1
|
Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F, He X. Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther 2024; 25:2304161. [PMID: 38226837 PMCID: PMC10793688 DOI: 10.1080/15384047.2024.2304161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer is the deadliest form of malignancy and the most common subtype is non-small cell lung cancer (NSCLC). Hypoxia is a typical feature of solid tumor microenvironment. In the current study, we clarified the effects of hypoxia on stemness and metastasis and the molecular mechanism. METHODS The biological functions were assessed using the sphere formation assay, Transwell assay, and XF96 extracellular flux analyzer. The protein levels were detected by western blot. The lactylation modification was assessed by western blot and immunoprecipitation. The role of SOX9 in vivo was explored using a xenografted tumor model. RESULTS We observed that hypoxia promoted sphere formation, migration, invasion, glucose consumption, lactate production, glycolysis, and global lactylation. Inhibition of glycolysis suppressed cell stemness, migration, invasion, and lactylation. Moreover, hypoxia increased the levels of SOX9 and lactylation of SOX9, whereas inhibition of glycolysis reversed the increase. Additionally, knockdown of SOX9 abrogated the promotion of cell stemness, migration, and invasion. In tumor-bearing mice, overexpression of SOX9 promoted tumor growth, and inhibition of glycolysis suppressed tumor growth. CONCLUSION Hypoxia induced the lactylation of SOX9 to promote stemness, migration, and invasion via promoting glycolysis. The findings suggested that targeting hypoxia may be an effective way for NSCLC treatment and reveal a new mechanism of hypoxia in NSCLC.
Collapse
Affiliation(s)
- Fei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yue Teng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xiaoyou Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yuejiao Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Chunyi Li
- Department of Medical Oncology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Sánchez-Castillo A, Kampen KR. Understanding serine and glycine metabolism in cancer: a path towards precision medicine to improve patient's outcomes. Discov Oncol 2024; 15:652. [PMID: 39538085 PMCID: PMC11561223 DOI: 10.1007/s12672-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In this perspective, we highlight and reflect on the current knowledge with respect to serine/glycine metabolism in cancer, therapeutic resistance, and precision medicine opportunities for therapeutic targeting and treatment follow-up. Cancer subtypes with high mortality rates include lung cancer and glioblastomas. In order to improve future therapeutic opportunities, patient stratification need to be performed to select patients that might benefit from adjuvant serine/glycine targeting compounds. In an effort to identify the group of patients for stratification purposes, we analyzed publicly available TCGA patient datasets to test associations between serine/glycine metabolism enzyme expression and important cancer drivers in lung cancer and glioblastoma. These patients presenting serine/glycine pathway overexpression might benefit from adjuvant sertraline treatment in the future.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Louvain, Belgium.
| |
Collapse
|
3
|
Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. CELL INSIGHT 2023; 2:100077. [PMID: 37192912 PMCID: PMC10120283 DOI: 10.1016/j.cellin.2023.100077] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/18/2023]
Abstract
Glucose metabolism is indispensable for cell growth and survival. Hexokinases play pivotal roles in glucose metabolism through canonical functions of hexokinases as well as in immune response, cell stemness, autophagy, and other cellular activities through noncanonical functions. The aberrant regulation of hexokinases contributes to the development and progression of pathologies, including cancer and immune diseases.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Dhawan A, Pifer PM, Sandulache VC, Skinner HD. Metabolic targeting, immunotherapy and radiation in locally advanced non-small cell lung cancer: Where do we go from here? Front Oncol 2022; 12:1016217. [PMID: 36591457 PMCID: PMC9794617 DOI: 10.3389/fonc.2022.1016217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
In the US, there are ~250,000 new lung cancer diagnoses and ~130,000 deaths per year, and worldwide there are an estimated 1.6 million deaths per year from this deadly disease. Lung cancer is the most common cause of cancer death worldwide, and it accounts for roughly a quarter of all cancer deaths in the US. Non-small cell lung cancer (NSCLC) represents 80-85% of these cases. Due to an enormous tobacco cessation effort, NSCLC rates in the US are decreasing, and the implementation of lung cancer screening guidelines and other programs have resulted in a higher percentage of patients presenting with potentially curable locoregional disease, instead of distant disease. Exciting developments in molecular targeted therapy and immunotherapy have resulted in dramatic improvement in patients' survival, in combination with new surgical, pathological, radiographical, and radiation techniques. Concurrent platinum-based doublet chemoradiation therapy followed by immunotherapy has set the benchmark for survival in these patients. However, despite these advances, ~50% of patients diagnosed with locally advanced NSCLC (LA-NSCLC) survive long-term. In patients with local and/or locoregional disease, chemoradiation is a critical component of curative therapy. However, there remains a significant clinical gap in improving the efficacy of this combined therapy, and the development of non-overlapping treatment approaches to improve treatment outcomes is needed. One potential promising avenue of research is targeting cancer metabolism. In this review, we will initially provide a brief general overview of tumor metabolism as it relates to therapeutic targeting. We will then focus on the intersection of metabolism on both oxidative stress and anti-tumor immunity. This will be followed by discussion of both tumor- and patient-specific opportunities for metabolic targeting in NSCLC. We will then conclude with a discussion of additional agents currently in development that may be advantageous to combine with chemo-immuno-radiation in NSCLC.
