1
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Nakatani N, Win KHN, Mon CY, Fujikawa T, Uemura S, Saito A, Ishida T, Mori T, Hasegawa D, Kosaka Y, Inoue S, Nishimura A, Nino N, Tamura A, Yamamoto N, Nozu K, Nishimura N. Distinct Expression Profiles of Neuroblastoma-Associated mRNAs in Peripheral Blood and Bone Marrow of Non-High-Risk and High-Risk Neuroblastoma Patients. BIOLOGY 2024; 13:345. [PMID: 38785826 PMCID: PMC11117621 DOI: 10.3390/biology13050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Non-high-risk (non-HR) neuroblastoma (NB) patients have excellent outcomes, with more than a 90% survival rate, whereas HR NB patients expect less than a 50% survival rate. Metastatic disease is the principal cause of death among both non-HR and HR NB patients. Previous studies have reported the significant but limited prognostic value of quantitative PCR (qPCR)-based assays, measuring overlapping but different sets of neuroblastoma-associated mRNAs (NB-mRNAs), to detect metastatic disease in both non-HR and HR patient samples. A droplet digital PCR (ddPCR)-based assay measuring seven NB-mRNAs (CRMP1, DBH, DDC, GAP43, ISL1, PHOX2B, and TH mRNAs) was recently developed and exhibited a better prognostic value for HR patient samples than qPCR-based assays. However, it remained to be tested on non-HR patient samples. In the present study, we employed the ddPCR-based assay to study peripheral blood (PB) and bone marrow (BM) samples collected at diagnosis from eight non-HR and eleven HR cases and characterized the expression profiles of NB-mRNAs. The most highly expressed NB-mRNAs in PB and BM differed between non-HR and HR cases, with the CRMP1 mRNA being predominant in non-HR cases and the GAP43 mRNA in HR cases. The levels of NB-mRNAs in PB and BM were 5 to 1000 times lower in non-HR cases than in HR cases. The PB to BM ratio of NB-mRNAs was 10 to 100 times higher in non-HR cases compared to HR cases. The present case series suggests that non-HR and HR NB patients have the distinct expression profiles of NB-mRNAs in their PB and BM.
Collapse
Affiliation(s)
- Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Kaung Htet Nay Win
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan; (K.H.N.W.); (C.Y.M.)
| | - Cho Yee Mon
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan; (K.H.N.W.); (C.Y.M.)
| | - Tomoko Fujikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Suguru Uemura
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Atsuro Saito
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Toshiaki Ishida
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Takeshi Mori
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Daiichiro Hasegawa
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Yoshiyuki Kosaka
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Shotaro Inoue
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Akihiro Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Nanako Nino
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan; (K.H.N.W.); (C.Y.M.)
| |
Collapse
|
3
|
Wang H, He L, Chen X, Ding S, Xie M, Cai J. Predicting Bone Marrow Metastasis in Neuroblastoma: An Explainable Machine Learning Approach Using Contrast-Enhanced Computed Tomography Radiomics Features. Technol Cancer Res Treat 2024; 23:15330338241290386. [PMID: 39440370 PMCID: PMC11500234 DOI: 10.1177/15330338241290386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE To predict bone marrow metastasis in neuroblastoma using contrast-enhanced computed tomography (CECT) radiomics features and explainable machine learning. METHODS This cohort study retrospectively included a total of 345 neuroblastoma patients who underwent testing for bone marrow metastatic status. Tumor lesions on CECT images were delineated by two radiologists, and 1409 radiomics features were extracted. Correlation analysis, Least Absolute Shrinkage and Selection Operator regression, and one-way analysis of variance were used to identify radiomics features associated with bone marrow metastasis. A predictive model for bone marrow metastasis was then developed using the support vector machine algorithm based on the selected radiomics features. The performance of the radiomics model was evaluated using the area under the curve (AUC), 95% confidence interval (CI), accuracy, sensitivity, and specificity. RESULTS The radiomics model included 16 features, with a predominant focus on texture features (12/16, 75%). In the training set, the model demonstrated an AUC of 0.891 (95% CI: 0.848-0.933), an accuracy of 0.831 (95% CI: 0.829-0.832), a sensitivity of 0.893 (95% CI: 0.840-0.946), and a specificity of 0.757 (95% CI: 0.677-0.837). In the test set, the AUC, accuracy, sensitivity, and specificity were 0.807 (95% CI: 0.720-0.893), 0.767 (95% CI: 0.764-0.770), 0.696 (95% CI: 0.576-0.817), and 0.851 (95% CI: 0.749-0.953), respectively. CONCLUSION Radiomics features extracted from CECT images are associated with the presence of bone marrow metastasis in neuroblastoma, providing potential new imaging biomarkers for predicting bone marrow metastasis in this disease.
