1 and BRCA2 genes, and in BRCA2, most PVs fell in exon 11, suggesting a mutation cluster region relating to risk of HPCa. A total of 65 family members inherited the proband’s mutation; of these, 24 developed cancer, with 41 remaining unaffected.
Collapse
|
26
|
An Eleven-microRNA Signature Related to Tumor-Associated Macrophages Predicts Prognosis of Breast Cancer. Int J Mol Sci 2022; 23:ijms23136994. [PMID: 35805995 PMCID: PMC9266835 DOI: 10.3390/ijms23136994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72−0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.
Collapse
|
27
|
Vietri MT, D’Elia G, Caliendo G, Albanese L, Signoriello G, Napoli C, Molinari AM. Pancreatic Cancer with Mutation in BRCA1/2, MLH1, and APC Genes: Phenotype Correlation and Detection of a Novel Germline BRCA2 Mutation. Genes (Basel) 2022; 13:321. [PMID: 35205366 PMCID: PMC8872383 DOI: 10.3390/genes13020321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer death worldwide; most of cases are sporadic, however about 5% to 10% report a hereditary predisposition. Several hereditary syndromes have been associated with familial pancreatic cancer (FPC) onset, including hereditary breast and ovarian cancer syndrome (HBOC), Lynch syndrome (LS), Familial atypical multiple mole melanoma (FAMMM), Familial adenomatous polyposis (FAP), Li-Fraumeni syndrome (LFS), Peutz-Jeghers syndrome (PJS), and Hereditary pancreatitis (HP).The aim of this study was to determine the mutational status of a cohort of 56 HBOC families, 7 LS families, 3 FAP and FAMMM families, and 1 LFS family with at least one case of PDAC. Mutation analysis of BRCA1/2, ATM, CHEK2, PALB2, RAD51C, RAD51D, NBN, CDH1, TP53, MLH1, MSH2, MSH6, and PMS2 genes, showedmutation in BRCA1/2, MLH1, and APC genes. We founda high mutation rate in patients belong HBOC and LS families, with a percentage of 28.6% in both syndromes and prevalence in HBOC of BRCA2 mutations with one case of double mutation in BRCA2 gene. In FAP family, we found a pathogenic mutation in APC gene in 1/3 families. We observed an early onset of PDAC and a lower survival in PDAC patients belonging to mutated families, while no evidence of possible pancreatic cancer cluster regions was found. Moreover, we identified a novel BRCA2 germline mutation, c.5511delT (p.Phe1837LeufsX3), not reported in any database, that segregated with disease in HBOC patients. Mutational analysis was extended to family membersof mutated patients, both healthy and cancer affected, which revealed 23 unaffected family members that inherited the proband's mutation. Although correlative by its nature, the presence of a BRCA mutation in PDAC patients may have benefits in terms of optimized treatment and longer outcome.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giovanna D’Elia
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giuseppe Signoriello
- Statistical Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinical Department of Internal Medicine and Specialistic Units, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| |
Collapse
|
28
|
Čelešnik H, Potočnik U. Peripheral Blood Transcriptome in Breast Cancer Patients as a Source of Less Invasive Immune Biomarkers for Personalized Medicine, and Implications for Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:591. [PMID: 35158858 PMCID: PMC8833511 DOI: 10.3390/cancers14030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Transcriptome studies of peripheral blood cells can advance our understanding of the systemic immune response to the presence of cancer and the mechanisms underlying cancer onset and progression. This enables the identification of novel minimally invasive immune biomarkers for early cancer detection and personalized cancer management and may bring forward new immunotherapy options. Recent blood gene expression analyses in breast cancer (BC) identified distinct patient subtypes that differed in the immune reaction to cancer and were distinct from the clinical BC subtypes, which are categorized based on expression of specific receptors on tumor cells. Introducing new BC subtypes based on peripheral blood gene expression profiles may be appropriate, since it may assist in BC prognosis, the identification of patients likely to benefit from immunotherapy, and treatment efficacy monitoring. Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous, and difficult-to-treat disease, and identification of novel biomarkers for this BC is crucial for clinical decision-making. A few studies have reported TNBC-enriched blood transcriptional signatures, mostly related to strong inflammation and augmentation of altered immune signaling, that can differentiate TNBC from other classical BC subtypes and facilitate diagnosis. Future research is geared toward transitioning from expression signatures in unfractionated blood cells to those in immune cell subpopulations.
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|