1
|
Heydari F, Nasiri M, Haroabadi A, Fahanik Babaei J, Pestehei SK. Efficacy of melatonin in alleviating disorders arising from repeated exposure to sevoflurane in males and females of the Wistar rats during preadolescence. Sci Rep 2024; 14:11889. [PMID: 38789558 PMCID: PMC11126601 DOI: 10.1038/s41598-024-62170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediatricians use sevoflurane due to its fast action and short recovery time. However, studies have shown that repeated exposure to anesthesia can affect learning and memory. Melatonin, an indole-type neuroendocrine hormone, has significant anti-inflammatory, and neuroprotective properties. Melatonin's impact on cognitive behavior in sevoflurane-anesthetized males and females of the Wistar rats during preadolescence was examined in this research. The cognitive function was evaluated by shuttle box and morris water maze tests, while interleukin-10, Catalase (CAT), Malondialdehyde (MDA), and Tumor Necrosis Factor-α (TNF-α) were evaluated using ELISA kits. The expression levels of the apoptosis-linked proteins, Bax, Bcl-2, and caspase-3, were determined using the western blotting technique. The learning and memory latencies of the rats were more significant in the sevoflurane groups than in the control group; however, the latencies were significantly shorter in the sevoflurane and melatonin groups than in the control group. The levels of MDA, TNF-α, Bax, and caspase-3 were significantly higher in the sevoflurane groups than in the control group. We also found that the levels of CAT and Bcl-2 were significantly reduced in the sevoflurane groups compared to the control group. Increasing levels of CAT, Bcl-2, and decreasing levels of MDA, TNF-α, Bax, and caspase-3 in response to melatonin indicate a possible contribution to the recovery from the sevoflurane impairment. Melatonin shows neuroprotective effects in male and female rats with sevoflurane-induced cognitive impairment. This suggests melatonin could be a valuable treatment for learning and memory deficits resulting from repeated exposure to sevoflurane, possibly by controlling apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Fatemeh Heydari
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Nasiri
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Haroabadi
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Khalil Pestehei
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran.
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Feng J, Zhang X, Jiang M, Dai X, Li G, Liu Z. Effect of sevoflurane anesthesia to neonatal rat hippocampus by RNA-seq. Neurosci Lett 2023; 801:137141. [PMID: 36813076 DOI: 10.1016/j.neulet.2023.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Sevoflurane is an inhalational anesthetic for the induction and maintenance of general anesthesia in pediatric surgery. However, few studies have paid attention to the multiple organ toxicity and the mechanism behind it. METHODS Inhalation anesthesia neonatal rat model were realized by exposing to 3.5% sevoflurane. RNA-seq was performed to find out how inhalation anesthesia affects the lung, cerebral cortex, hippocampus, and heart. Validation of RNA-seq results by QPCR after animal model establishment. Tunel assay detects cell apoptosis in each group. CCK-8, cell apoptosis assay and western blot assay validation of the role of siRNA-Bckdhb in the action of sevoflurane on rat hippocampal neuronal cells. RESULTS There are significant differences between different groups, especially the hippocampus and cerebral cortex. Bckdhb was significantly up-regulated in the hippocampus with sevoflurane-treated. Pathway analysis revealed several abundant pathways related to DEGs, e.g., protein digestion and absorption and PI3K-Akt signaling pathway. A series of cellular and animal experiments showed that siRNA-Bckdhb can inhibit the reduction of cellular activity caused by sevoflurane. CONCLUSION Bckdhb interference experiments indicated that sevoflurane induces hippocampal neuronal cells apoptosis by regulating Bckdhb expression. Our study provided new insights into the molecular mechanism of sevoflurane-induced brain damage in pediatrics.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Pharmacy, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xuesong Zhang
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
| | - Menglu Jiang
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xu Dai
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Guowei Li
- Department of Anesthesiology, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, China.
