1
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
2
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Chen C, Liu Y, Wang H, Zhang X, Shi Y, Chen J. FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1. J Zhejiang Univ Sci B 2023; 24:698-710. [PMID: 37551556 PMCID: PMC10423964 DOI: 10.1631/jzus.b2200503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 08/09/2023]
Abstract
To explore the role of forkhead box protein O1 (FOXO1) in the progression of glioblastoma multiforme (GBM) and related drug resistance, we deciphered the roles of FOXO1 and miR-506 in proliferation, apoptosis, migration, invasion, autophagy, and temozolomide (TMZ) sensitivity in the U251 cell line using in vitro and in vivo experiments. Cell viability was tested by a cell counting kit-8 (CCK8) kit; migration and invasion were checked by the scratching assay; apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and flow cytometry. The construction of plasmids and dual-luciferase reporter experiment were carried out to find the interaction site between FOXO1 and miR-506. Immunohistochemistry was done to check the protein level in tumors after the in vivo experiment. We found that the FOXO1-miR-506 axis suppresses GBM cell invasion and migration and promotes GBM chemosensitivity to TMZ, which was mediated by autophagy. FOXO1 upregulates miR-506 by binding to its promoter to enhance transcriptional activation. MiR-506 could downregulate E26 transformation-specific 1 (ETS1) expression by targeting its 3'-untranslated region (UTR). Interestingly, ETS1 promoted FOXO1 translocation from the nucleus to the cytosol and further suppressed the FOXO1-miR-506 axis in GBM cells. Consistently, both miR-506 inhibition and ETS1 overexpression could rescue FOXO1 overactivation-mediated TMZ chemosensitivity in mouse models. Our study demonstrated a negative feedback loop of FOXO1/miR-506/ETS1/FOXO1 in GBM in regulating invasiveness and chemosensitivity. Thus, the above axis might be a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Fang Z, Ding Y, Xue Z, Li P, Li J, Li F. Roles of exosomes as drug delivery systems in cancer immunotherapy: a mini-review. Discov Oncol 2022; 13:74. [PMID: 35962862 PMCID: PMC9375799 DOI: 10.1007/s12672-022-00539-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
Exosomes can be released by a variety of cells and participate in intercellular communication in many physiological processes in the body. They can be used as carriers of cancer therapeutic drugs and have natural delivery capabilities. Some biologically active substances on exosomes, such as major histocompatibility complex (MHC), have been shown to be involved in exosome-mediated anticancer immune responses and have important regulatory effects on the immune system. Exosome-based drug delivery systems hold great promise in future cancer immunotherapy. However, there are still substantial challenges to be overcome in the clinical application of exosomes as drug carriers. This article reviews the biological characteristics of exosome drug delivery systems and their potential applications and challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhigang Xue
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Peijuan Li
- Dalian Medical University, Dalian, Liaoning, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
5
|
Fan L, Lei H, Lin Y, Zhou Z, Li J, Wu A, Shu G, Roger S, Yin G. Hotair promotes the migration and proliferation in ovarian cancer by miR-222-3p/CDK19 axis. Cell Mol Life Sci 2022; 79:254. [PMID: 35451651 PMCID: PMC9033702 DOI: 10.1007/s00018-022-04250-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023]
Abstract
Previous studies in our laboratory have reported that miR-222-3p was a tumor-suppressive miRNA in OC. This study aims to further understand the regulatory role of miR-222-3p in OC and provide a new mechanism for its prevention and treatment. We first found that miR-222-3p inhibited the migration and proliferation of OC cells. Then, we observed CDK19 was highly expressed in OC and inversely correlated with miR-222-3p. Besides, we observed that miR-222-3p directly binds to the 3′-UTR of CDK19 and inhibits CDK19 translation, thus inhibiting OC cell migration and proliferation in vitro and repressed tumor growth in vivo. We also observed the inhibitory effect of Hotair on miR-222-3p in OC. In addition, Hotair could promote the proliferation and migration of OC cells in vitro and facilitate the growth and metastasis of tumors in vivo. Moreover, Hotair was positively correlated with CDK19 expression. These results suggest Hotair indirectly up-regulates CDK19 through sponging miR-222-3p, which enhances the malignant behavior of OC. This provides a further understanding of the mechanism of the occurrence and development of OC.
Collapse
Affiliation(s)
- Lili Fan
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Han Lei
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Ying Lin
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Juanni Li
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Anqi Wu
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, University of Tours, 37032, Tours, France
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China.
| |
Collapse
|