Collapse
Affiliation(s)
- Annika Dhawan
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Phillip M. Pifer
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Heath D. Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Heath D. Skinner,
| |
Collapse
|
5
|
Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021; 11:757323. [PMID: 34745994 PMCID: PMC8566922 DOI: 10.3389/fonc.2021.757323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse. From the initial observation that cancer cells preferentially ferment glucose to lactate, termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity and mitochondrial metabolism are also important for tumor growth, the complex mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in metabolism must be further investigated in order to identify unique therapeutic targets for individuals afflicted by this aggressive disease. Although novel therapies have been developed to target metabolic vulnerabilities in a variety of cancer models, only limited efficacy has been achieved. In particular, lung cancer metabolism has remained relatively understudied and underutilized for the advancement of therapeutic strategies, however recent evidence suggests that lung cancers have unique metabolic preferences of their own. This review aims to provide an overview of essential metabolic mechanisms and potential therapeutic agents in order to increase evidence of targeted metabolic inhibition for the treatment of lung cancer, where novel therapeutics are desperately needed.
Collapse
Affiliation(s)
| | | | | | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Sorrenti V, D’Amico AG, Barbagallo I, Consoli V, Grosso S, Vanella L. Tin Mesoporphyrin Selectively Reduces Non-Small-Cell Lung Cancer Cell Line A549 Proliferation by Interfering with Heme Oxygenase and Glutathione Systems. Biomolecules 2021; 11:biom11060917. [PMID: 34205698 PMCID: PMC8235249 DOI: 10.3390/biom11060917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
In order to maintain redox homeostasis, non-small-cell lung cancer (NSCLC) increases the activation of many antioxidant systems, including the heme-oxygenase (HO) system. The overexpression of HO-1 has been often associated with chemoresistance and tumor aggressiveness. Our results clearly showed an overexpression of the HO-1 protein in A549 NSCLC cell lines compared to that in non-cancerous cells. Thus, we hypothesized that "off-label" use of tin mesoporphyrin, a well-known HO activity inhibitor clinically used for neonatal hyperbilirubinemia, has potential use as an anti-cancer agent. The pharmacological inhibition of HO activity caused a reduction in cell proliferation and migration of A549. SnMP treatment caused an increase in oxidative stress, as demonstrated by the upregulation of reactive oxygen species (ROS) and the depletion of glutathione (GSH) content. To support these data, Western blot analysis was performed to analyze glucose-6-phosphate dehydrogenase (G6PD), TP53-induced glycolysis and the apoptosis regulator (TIGAR), and the glutamate cysteine ligase catalytic (GCLC) subunit, as they represent the main regulators of the pentose phosphate pathway (PPP) and glutathione synthesis, respectively. NCI-H292, a subtype of the NSCLC cell line, did not respond to SnMP treatment, possibly due to low basal levels of HO-1, suggesting a cellular-dependent antitumorigenic effect. Altogether, our results suggest HO activity inhibition may represent a potential target for selective chemotherapy in lung cancer subtypes.
Collapse
|
7
|
Ward NP, Kang YP, Falzone A, Boyle TA, DeNicola GM. Nicotinamide nucleotide transhydrogenase regulates mitochondrial metabolism in NSCLC through maintenance of Fe-S protein function. J Exp Med 2021; 217:151572. [PMID: 32196080 PMCID: PMC7971138 DOI: 10.1084/jem.20191689] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 01/30/2023] Open
Abstract
Human lung tumors exhibit robust and complex mitochondrial metabolism, likely precipitated by the highly oxygenated nature of pulmonary tissue. As ROS generation is a byproduct of this metabolism, reducing power in the form of nicotinamide adenine dinucleotide phosphate (NADPH) is required to mitigate oxidative stress in response to this heightened mitochondrial activity. Nicotinamide nucleotide transhydrogenase (NNT) is known to sustain mitochondrial antioxidant capacity through the generation of NADPH; however, its function in non-small cell lung cancer (NSCLC) has not been established. We found that NNT expression significantly enhances tumor formation and aggressiveness in mouse models of lung tumor initiation and progression. We further show that NNT loss elicits mitochondrial dysfunction independent of substantial increases in oxidative stress, but rather marked by the diminished activities of proteins dependent on resident iron-sulfur clusters. These defects were associated with both NADPH availability and ROS accumulation, suggesting that NNT serves a specific role in mitigating the oxidation of these critical protein cofactors.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| | - Yun Pyo Kang
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| | - Aimee Falzone
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| | - Theresa A Boyle
- Department of Molecular Pathology, Moffitt Cancer Center, Tampa, FL
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
8
|
Arthur P, Patel N, Surapaneni SK, Mondal A, Gebeyehu A, Bagde A, Kutlehria S, Nottingham E, Singh M. Targeting lung cancer stem cells using combination of Tel and Docetaxel liposomes in 3D cultures and tumor xenografts. Toxicol Appl Pharmacol 2020; 401:115112. [PMID: 32540278 PMCID: PMC7437978 DOI: 10.1016/j.taap.2020.115112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/16/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) accounts for recurrence and resistance to chemotherapy in various tumors. Efficacy of chemotherapeutic drugs is limited by tumor stromal barriers, which hinder their penetration into deep tumor sites. We have earlier shown telmisartan (Tel) pretreatment prior to Docetaxel (DTX) administration enhances anti-cancer effects in non-small cell lung cancer (NSCLC). Herein, we demonstrated for the first time the efficacy of Docetaxel liposomes (DTXPL) in combination with Tel in 3D cultures of H460 cells by using polysaccharide-based hydrogels (TheWell Biosciences) and also in xenograft model of DTX resistant H460 derived CD133+ lung tumors. DTXPL and Tel combination showed enhanced cytotoxicity in H460 WT 3D cultures by two folds. In H460 3D cultures, Tel pretreatment showed increased liposomal uptake. DTXPL and Tel combination treated tumors showed reduction in tumor volume (p < .001), increased apoptosis and downregulation of CSC markers (p < .01) in H460 WT and DTX resistant CD133+ xenograft models.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | | | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Ebony Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA.