| | - Zhenqing Liu
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
3
|
Hashemi M, Karami M, Zarrindast MR. The regulatory role of nitric oxide in morphine-induced analgesia in the descending path of pain from the dorsal hippocampus to the dorsolateral periaqueductal gray. Eur J Pain 2022; 26:888-901. [PMID: 35090066 DOI: 10.1002/ejp.1916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Nitric oxide (NO) levels in brain nuclei, such as the hippocampus and brainstem, are involved in morphine analgesia, but the relationship between the dorsal hippocampus (dH) and the dorsolateral periaqueductal gray matter (dlPAG) needs to be clarified, which is our goal. METHODS Wistar rats were simultaneously equipped with a stereotaxic device with unilateral guide cannula at dH and dlPAG. After recovery, they were divided into control and experimental groups. Formalin (50 μL of 2.5%) was inoculated into the left hind paw of rat. Morphine (6 mg/kg) was administered intraperitoneally (i.p.) 10 min before formalin injection. L-Arginine (0.25, 0.5, 1 and 2 μg/rat), and L-NAME (0.25, 0.5, 1 and 2 μg/rat), unrelatedly or with the respect in the order of injection were used in the nuclei before morphine injection (i.p.). Activation of the neuronal NO synthase (nNOS) in the brains of all animals was measured using NADPH-diaphorase, a selective biochemical marker of nNOS. RESULTS Morphine reduced inflammatory pain in the early and late stages of the rat formalin test. The morphine response was attenuated by before injection of single L-arginine but not L-NAME in the two target areas. However, the acute phase result was stopped due to L-NAME pretreatment. When L-NAME was injected into dlPAG before injecting L-arginine at dH, the morphine response did not decrease at all, indicating a modulatory role of NO in dlPAG, which was confirmed by NADPH-d staining. CONCLUSIONS High levels of NO in dlPAG may regulate pain process in downward synaptic interactions.
Collapse
Affiliation(s)
- Mahboobeh Hashemi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Manizheh Karami
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | |
Collapse
|
4
|
The Role of Klotho Protein Against Sevoflurane-Induced Neuronal Injury. Neurochem Res 2021; 47:315-326. [PMID: 34498160 DOI: 10.1007/s11064-021-03444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The effects of general anesthetics on the developing brain have aroused much attention in recent years. Sevoflurane, a commonly used inhalation anesthetic especially in pediatric anesthesia, can induce developmental neurotoxicity. In this study, the differentially expressed mRNAs in the hippocampus of newborn rats exposed to 3% sevoflurane for 6 h were detected by RNA-Sequencing. Those data indicated that the mRNA of Klotho was increased after exposure to sevoflurane. Moreover, the protein expression of Klotho was assayed by Western Blot. Besides over-expression and under-expression of Klotho protein, we also detected changes of cell proliferation, ROS, JC-1, and Bcl-2/Bax ratio in PC12 cells exposed to sevoflurane. After exposure to 3% sevoflurane, the expression of Klotho protein increased in the hippocampus of neonatal rats. In PC12 cells, exposure to sevoflurane could increase cellular ROS level, reduce mitochondrial membrane potential and Bcl-2/Bax ratio. While overexpression of Klotho alleviated the above changes, knockdown of Klotho aggravated the injury of sevoflurane. Klotho protein could reduce oxidative stress and mitochondrial injury induced by sevoflurane in the neuron.
Collapse
|
5
|
Alipour M, Asl MK, Khordad E, Alipour F, Raoofi A, Ebrahimzadeh-Bideskan A, Ebrahimi V. Histopathological study on neuroapoptotic alterations induced by etomidate in rat hippocampus. Acta Histochem 2021; 123:151693. [PMID: 33601320 DOI: 10.1016/j.acthis.2021.151693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/19/2022]
Abstract
In human, there is substantial neurogenesis in the hippocampus that is implicated in memory formation and learning. These new-born neurons can be affected by neuropathological conditions. Anesthesia and surgical procedures are associated with postoperative cognitive changes particularly, impaired memory and learning. Therefore, the aim of this study was to evaluate the possible neurodegenerative effects of etomidate in rat hippocampus. Thirty male Wistar rats weighing 250 ± 30 g were randomly divided into 3 groups: 1) Etomidate group; four times 20 mg intraperitoneal injection with 1-h intervals, 2) Control group; the equal volume of normal saline, and 3) Normal group; without any intervention. 6 h after the last injection, the brains were removed and processed according to routine histological methods. TUNEL assay and toluidine blue staining were performed to evaluate neuro-histopathological changes in different regions of hippocampus. Our results showed that the number of TUNEL positive cells and dark neurons (DNs) in etomidate group were significantly higher in the CA1, CA2, CA3, and dentate gyrus (DG) of hippocampus compared with the control and normal groups (p < 0.05). While, there was no significant difference between the various regions of hippocampus in control and normal groups. Our findings showed that etomidate can increase apoptotic cells and dark neurons induction in different regions of hippocampus mainly in DG.
