1
|
Gao Z, Wu SK, Zhang SJ, Wang X, Wu YC, Jin X. Adjuvant chemotherapy for isolated resectable colorectal lung metastasis: A retrospective study using inverse probability treatment weighting propensity analysis. World J Gastrointest Surg 2024; 16:3171-3184. [PMID: 39575266 PMCID: PMC11577391 DOI: 10.4240/wjgs.v16.i10.3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND The benefit of adjuvant chemotherapy (ACT) for patients with no evidence of disease after pulmonary metastasis resection (PM) from colorectal cancer (CRC) remains controversial. AIM To assess the efficacy of ACT in patients after PM resection for CRC. METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023. The primary endpoint was overall survival (OS); secondary endpoints included cancer-specific survival (CSS) and disease-free survival (DFS). An inverse probability of treatment-weighting (IPTW) analysis was conducted to address indication bias. Survival outcomes compared using Kaplan-Meier curves, log-rank test, Cox regression and confirmed by propensity score-matching (PSM). RESULTS With a median follow-up of 27.5 months (range, 18.3-50.4 months), the 5-year OS, CSS and DFS were 72.0%, 74.4% and 51.3%, respectively. ACT had no significant effect on OS after PM resection from CRC [original cohort: P = 0.08; IPTW: P = 0.15]. No differences were observed for CSS (P = 0.12) and DFS (P = 0.68) between the ACT and non-ACT groups. Multivariate analysis showed no association of ACT with better survival, while sublobar resection (HR = 0.45; 95%CI: 0.20-1.00, P = 0.049) and longer disease-free interval (HR = 0.45; 95%CI: 0.20-0.98, P = 0.044) were associated with improved survival. CONCLUSION ACT does not improve survival after PM resection for CRC. Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Medical Oncology, Peking University First Hospital, Beijing 100034, China
| | - Shi-Kai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing 100034, China
| | - Shi-Jie Zhang
- Department of Thoracic Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xin Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Ying-Chao Wu
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xuan Jin
- Department of Medical Oncology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
2
|
Olkowicz M, Ramadan K, Rosales-Solano H, Yu M, Wang A, Cypel M, Pawliszyn J. Mapping the metabolic responses to oxaliplatin-based chemotherapy with in vivo spatiotemporal metabolomics. J Pharm Anal 2024; 14:196-210. [PMID: 38464782 PMCID: PMC10921245 DOI: 10.1016/j.jpha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 03/12/2024] Open
Abstract
Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer (CRC). However, a multidisciplinary approach that evaluates several factors related to patient and tumor characteristics is necessary for managing chemotherapy treatment in metastatic CRC patients with lung disease, as such factors dictate the timing and drug regimen, which may affect treatment response and prognosis. In this study, we explore the potential of spatial metabolomics for evaluating metabolic phenotypes and therapy outcomes during the local delivery of the anticancer drug, oxaliplatin, to the lung. 12 male Yorkshire pigs underwent a 3 h left lung in vivo lung perfusion (IVLP) with various doses of oxaliplatin (7.5, 10, 20, 40, and 80 mg/L), which were administered to the perfusion circuit reservoir as a bolus. Biocompatible solid-phase microextraction (SPME) microprobes were combined with global metabolite profiling to obtain spatiotemporal information about the activity of the drug, determine toxic doses that exceed therapeutic efficacy, and conduct a mechanistic exploration of associated lung injury. Mild and subclinical lung injury was observed at 40 mg/L of oxaliplatin, and significant compromise of the hemodynamic lung function was found at 80 mg/L. This result was associated with massive alterations in metabolic patterns of lung tissue and perfusate, resulting in a total of 139 discriminant compounds. Uncontrolled inflammatory response, abnormalities in energy metabolism, and mitochondrial dysfunction next to accelerated kynurenine and aldosterone production were recognized as distinct features of dysregulated metabolipidome. Spatial pharmacometabolomics may be a promising tool for identifying pathological responses to chemotherapy.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Khaled Ramadan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Miao Yu
- The Jackson Laboratory, JAX Genomic Medicine, Farmington, CT, USA
| | - Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
3
|
Gabelloni M, Faggioni L, Fusco R, Simonetti I, De Muzio F, Giacobbe G, Borgheresi A, Bruno F, Cozzi D, Grassi F, Scaglione M, Giovagnoni A, Barile A, Miele V, Gandolfo N, Granata V. Radiomics in Lung Metastases: A Systematic Review. J Pers Med 2023; 13:jpm13020225. [PMID: 36836460 PMCID: PMC9967749 DOI: 10.3390/jpm13020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Due to the rich vascularization and lymphatic drainage of the pulmonary tissue, lung metastases (LM) are not uncommon in patients with cancer. Radiomics is an active research field aimed at the extraction of quantitative data from diagnostic images, which can serve as useful imaging biomarkers for a more effective, personalized patient care. Our purpose is to illustrate the current applications, strengths and weaknesses of radiomics for lesion characterization, treatment planning and prognostic assessment in patients with LM, based on a systematic review of the literature.
Collapse
Affiliation(s)
- Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-992524
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariano Scaglione
- Department of Surgery, Medicine and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|