| |
Collapse
|
9
|
Liu G, Luo Q, Li H, Liu Q, Ju Y, Song G. Increased Oxidative Phosphorylation Is Required for Stemness Maintenance in Liver Cancer Stem Cells from Hepatocellular Carcinoma Cell Line HCCLM3 Cells. Int J Mol Sci 2020; 21:ijms21155276. [PMID: 32722385 PMCID: PMC7432880 DOI: 10.3390/ijms21155276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to be the main cause of tumor recurrence, metastasis, and an unfavorable prognosis. Energy metabolism is closely associated with cell stemness. However, how the stemness of liver cancer stem cells (LCSCs) is regulated by metabolic/oxidative stress remains poorly understood. In this study, we compare the metabolic differences between LCSCs and the hepatocellular carcinoma cell line HCCLM3, and explore the relationship between metabolism and LCSC stemness. We found that LCSCs from the hepatocellular carcinoma cell HCCLM3 exhibited more robust glucose metabolism than HCCLM3, including glycolysis, oxidative phosphorylation (OXPHOS), and pyruvate produced by glycolysis entering mitochondria for OXPHOS. Moreover, 2-deoxy-D-glucose (2-DG) enhanced the LCSC stemness by upregulating OXPHOS. In contrast, Mdivi-1 reduced the levels of OXPHOS and weakened the stemness by inhibiting mitochondrial fission. Together, our findings clarify the relationship between energy metabolism and LCSC stemness and may provide theoretical guidance and potential therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Ge Liu
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Qing Luo
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Hong Li
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Qiuping Liu
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan;
| | - Guanbin Song
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
- Correspondence: ; Tel.: +86-23-65102507
| |
Collapse
|
10
|
Zhang L, Zhang Z, Yu Z. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. J Transl Med 2019; 17:423. [PMID: 31847905 PMCID: PMC6916245 DOI: 10.1186/s12967-019-02173-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer (LC) is one of the most lethal and most prevalent malignant tumors, and its incidence and mortality are increasing annually. Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Several biomarkers have been confirmed by data excavation to be related to metastasis, prognosis and survival. However, the moderate predictive effect of a single gene biomarker is not sufficient. Thus, we aimed to identify new gene signatures to better predict the possibility of LUAD. Methods Using an mRNA-mining approach, we performed mRNA expression profiling in large LUAD cohorts (n = 522) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and connections between genes and glycolysis were found in the Cox proportional regression model. Results We confirmed a set of nine genes (HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and AGRN) that were significantly associated with metastasis and overall survival (OS) in the test series. Based on this nine-gene signature, the patients in the test series could be divided into high-risk and low-risk groups. Additionally, multivariate Cox regression analysis revealed that the prognostic power of the nine-gene signature is independent of clinical factors. Conclusion Our study reveals a connection between the nine-gene signature and glycolysis. This research also provides novel insights into the mechanisms underlying glycolysis and offers a novel biomarker of a poor prognosis and metastasis for LUAD patients.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Breast Surgery, The First Hospital Affiliated China Medical University, No. 155 Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The First Hospital Affiliated China Medical University, No. 155 Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Zhenglun Yu
- Department of Thoracic Surgery, The First Hospital Affiliated China Medical University, No. 155 Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
11
|
Wang JM, Liu BQ, Du ZX, Li C, Sun J, Yan J, Jiang JY, Wang HQ. p53-dependent transcriptional suppression of BAG3 protects cells against metabolic stress via facilitation of p53 accumulation. J Cell Mol Med 2019; 24:562-572. [PMID: 31657880 PMCID: PMC6933324 DOI: 10.1111/jcmm.14764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023] Open
Abstract
Solid tumour frequently undergoes metabolic stress during tumour development because of inadequate blood supply and the high nutrient expenditure. p53 is activated by glucose limitation and maintains cell survival via triggering metabolic checkpoint. However, the exact downstream contributors are not completely identified. BAG3 is a cochaperone with multiple cellular functions and is implicated in metabolic reprogramming of pancreatic cancer cells. The current study demonstrated that glucose limitation transcriptionally suppressed BAG3 expression in a p53‐dependent manner. Importantly, hinderance of its down‐regulation compromised cellular adaptation to metabolic stress triggered by glucose insufficiency, supporting that BAG3 might be one of p53 downstream contributors for cellular adaptation to metabolic stress. Our data showed that ectopic BAG3 expression suppressed p53 accumulation via direct interaction under metabolic stress. Thereby, the current study highlights the significance of p53‐mediated BAG3 suppression in cellular adaptation to metabolic stress via facilitating p53 accumulation.