Collapse
Affiliation(s)
- Mohammad Alipour
- Department of Anesthesia, School of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Kamkar Asl
- Department of Anesthesia, School of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Piao M, Wang Y, Liu N, Wang X, Chen R, Qin J, Ge P, Feng C. Sevoflurane Exposure Induces Neuronal Cell Parthanatos Initiated by DNA Damage in the Developing Brain via an Increase of Intracellular Reactive Oxygen Species. Front Cell Neurosci 2020; 14:583782. [PMID: 33424554 PMCID: PMC7793874 DOI: 10.3389/fncel.2020.583782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The safety of volatile anesthetics in infants and young children has been drawing increasing concern due to its potential neurotoxicity in the developing brain. Neuronal death is considered a major factor associated with developmental neurotoxicity after exposure to volatile anesthetics sevoflurane, but its mechanism remains elusive. Parthanatos, a new type of programmed cell death, resulting from poly (ADP-ribose) polymerase 1 (PARP-1) hyperactivation in response to DNA damage, was found to account for the pathogenesis of multiple neurological disorders. However, the role of Parthanatos in sevoflurane-induced neonatal neuronal cell death has not been investigated. To test it, neuronal cells treated with 2, 4, and 8% sevoflurane for 6, 12, and 24 h and postnatal day 7 rats exposed to 2.5% sevoflurane for 6 h were used in the present study. Our results found sevoflurane exposure induced neuronal cell death, which was accompanied by PARP-1 hyperactivation, cytoplasmic polymerized ADP-ribose (PAR) accumulation, mitochondrial depolarization, and apoptosis-inducing factor (AIF) nuclear translocation in the neuronal cells and hippocampi of rats. Pharmacological or genetic inhibition of PAPR-1 significantly alleviated sevoflurane-induced neuronal cell death and accumulation of PAR polymer and AIF nuclear translocation, which were consistent with the features of Parthanatos. We observed in vitro and in vivo that sevoflurane exposure resulted in DNA damage, given that 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylation of histone variant H2AX (γH2AX) were improved. Moreover, we detected that sevoflurane exposure was associated with an overproduction of intracellular reactive oxygen species (ROS). Inhibition of ROS with antioxidant NAC markedly alleviated DNA damage caused by sevoflurane, indicating that ROS participated in the regulation of sevoflurane-induced DNA damage. Additionally, sevoflurane exposure resulted in upregulation of Parthanatos-related proteins and neuronal cell death, which were significantly attenuated by pretreatment with NAC. Therefore, these results suggest that sevoflurane exposure induces neuronal cell Parthanatos initiated by DNA damage in the developing brain via the increase of intracellular ROS.
Collapse
Affiliation(s)
- Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xuedong Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Qin
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Feng
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Zhang J, Chen Z, Luo X, Yang Z. TrkC Overexpression Protects Sevoflurane-Induced Neurotoxicity in Human Induced Pluripotent Stem Cell-Derived Neurons. Dev Neurosci 2020; 42:105-113. [PMID: 33105134 DOI: 10.1159/000510326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inhaled anesthetic sevoflurane (SEVO) may induce cortical neurotoxicity and memory dysfunction in both animals and humans. In this study, we investigated the toxic effects of SEVO on human induced pluripotent stem cell (iPS)-derived neurons. METHODS Human iPS-derived neurons were exposed to SEVO in vitro. SEVO-induced toxic effects were examined with the viability, live caspase 3/7, and neurite density assays, respectively. The effects of SEVO on the receptors of the tyrosine kinases TrkA, TrkB, and TrkC were assessed by qRT-PCR. TrkA, TrkB, and TrkC were ectopically overexpressed in human iPS-derived neurons. Their functional effects on SEVO-induced human iPS-derived neuron toxicity were further investigated. RESULTS SEVO induced dose-dependent cell death, caspase 3/7 elevation, neurite degeneration, and the downregulation of Trk receptors in human iPS-derived neurons. Adenovirus-mediated Trk receptor overexpression selectively upregulated endogenous TrkA, TrkB, or TrkC gene expressions in human iPS-derived neurons. Specifically, TrkC overexpression, but not TrkA or TrkB overexpression was found to overcome the neurotoxic effects of SEVO in human iPS-derived neurons. CONCLUSIONS SEVO may induce neurotoxicity in human iPS-derived neurons, and its neurotoxic damage could be protected by the overexpression of TrkC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, Xianyang Rainbow Hospital, Xianyang, China