Collapse
Affiliation(s)
- Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China
| | - Xin Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China
| | - Mingye Xie
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
4
|
Xiong X, Zeng M, Peng X, Feng C, Li C, Weng W, Li Y. Serum brain-derived neurotrophic factor (BDNF) as predictors of childhood neuroblastoma relapse. BMC Cancer 2023; 23:670. [PMID: 37460933 PMCID: PMC10351183 DOI: 10.1186/s12885-023-11159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a childhood malignant tumor,50% of high-risk NB children still have recurrence, and the long-term survival rate is very low. NB tumors expressing high levels of BDNF/TrkB are associated with poor survival outcomes.In this study, we show that the trends of serum concentration of BDNF at different growth stages after birth, and explore the relationship with NB replase. METHODS In experiment 1, 87 subjects were enrolled and divided into four groups, neonates group、 children group、adults group and NB patients. The distribution of serum concentration of BDNF by ELISA. In experiment 2, we studied BDNF in stage 4 NB patients to determine their frequency, correlation with clinical parameters, and prognostic impact. RESULTS First, we identified that serum BDNF concentration decreased from the newborn to childhood in healthy subjects, while it was relatively high in children(age > 1 year) with NB. In the second phase our studies showed no significant increase in serum BDNF concentration in these NB patients, with adverse pathologic features, large tumor maximum diameter, and MYCN amplification. After comprehensive treatment, levels of BDNF gradually increased in children with recurrence and decreased in the remission group. High serum BDNF concentration was associated with relapse. Of 21 stage 4 neuroblastoma patients, adopted a comprehensive treatment approach including ATO-basic modified chemotherapy, traditional radiotherapy,stem cell transplatation and immunotherapy. 76% of alive patients having > 3 years follow-up. CONCLUSION The aim is to show that BDNF is a predictor of recurrence risk of NB.
Collapse
Affiliation(s)
- Xilin Xiong
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Meiling Zeng
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Xiaomin Peng
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Chuchu Feng
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Chunmou Li
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Wenjun Weng
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Yang Li
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No 107 Yanjiang Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
5
|
İzci EK, Keskin F, Erdi F, Kaya B, Karatas Y, Feyzioglu B, Findik S, Kalkan E, Esen H, Guney Ö. Increased expression of ubiquitin C-terminal hydrolase L1 in astrocytomas of ascending grades. Medicine (Baltimore) 2023; 102:e34132. [PMID: 37390278 PMCID: PMC10313279 DOI: 10.1097/md.0000000000034132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The ubiquitin-proteasome pathway controls the monitoring and degradation of important proteins and is involved in several cellular processes, such as development, differentiation, and transcriptional regulation. Recent evidence has shown that ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), a member of the deubiquitinating enzyme family that removes ubiquitin from protein substrates, is overexpressed in many types of cancer. AIM This study thus examined the expression of UCH-L1 in human astrocytoma tissues. MATERIAL AND METHODS Formalin-fixed, paraffin-embedded astrocytoma samples were obtained from 40 patients, after which histopathological examination, typing, and grading were performed. The study group included 10 histologically normal brain tissues, which served as the control group, and 10 WHO grade II, 10 WHO grade III, and 10 WHO grade IV (glioblastoma) samples. Normal brain tissue samples were obtained from the histologically normal, non-tumoral portion of the pathology specimens. UCH-L1 expression was evaluated using quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. RESULTS Astrocytoma tissues exhibited higher UCH-L1 expression compared to the control group. UCH-L1 overexpression increased significantly together with the increase in astrocytoma grades (from II to IV). CONCLUSION UCH-L1 could be a good diagnostic and therapeutic marker for determining astrocytoma development and progression.