Collapse
Affiliation(s)
- Jia-Mei Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Department of Laboratory Medicine, The 1st affiliated Hospital, China Medical University, Shenyang, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Zhen-Xian Du
- Department of Endocrinology and Metabolism, The 1st affiliated Hospital, China Medical University, Shenyang, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jia Sun
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
12
|
IKKβ activates p53 to promote cancer cell adaptation to glutamine deprivation. Oncogenesis 2018; 7:93. [PMID: 30478303 PMCID: PMC6255781 DOI: 10.1038/s41389-018-0104-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
One of the hallmarks of cancer is the ability to reprogram cellular metabolism to increase the uptake of necessary nutrients such as glucose and glutamine. Driven by oncogenes, cancer cells have increased glutamine uptake to support their highly proliferative nature. However, as cancer cells continue to replicate and grow, they lose access to vascular tissues and deplete local supply of nutrients and oxygen. We previously showed that many tumor cells situate in a low glutamine microenvironment in vivo, yet the mechanisms of how they are able to adapt to this metabolic stress are still not fully understood. Here, we report that IκB-kinase β (IKKβ) is needed to promote survival and its activation is accompanied by phosphorylation of the metabolic sensor, p53, in response to glutamine deprivation. Knockdown of IKKβ decreases the level of wild-type and mutant p53 phosphorylation and its transcriptional activity, indicating a novel relationship between IKKβ and p53 in mediating cancer cell survival in response to glutamine withdrawal. Phosphopeptide mass spectrometry analysis further reveals that IKKβ phosphorylates p53 on Ser392 to facilitate its activation upon glutamine deprivation, independent of the NF-κB pathway. The results of this study offer an insight into the metabolic reprogramming in cancer cells that is dependent on a previously unidentified IKKβ–p53 signaling axis in response to glutamine depletion. More importantly, this study highlights a new therapeutic strategy for cancer treatment and advances our understanding of adaptive mechanisms that could lead to resistance to current glutamine targeting therapies.
Collapse
|
13
|
Tosato V, West N, Zrimec J, Nikitin DV, Del Sal G, Marano R, Breitenbach M, Bruschi CV. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia. Front Oncol 2017; 7:231. [PMID: 29034209 PMCID: PMC5626878 DOI: 10.3389/fonc.2017.00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
In mammalian organisms liquid tumors such as acute myeloid leukemia (AML) are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT) that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in spite of its usual and well-documented toxicity to wild-type yeast strains. These results obtained in yeast could provide new grounds for the interpretation of past observations made in leukemic patients indicating a possible involvement of P53 in cell transformation toward AML.
Collapse
Affiliation(s)
- Valentina Tosato
- Ulisse Biomed S.r.l., AREA Science Park, Trieste, Italy.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia.,Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy
| | - Nicole West
- Clinical Pathology, Hospital Maggiore, Trieste, Italy
| | - Jan Zrimec
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Dmitri V Nikitin
- Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michael Breitenbach
- Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
14
|
Murley JS, Miller RC, Senlik RR, Rademaker AW, Grdina DJ. Altered expression of a metformin-mediated radiation response in SA-NH and FSa tumor cells treated under in vitro and in vivo growth conditions. Int J Radiat Biol 2017; 93:665-675. [PMID: 28281393 DOI: 10.1080/09553002.2017.1304592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess the radiosensitizing effect of the biguanide drug metformin used alone or in combination with reactive oxygen species (ROS) modifying agents N-acetyl-L-cysteine (NAC) or emodin, and contrasted to the mitochondrial complex 1 inhibitor rotenone in altering the radiation responses of the p53 wild-type SA-NH and p53 mutant FSa mouse tumor lines grown either in vitro or in vivo. MATERIALS AND METHODS Tumor cells were grown to confluence in vitro and exposed to a single 4 Gy dose in the presence or absence of metformin (5 mM) and ROS modifiers or to 10 Gy with or without metformin as tumors in the flanks of C3H mice using a tumor growth delay assay. RESULTS Both metformin and rotenone protected SA-NH (p < .001) while sensitizing FSa (p < .001) to 4 Gy. Neither NAC nor emodin altered metformin's action. Metformin was also directly toxic to FSa cells (p = .002). In contrast, in vivo metformin (250 mg/kg) sensitized both SA-NH (9-day growth delay, p < .05) and FSa (4-day growth delay, p < .05) tumors if administered 1 h before irradiation. CONCLUSION Metformin effects on tumor cells measured under in vitro conditions may differ from those determined in vivo due to p53 and heterogeneous environmental factors.