| | - Zhifu Chen
- Department of Anesthesiology, Baoji People's Hospital, Baoji, China
| | - Xiaoyan Luo
- Department of Anesthesiology, Yangling Demonstration Zone Hospital, Xianyang, China
| | - Zhoujing Yang
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China,
| |
Collapse
|
8
|
Li T, Huang Z, Wang X, Zou J, Tan S. Role of the GABAA receptors in the long-term cognitive impairments caused by neonatal sevoflurane exposure. Rev Neurosci 2020; 30:869-879. [PMID: 31145696 DOI: 10.1515/revneuro-2019-0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
Sevoflurane is a widely used inhalational anesthetic in pediatric surgeries, which is considered reasonably safe and reversible upon withdrawal. However, recent preclinical studies suggested that peri-neonatal sevoflurane exposure may cause developmental abnormalities in the brain. The present review aimed to present and discuss the accumulating experimental data regarding the undesirable effects of sevoflurane on brain development as revealed by the laboratory studies. First, we summarized the long-lasting side effects of neonatal sevoflurane exposure on cognitive functions. Subsequently, we presented the structural changes, namely, neuroapoptosis, neurogenesis and synaptogenesis, following sevoflurane exposure in the immature brain. Finally, we also discussed the potential mechanisms underlying subsequent cognitive impairments later in life, which are induced by neonatal sevoflurane exposure and pointed out potential strategies for mitigating sevoflurane-induced long-term cognitive impairments. The type A gamma-amino butyric acid (GABAA) receptor, the main targets of sevoflurane, is excitatory rather than inhibitory in the immature neurons. The excitatory effects of the GABAA receptors have been linked to increased neuroapoptosis, elevated serum corticosterone levels and epigenetic modifications following neonatal sevoflurane exposure in rodents, which might contribute to sevoflurane-induced long-term cognitive abnormalities. We proposed that the excitatory GABAA receptor-mediated HPA axis activity might be a novel mechanism underlying sevoflurane-induced long-term cognitive impairments. More studies are needed to investigate the effectiveness and mechanisms by targeting the excitatory GABAA receptor as a prevention strategy to alleviate cognitive deficits induced by neonatal sevoflurane exposure in future.
Collapse
Affiliation(s)
- Tao Li
- Grade 2015 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Xianwen Wang
- Grade 2015 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
9
|
Hypoxia, hypercarbia, and mortality reporting in studies of anaesthesia-related neonatal neurodevelopmental delay in rodent models. Eur J Anaesthesiol 2020; 37:70-84. [DOI: 10.1097/eja.0000000000001105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Song SY, Meng XW, Xia Z, Liu H, Zhang J, Chen QC, Liu HY, Ji FH, Peng K. Cognitive impairment and transcriptomic profile in hippocampus of young mice after multiple neonatal exposures to sevoflurane. Aging (Albany NY) 2019; 11:8386-8417. [PMID: 31582589 PMCID: PMC6814607 DOI: 10.18632/aging.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Children with repeated inhalational anesthesia may develop cognitive disorders. This study aimed to investigate the transcriptome-wide response of hippocampus in young mice that had been exposed to multiple sevoflurane in the neonatal period. Mice received 3% sevoflurane for 2 h on postnatal day (PND) 6, 8, and 10, followed by arterial blood gas test on PND 10, behavioral experiments on PND 31–36, and RNA sequencing (RNA-seq) of hippocampus on PND 37. Functional annotation and protein-protein interaction analyses of differentially expressed genes (DEGs) and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. Neonatal sevoflurane exposures induced cognitive and social behavior disorders in young mice. RNA-seq identified a total of 314 DEGs. Several enriched biological processes (ion channels, brain development, learning, and memory) and signaling pathways (oxytocin signaling pathway and glutamatergic, cholinergic, and GABAergic synapses) were highlighted. As hub-proteins, Pten was involved in nervous system development, synapse assembly, learning, memory, and behaviors, Nos3 and Pik3cd in oxytocin signaling pathway, and Cdk16 in exocytosis and phosphorylation. Some top DEGs were validated by qPCR. This study revealed a transcriptome-wide profile in mice hippocampus after multiple neonatal exposures to sevoflurane, promoting better understanding of underlying mechanisms and investigation of preventive strategies.