Collapse
Affiliation(s)
- Emir Kaan İzci
- Department of Neurosurgery, Baskent University Konya Application and Research Hospital, Konya, Turkey
| | - Fatih Keskin
- Department of Neurosurgery, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Fatih Erdi
- Department of Neurosurgery, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Bulent Kaya
- Department of Neurosurgery, Medova Hospital, Konya, Turkey
| | - Yasar Karatas
- Department of Neurosurgery, Afyon Park Hospital, Afyon, Turkey
| | - Bahadir Feyzioglu
- Department of Microbiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Siddika Findik
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Erdal Kalkan
- Department of Neurosurgery, Medova Hospital, Konya, Turkey
| | - Hasan Esen
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Önder Guney
- Department of Neurosurgery, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
6
|
Zhuo Z, Lin L, Miao L, Li M, He J. Advances in liquid biopsy in neuroblastoma. FUNDAMENTAL RESEARCH 2022; 2:903-917. [PMID: 38933377 PMCID: PMC11197818 DOI: 10.1016/j.fmre.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Even with intensive treatment of high-risk neuroblastoma (NB) patients, half of high-risk NB patients still relapse. New therapies targeting the biological characteristics of NB have important clinical value for the personalized treatment of NB. However, the current biological markers for NB are mainly analyzed by tissue biopsy. In recent years, circulating biomarkers of NB based on liquid biopsy have attracted more and more attention. This review summarizes the analytes and methods for liquid biopsy of NB. We focus on the application of liquid biopsy in the diagnosis, prognosis assessment, and monitoring of NB. Finally, we discuss the prospects and challenges of liquid biopsy in NB.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
7
|
Nino N, Ishida T, Nakatani N, Lin KS, Win KHN, Mon CY, Nishimura A, Inoue S, Tamura A, Yamamoto N, Uemura S, Saito A, Mori T, Hasegawa D, Kosaka Y, Nozu K, Nishimura N. Minimal residual disease detected by droplet digital PCR in peripheral blood stem cell grafts has a prognostic impact on high-risk neuroblastoma patients. Heliyon 2022; 8:e10978. [PMID: 36276741 PMCID: PMC9578974 DOI: 10.1016/j.heliyon.2022.e10978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
More than half of high-risk neuroblastoma (NB) patients have experienced relapse due to the activation of chemoresistant minimal residual disease (MRD) even though they are treated by high-dose chemotherapy with autologous peripheral blood stem cell (PBSC) transplantation. Although MRD in high-risk NB patients can be evaluated by quantitative PCR with several sets of neuroblastoma-associated mRNAs (NB-mRNAs), the prognostic significance of MRD in PBSC grafts (PBSC-MRD) is unclear. In the present study, we collected 20 PBSC grafts from 20 high-risk NB patients and evaluated PBSC-MRD detected by droplet digital PCR (ddPCR) with 7NB-mRNAs (CRMP1, DBH, DDC, GAP43, ISL1, PHOX2B, and TH mRNA). PBSC-MRD in 11 relapsed patients was significantly higher than that in 9 non-relapsed patients. Patients with a higher PBSC-MRD had a lower 3-year event-free survival (P = 0.0148). The present study suggests that PBSC-MRD detected by ddPCR with 7NB-mRNAs has a prognostic impact on high-risk NB patients.
Collapse
Affiliation(s)
- Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyaw San Lin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaung Htet Nay Win
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Cho Yee Mon
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Akihiro Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shotaro Inoue
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Atsuro Saito
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan,Corresponding author.
| |
Collapse
|