Collapse
Affiliation(s)
- Jeffrey S Murley
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| | - Richard C Miller
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| | - Raziye Rana Senlik
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| | - Alfred W Rademaker
- b Department of Preventive Medicine , Northwestern University, Feinberg School of Medicine , Chicago , IL , USA
| | - David J Grdina
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| |
Collapse
|
15
|
Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS. PLoS One 2017; 12:e0173712. [PMID: 28301876 PMCID: PMC5354635 DOI: 10.1371/journal.pone.0173712] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.
Collapse
|
16
|
Characterization of genomic changes in the cervical pre-cancerous lesions and tumors induced by different types of human papillomaviruses. Virusdisease 2016; 27:271-276. [PMID: 28466039 DOI: 10.1007/s13337-016-0338-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
Cervical carcinoma is the second most common malignancy among women in both incidence and mortality. Although much is known about the etiology and treatment of cervical cancer, the role of genetic alterations in the multistep pathway of cervical tumorigenesis is largely unknown. The aim of this study was to characterize the genomic changes in the cervical pre-cancerous lesions and tumors, induced by different types of human papillomaviruses. In this research was used the BlueGnome CytoChip oligo 2 × 105 K microarray for whole-genome oligo-array CGH. Microarray CGH analysis of 40 specimens was carried out-12 specimens from patients with early-stage squamous cell carcinomas; 19 specimens from patients with mild to moderate dysplasia and 9 with severe dysplasia. First we performed microarray CGH analysis of five DNA pools which contained the DNA from homogeneous groups of patients. The results revealed presence of micro chromosomal aberrations in chromosome region 14q11.2. According to the genome database these aberrations represent polymorphisms. Microarray analysis of DNA from 9 separate carcinoma lesions revealed a total of 26 aberrations in 14 chromosomes of nine patients. Our results showed the advantages of high-resolution chips in the clinical diagnosis of patients with cancerous and precancerous lesions caused by viral infection with HPV, but also highlight the need for extensive population studies revealing the molecular nature and clinical significance of different CNVs and the creation of detailed maps of variations in the Bulgarian population. This would facilitate extremely precise interpretation of specific genomic imbalances in the clinical aspect.
Collapse
|
17
|
Hauser AK, Anderson KW, Hilt JZ. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells. Nanomedicine (Lond) 2016; 11:1769-85. [PMID: 27388639 DOI: 10.2217/nnm-2016-0050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). MATERIALS & METHODS Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. RESULTS TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. CONCLUSION Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Abstract
The p53 protein is essential for the implementation of the cellular response to challenging environmental conditions. Reacting to stochastic nutrient stress, p53 integrates the activity of key metabolite-sensing pathways to coordinate an appropriate cell response. During starvation, p53 activity augments cell survival pathways, inhibits unnecessary growth, and promotes efficient nutrient generation, utilization, and conservation. Similarly, during oxygen stress, p53 facilitates redirection of cellular metabolism toward energy generation through nonoxidative means, the suppression of reactive oxygen species (ROS) generation, and ROS detoxification-promoting cell survival. However, if adverse conditions are too acute or persistent, p53 can switch roles to implement canonical cell killing. The ability of p53 to regulate metabolism is a powerful feature of p53 biology that can both promote cell survival and act as a check on the inappropriate proliferation of cancer cells.
Collapse
|
19
|
Simpson-Lavy KJ, Bronstein A, Kupiec M, Johnston M. Cross-Talk between Carbon Metabolism and the DNA Damage Response in S. cerevisiae. Cell Rep 2015; 12:1865-75. [PMID: 26344768 DOI: 10.1016/j.celrep.2015.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Yeast cells with DNA damage avoid respiration, presumably because products of oxidative metabolism can be harmful to DNA. We show that DNA damage inhibits the activity of the Snf1 (AMP-activated) protein kinase (AMPK), which activates expression of genes required for respiration. Glucose and DNA damage upregulate SUMOylation of Snf1, catalyzed by the SUMO E3 ligase Mms21, which inhibits SNF1 activity. The DNA damage checkpoint kinases Mec1/ATR and Tel1/ATM, as well as the nutrient-sensing protein kinase A (PKA), regulate Mms21 activity toward Snf1. Mec1 and Tel1 are required for two SNF1-regulated processes-glucose sensing and ADH2 gene expression-even without exogenous genotoxic stress. Our results imply that inhibition of Snf1 by SUMOylation is a mechanism by which cells lower their respiration in response to DNA damage. This raises the possibility that activation of DNA damage checkpoint mechanisms could contribute to aerobic fermentation (Warburg effect), a hallmark of cancer cells.