Collapse
Affiliation(s)
- Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - ZhengYuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Ma L, Zhao J, Xie X. Sevoflurane induces liver injury by modulating the expression of insulin-like growth factor 1 via miR-214. J Cell Physiol 2018; 233:6742-6749. [PMID: 29226348 DOI: 10.1002/jcp.26382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
This study aimed to detect the effect of sevoflurane anesthesia on liver injury through modulating IGF-1. The expression of IGF-1 and IGF-1R in liver tissues of sevoflurane-exposed rats was examined by qRT-PCR and Western blot. The expression levels of miR-214 in liver cells treated with different concentration of sevoflurane at different time points were detected by qRT-PCR. Enzyme-linked immunosorbent (ELISA) assay was used to analyze serum IGF-1 concentration in cell culture media. After pre-treatment with 100 nM miR-214 inhibitor followed by exposure to sevoflurane, the expression level of miR-214 and IGF-1 protein in liver cells was examined. Hematoxylin-Eosin (HE) staining and TUNEL assay was performed to analyze liver tissue necrosis and apoptosis. The expression levels of apoptosis-related proteins (caspase 3 and Bcl-xL) were examined using Western blot. The mRNA and protein expression level of IGF-1 and IGF-1R in rats was significantly down-regulated after 90 min exposure to sevoflurane. QRT-PCR results suggested that exposure to sevoflurane upregulated the expression level of miR-214 and decreased the concentration of IGF-1 in a dose and time dependent manner. Sevoflurane inhibited the expression of IGF-1 through up-regulating miR-214. IGF-1 inhibited the positive effect of sevoflurane on cell necrosis and apoptosis. Sevoflurane could induce liver injury by modulating IGF-1 expression via miR-214.
Collapse
Affiliation(s)
- Ligang Ma
- Department of Anesthesia, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jingjing Zhao
- Department of Outpatient, Luoyang DongFang Hospital, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaojuan Xie
- Department of Anesthesia, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
12
|
Lu Z, Sun J, Xin Y, Chen K, Ding W, Wang Y. Sevoflurane-induced memory impairment in the postnatal developing mouse brain. Exp Ther Med 2018; 15:4097-4104. [PMID: 29731813 PMCID: PMC5920718 DOI: 10.3892/etm.2018.5950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/06/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.
Collapse
Affiliation(s)
- Zhijun Lu
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Jihui Sun
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Yichun Xin
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Ken Chen
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Wen Ding
- Department of Anesthesia, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Yujia Wang
- Intensive Care Unit, Shanghai Jing'an District Shibei Hospital, Shanghai 200443, P.R. China
| |
Collapse
|
13
|
Perez-Zoghbi J, Zhu W, Grafe M, Brambrink A. Dexmedetomidine-mediated neuroprotection against sevoflurane-induced neurotoxicity extends to several brain regions in neonatal rats. Br J Anaesth 2017; 119:506-516. [DOI: 10.1093/bja/aex222] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
|
14
|
Xie SN, Ye H, Li JF, An LX. Sevoflurane neurotoxicity in neonatal rats is related to an increase in the GABAAR α1/GABAAR α2 ratio. J Neurosci Res 2017; 95:2367-2375. [PMID: 28843008 DOI: 10.1002/jnr.24118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/23/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Si-Ning Xie
- Department of Anesthesiology, Beijing TianTan Hospital; Capital Medical University; No. 6 Tiantan Xili, Dongcheng District Beijing 100050 China
| | - Hong Ye
- Department of Anesthesiology, Beijing TianTan Hospital; Capital Medical University; No. 6 Tiantan Xili, Dongcheng District Beijing 100050 China
| | - Jun-Fa Li
- Department of Neurobiology; Capital Medical University; No. 10 Xi-Tou-Tiao, You’an Men Wai, Fengtai District Beijing 100069 China
| | - Li-Xin An
- Department of Anesthesiology, Beijing TianTan Hospital; Capital Medical University; No. 6 Tiantan Xili, Dongcheng District Beijing 100050 China
| |
Collapse
|
15
|
Ling Y, Li X, Yu L, Liang Q, Lin X, Yang X, Wang H, Zhang Y. Sevoflurane exposure in postnatal rats induced long-term cognitive impairment through upregulating caspase-3/cleaved-poly (ADP-ribose) polymerase pathway. Exp Ther Med 2017; 14:3824-3830. [PMID: 29042986 DOI: 10.3892/etm.2017.5004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/28/2023] Open
Abstract