Collapse
Affiliation(s)
- Kobi J Simpson-Lavy
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, 12801 E 17(th) Avenue, Aurora, CO 80045, USA; Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel.
| | - Alex Bronstein
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel
| | - Martin Kupiec
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel
| | - Mark Johnston
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, 12801 E 17(th) Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Li XB, Gu JD, Zhou QH. Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac Cancer 2015; 6:17-24. [PMID: 26273330 PMCID: PMC4448463 DOI: 10.1111/1759-7714.12148] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/10/2014] [Indexed: 02/05/2023] Open
Abstract
Most tumor cells show different metabolic pathways than normal cells. Even under the conditions of sufficient oxygen, they produce energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, which is known as aerobic glycolysis or the Warburg effect. Lung cancer is a malignant tumor with one of the highest incidence and mortality rates in the world at present. However, the exact mechanisms underlying lung cancer development remain unclear. The three key enzymes of glycolysis are hexokinase, phosphofructokinase, and pyruvate kinase. Lactate dehydrogenase catalyzes the transfer of pyruvate to lactate. All four enzymes have been reported to be overexpressed in tumors, including lung cancer, and can be regulated by many oncoproteins to promote tumor proliferation, migration, and metastasis with dependence or independence of glycolysis. The discovery of aerobic glycolysis in the 1920s has provided new means and potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Xue-Bing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Jun-Dong Gu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Qing-Hua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China ; Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Sichuan University Chengdu, China
| |
Collapse
|
21
|
Du H, Che G. [Advancement of relationship between metabolic alteration
in cancer-associated fibroblasts and tumor progression in lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:679-84. [PMID: 25248710 PMCID: PMC6000513 DOI: 10.3779/j.issn.1009-3419.2014.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
肺癌的演进与“肿瘤微环境”变化密切相关,癌相关成纤维细胞(cancer-associated fibroblasts, CAFs)是被癌细胞“驯化”的成纤维细胞,是肿瘤微环境的重要成员之一。CAFs还具有促进肿瘤细胞生长、侵袭和转移的特性。研究表明CAFs的物质能量代谢方式与正常的成纤维细胞有明显不同。CAFs以糖酵解生成乳酸的方式进行代谢并将乳酸供给癌细胞,即CAFs表现为“反瓦伯格效应(reverse Warburg effect)”的代谢形式以适应和促进肿瘤细胞的演进。本文针对CAFs代谢转变与肺癌演进的关系,从以下五个方面进行综述:①CAFs的特性及其代谢特点;② CAFs代谢的研究现状;③CAFs代谢方式转变可能的分子机制;④CAFs代谢方式转变与肺癌演进的关系;⑤CAFs代谢方式的转变与肺癌预后和治疗的关系。
Collapse
Affiliation(s)
- Heng Du
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW In recent years, the emerging role of p53 in metabolic regulation has been a topic of great interest. Although apoptotic and growth arrest functions of p53 remain as important mechanisms for preserving genomic stability, metabolic functions of p53 show increasing potential in contributing to p53-mediated tumor suppression. Numerous recent studies provided further insights into the metabolic functions of p53 and their implications in tumorigenesis. RECENT FINDINGS Several novel p53 metabolic targets have been identified that participate in various aspects of metabolism. Although some studies demonstrate the potential tumor suppressive function of p53 metabolic genes, others reveal prosurvival roles of those targets in both tumor and normal cells. Specifically, Tp53-induced glycolysis and apoptosis regulator (TIGAR) has been thought to promote tumor suppression through metabolic fine-tuning, yet, TIGAR-deficient mice display reduction in tumorigenesis. Finally, characterization of the 3KR mouse model underscored the significance of p53 metabolic regulation in tumor suppression, while also alluding to the potential mechanism for selective regulation of p53 metabolic targets. SUMMARY Expression of many p53 metabolic genes elicits both antitumor and tumorigenic effects, suggesting that p53 may contribute to cellular protection as well as tumor suppression. Future studies must carefully dissect the duality of p53 metabolic function, which may potentially prove useful in designing cancer therapies.
Collapse
|
23
|
Roberts ER, Thomas KJ. The role of mitochondria in the development and progression of lung cancer. Comput Struct Biotechnol J 2013; 6:e201303019. [PMID: 24688727 PMCID: PMC3962144 DOI: 10.5936/csbj.201303019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of mitochondria in human health and disease is a rapidly expanding topic in the scientific literature due to their integral roles in cellular death and survival. Mitochondrial biology and alterations in function were first linked to cancer in the 1920s with the discovery of the Warburg effect. The utilization of aerobic glycolysis in ATP synthesis was the first of many observations of metabolic reprogramming in cancer. Mitochondrial dysfunction in cancer has expanded to include defects in mitochondrial genomics and biogenesis, apoptotic signaling and mitochondrial dynamics. This review will focus on the role of mitochondria and their influence on cancer initiation, progression and treatment in the lung.
Collapse
Affiliation(s)
- Emily R Roberts
- Colorado Mesa University, Biological Sciences Department, 1100 North Ave, Grand Junction, CO 81501, USA
| | - Kelly Jean Thomas
- Colorado Mesa University, Biological Sciences Department, 1100 North Ave, Grand Junction, CO 81501, USA
| |
Collapse
|
24
|
Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Qian J, Gu J, Chang L, Ge D, Chu Y. PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. Br J Cancer 2013; 110:353-62. [PMID: 24281003 PMCID: PMC3899764 DOI: 10.1038/bjc.2013.728] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNA-7 (miR-7) has been reported to be a tumour suppressor gene. However, whether it has a role in the growth of non-small-cell lung cancer (NSCLC) and what is its target involved in the tumour growth is still under investigation. METHODS NSCLC tissue sample, NSCLC cell lines and tissue microarray were investigated in this study. Total RNA, miRNA and protein were used for RT-PCR and western blot analysis. Immunohistochemistry was performed in tissues microarray. Cell culture and intervention experiments were performed in vitro and in vivo. Bioinformatics prediction, western blot and luciferase assay were identified the target of miR-7. RESULTS In this study, we found that the expression of miR-7 was significantly downregulated not only in NSCLC cell lines, but also in human NSCLC tissues compared with the matched adjacent tissues. Restoration of its expression through miR-7 mimics in A549 and H1299 NSCLC cells inhibited cell proliferation, colony formation, and cell-cycle progression in vitro. More importantly, the tumorigenicity in nude mice was reduced after administration of miR-7 in vivo. In advance, through bioinformatic analysis, luciferase assay and western blot, we identified a novel target of miR-7, PA28gamma (a proteasome activator) to be enrolled in the regulation with tumour. PA28gamma mRNA and protein levels are markedly upregulated in NSCLC cell lines and tumour samples, exhibiting a strong inverse relation with that of miR-7. In addition, knockdown of PA28gamma induced similar effects as overexpression of miR-7 in NSCLC cells. Furthermore, miR-7 overexpression or silencing of PA28gamma reduced the cyclinD1 expression at mRNA and protein level in NSCLC cell lines. CONCLUSION All these findings strongly imply that the overexpression of PA28gamma resulted from miR-7 downexpression in NSCLC has an important role in promoting cancer cell progress and consequently results in NSCLC growth. Thus, strategies targeting PA28gamma and/or miR-7 may become promising molecular therapies in NSCLC treatment.
Collapse
Affiliation(s)
- S Xiong
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China [3] Department of Hematology/Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Y Zheng
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China
| | - P Jiang
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - R Liu
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China
| | - X Liu
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - J Qian
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - J Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Chang
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - D Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Y Chu
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, is a master regulator of the anti-oxidative stress response and positively controls the expression of a battery of anti-oxidative stress response proteins and enzymes implicated in detoxification and glutathione generation. Although its detoxifying activity is important in cancer prevention, it has recently been shown that cancer cells also exploit its protective functions to thrive and resist chemotherapy. NRF2 was also shown to the pentose phosphate pathway and glutaminolysis, which promotes purine synthesis for supporting rapid proliferation and glutathione for providing anti-oxidative stress protection. Evidence obtained from cancer patients and cell lines suggest that NRF2 is highly active in a variety of human cancers and is associated with aggressiveness. p53 is a tumor suppressor that also promotes an anti-oxidative stress metabolic program and glutaminolysis. Here we will discuss the similarities between NRF2 and p53 and review evidence that p53 might be exploited by cancer cells to gain protection against oxidative stress, as is the case for NRF2. We discuss findings of co-regulation between these transcription factors and propose possible therapeutic strategies that can be used for treatment of cancers that harbor WT p53 and express high levels of NRF2.
Collapse
|
26
|
Emerging metabolic targets in the therapy of hematological malignancies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:946206. [PMID: 24024216 PMCID: PMC3759275 DOI: 10.1155/2013/946206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.