The association of anesthetic exposure in infants or young children with the long-term impairment of neurologic functions has been reported previously; however, the underlying mechanisms remain largely unknown. In order to identify dysregulated gene expression underlying long-term cognitive impairment caused by sevoflurane exposure at the postnatal stage, the present study initially performed behavioral tests on adult Wistar rats, which received 3% sevoflurane at postnatal day 7 (P7) for different time course. Subsequently, transcriptome profiling of hippocampal tissues from experimental and control rats was performed. Significant impairment of the working memory was observed in adult rats with sevoflurane exposure for 4-6 h, when compared with the control rats. The results indicated that a total of 264 genes were aberrantly expressed (51 downregulated and 213 upregulated; fold change >2.0; P<0.05; false discovery rate <0.05) in the hippocampus of experimental adult rats compared with those from control rats. Particularly, the expression of caspase-3 gene (CASP3), encoding caspase-3 protein, presented the most significant upregulation, which was further validated by quantitative polymerase chain reaction and immunohistochemical analysis. Further analysis revealed that CASP3 expression level was negatively correlated with the rats' spatial working memory performance, as indicated by the Y-maze test. The level of cleaved-poly (ADP-ribose) polymerase (PARP), a substrate of caspase-3, was also increased in the hippocampus of experimental adult rats. Thus, the present study revealed that upregulation of caspase-3/cleaved-PARP may be involved in long-term cognitive impairment caused by sevoflurane exposure in infants, which may be useful for the clinical prevention of cognitive impairment.
Collapse
Affiliation(s)
- Yunzhi Ling
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Anhui, Hefei 233004, P.R. China
| | - Xiaohong Li
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Anhui, Hefei 233004, P.R. China
| | - Li Yu
- Department of Laboratory Medicine, Bengbu Medical College, Anhui, Hefei 233030, P.R. China
| | - Qisheng Liang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Anhui, Hefei 233004, P.R. China
| | - Xuewu Lin
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Anhui, Hefei 233004, P.R. China
| | - Xiaodi Yang
- Department of Parasitology, Bengbu Medical College, Anhui, Hefei 233030, P.R. China
| | - Hongtao Wang
- Department of Immunology, Bengbu Medical College, Anhui, Hefei 233030, P.R. China
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, P.R. China
| |
Collapse
|
16
|
Zhou X, Xian D, Xia J, Tang Y, Li W, Chen X, Zhou Z, Lu D, Feng X. MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Mol Med Rep 2017; 15:2204-2212. [PMID: 28259954 PMCID: PMC5364873 DOI: 10.3892/mmr.2017.6268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/02/2016] [Indexed: 01/30/2023] Open
Abstract
The commonly used inhalation anesthetic, sevoflurane, has been previously demonstrated to induce apoptosis in the developing brain; however, the underlying molecular mechanisms remain largely unknown. MicroRNAs (miRNAs) serve important roles in multiple physiological/pathological processes, such as cell death and survival. In the present study, the miRNA sequence that was most closely associated with sevoflurane‑induced apoptosis in the hippocampus of neonatal rat brains was identified. Seven‑day‑old Sprague Dawley rats were first exposed to 2.3% sevoflurane for 6 h. Hippocampal brain tissues were harvested at 6 h following sevoflurane exposure. Cleaved caspase‑3 levels were examined using an immunofluorescence assay. Alterations in miRNA expression were assessed by microarray analysis and reverse transcription-quantitative polymerase chain reaction. The protein levels of p53, phosphorylated (p)‑p53, B-cell lymphoma-2 (Bcl-2) and Bax were assessed by western blot analysis. Sevoflurane exposure significantly increased the levels of cleaved caspase‑3 in the hippocampus. In addition, among the 688 miRNAs that were observed to be expressed in the hippocampus, sevoflurane exposure altered the expression levels of 266 miRNAs. Among these differentially expressed miRNAs, eight were significantly upregulated and one (miRNA‑34c) was significantly downregulated following sevoflurane exposure. Bioinformatics analyses indicated the miRNA‑34c was a direct downstream target of p53. Sevoflurane exposure induced significant alterations in the level of p‑p53, Bcl‑2 and Bax in the hippocampus of neonatal rats. In conclusion, the results of the present study suggest that miRNA‑34c may be regulated by p53 and is involved in sevoflurane‑induced neural apoptosis in the hippocampus of developing rat brains, potentially via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongfeng Xian