Collapse
|
27
|
Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013; 23:316-31. [PMID: 23453623 PMCID: PMC3703516 DOI: 10.1016/j.ccr.2013.01.022] [Citation(s) in RCA: 629] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 09/25/2012] [Accepted: 01/29/2013] [Indexed: 01/09/2023]
Abstract
The epithelial-mesenchymal transition (EMT) enhances cancer invasiveness and confers tumor cells with cancer stem cell (CSC)-like characteristics. We show that the Snail-G9a-Dnmt1 complex, which is critical for E-cadherin promoter silencing, is also required for the promoter methylation of fructose-1,6-biphosphatase (FBP1) in basal-like breast cancer (BLBC). Loss of FBP1 induces glycolysis and results in increased glucose uptake, macromolecule biosynthesis, formation of tetrameric PKM2, and maintenance of ATP production under hypoxia. Loss of FBP1 also inhibits oxygen consumption and reactive oxygen species production by suppressing mitochondrial complex I activity; this metabolic reprogramming results in an increased CSC-like property and tumorigenicity by enhancing the interaction of β-catenin with T-cell factor. Our study indicates that the loss of FBP1 is a critical oncogenic event in EMT and BLBC.
Collapse
Affiliation(s)
- Chenfang Dong
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Tingting Yuan
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Yadi Wu
- Department of Molecular and Biomedical Pharmacology, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Yifan Wang
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Teresa W.M. Fan
- Center for Regulatory and Environmental Analytical Metabolomics, Department of Chemistry and J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Sumitra Miriyala
- Graduate Center for Toxicology, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Yiwei Lin
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Jun Yao
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jian Shi
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Pawel Lorkiewicz
- Center for Regulatory and Environmental Analytical Metabolomics, Department of Chemistry and J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Daret St Clair
- Graduate Center for Toxicology, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - B. Mark Evers
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Department of Surgery, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| |
Collapse
|
28
|
Ma L, Niknejad N, Gorn-Hondermann I, Dayekh K, Dimitroulakos J. Lovastatin induces multiple stress pathways including LKB1/AMPK activation that regulate its cytotoxic effects in squamous cell carcinoma cells. PLoS One 2012; 7:e46055. [PMID: 23029387 PMCID: PMC3460930 DOI: 10.1371/journal.pone.0046055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/27/2012] [Indexed: 01/09/2023] Open
Abstract
Background Cellular stress responses trigger signaling cascades that inhibit proliferation and protein translation to help alleviate the stress or if the stress cannot be overcome induce apoptosis. In recent studies, we demonstrated the ability of lovastatin, an inhibitor of mevalonate synthesis, to induce the Integrated Stress Response as well as inhibiting epidermal growth factor receptor (EGFR) activation. Methodology/Principal Findings In this study, we evaluated the effects of lovastatin on the activity of the LKB1/AMPK pathway that is activated upon cellular energy shortage and can interact with the above pathways. In the squamous cell carcinoma (SCC) cell lines SCC9 and SCC25, lovastatin treatment (1–25 µM, 24 hrs) induced LKB1 and AMPK activation similar to metformin (1–10 mM, 24 hrs), a known inducer of this pathway. Lovastatin treatment impaired mitochondrial function and also decreased cellular ADP/ATP ratios, common triggers of LKB1/AMPK activation. The cytotoxic effects of lovastatin were attenuated in LKB1 null MEFs indicating a role for this pathway in regulating lovastatin-induced cytotoxicity. Of clinical relevance, lovastatin induces synergistic cytotoxicity in combination with the EGFR inhibitor gefitinib. In LKB1 deficient (A549, HeLa) and expressing (SCC9, SCC25) cell lines, metformin enhanced gefitinib cytotoxicity only in LKB1 expressing cell lines while both groups showed synergistic cytotoxic effects with lovastatin treatments. Furthermore, the combination of lovastatin with gefitinib induced a potent apoptotic response without significant induction of autophagy that is often induced during metabolic stress inhibiting cell death. Conclusion/Significance Thus, targeting multiple metabolic stress pathways including the LKB1/AMPK pathway enhances lovastatin’s ability to synergize with gefitinib in SCC cells.
Collapse
Affiliation(s)
- Laurie Ma
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ontario, Canada
| | - Nima Niknejad
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ontario, Canada
| | - Ivan Gorn-Hondermann
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ontario, Canada
| | - Khalil Dayekh
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ontario, Canada
- The Faculty of Medicine and the Department of Biochemistry, University of Ottawa, Ontario, Canada
| | - Jim Dimitroulakos
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ontario, Canada
- The Faculty of Medicine and the Department of Biochemistry, University of Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
29
|
Energy and redox homeostasis in tumor cells. Int J Cell Biol 2012; 2012:593838. [PMID: 22693511 PMCID: PMC3369431 DOI: 10.1155/2012/593838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/16/2012] [Indexed: 02/06/2023] Open
Abstract
Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1). The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg's original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.
Collapse
|
30
|
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-80. [PMID: 21967640 PMCID: PMC3315176 DOI: 10.1089/ars.2011.4085] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O₂, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O₂ utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.
Collapse
Affiliation(s)
| | - María Eugenia Elguero
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- Department of Internal Medicine, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Biochemistry, INFIBIOC and School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|