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiehua Xia
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenda Li
- Department of Hepatobiliary Surgery, The Sun Yat‑sen Memorial Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaohui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhibin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Wang N, Jia YM, Zhang B, Xue D, Reeju M, Li Y, Huang SM, Liu XW. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation. Neural Regen Res 2017; 12:654-659. [PMID: 28553348 PMCID: PMC5436366 DOI: 10.4103/1673-5374.205107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ)-induced cognitive dysfunction and is neuroprotective in vivo, but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE), which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL) into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d) intragastrically for 21 consecutive days. Hematoxylin-eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme-linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.
Collapse
Affiliation(s)
- Na Wang
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| | - Yong-Ming Jia
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Di Xue
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| | - Maharjan Reeju
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| | - Yan Li
- Department of Neuroscience, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Wei Liu
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| |
Collapse
|
18
|
Zhang X, Liu F, Slikker W, Wang C, Paule MG. Minimally invasive biomarkers of general anesthetic-induced developmental neurotoxicity. Neurotoxicol Teratol 2016; 60:95-101. [PMID: 27784630 DOI: 10.1016/j.ntt.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
The association of general anesthesia with developmental neurotoxicity, while nearly impossible to study in pediatric populations, is clearly demonstrable in a variety of animal models from rodents to nonhuman primates. Nearly all general anesthetics tested have been shown to cause abnormal brain cell death in animals when administered during periods of rapid brain growth. The ability to repeatedly assess in the same subjects adverse effects induced by general anesthetics provides significant power to address the time course of important events associated with exposures. Minimally-invasive procedures provide the opportunity to bridge the preclinical/clinical gap by providing the means to more easily translate findings from the animal laboratory to the human clinic. Positron Emission Tomography or PET is a tool with great promise for realizing this goal. PET for small animals (microPET) is providing valuable data on the life cycle of general anesthetic induced neurotoxicity. PET radioligands (annexin V and DFNSH) targeting apoptotic processes have demonstrated that a single bout of general anesthesia effected during a vulnerable period of CNS development can result in prolonged apoptotic signals lasting for several weeks in the rat. A marker of cellular proliferation (FLT) has demonstrated in rodents that general anesthesia-induced inhibition of neural progenitor cell proliferation is evident when assessed a full 2weeks after exposure. Activated glia express Translocator Protein (TSPO) which can be used as a marker of presumed neuroinflammatory processes and a PET ligand for the TSPO (FEPPA) has been used to track this process in both rat and nonhuman primate models. It has been shown that single bouts of general anesthesia can result in elevated TSPO expression lasting for over a week. These examples demonstrate the utility of specific PET tracers to inform, in a minimally-invasive fashion, processes associated with general anesthesia-induced developmental neurotoxicity. The fact that PET procedures are also used clinically suggests an opportunity to confirm in humans what has been repeatedly observed in animals.
Collapse
|
19
|
Chen X, Zhou X, Lu D, Yang X, Zhou Z, Chen X, Chen Y, He W, Feng X. Aberrantly expressed long noncoding RNAs are involved in sevoflurane-induced developing hippocampal neuronal apoptosis: a microarray related study. Metab Brain Dis 2016; 31:1031-40. [PMID: 27234990 DOI: 10.1007/s11011-016-9838-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
The commonly used volatile anesthetic sevoflurane has been shown to induce widespread apoptosis in the developing brain, yet the underlying molecular mechanisms are not fully understood. Accumulating research has demonstrated that long noncoding RNAs (lncRNAs) regulate multiple biological processes, including neural development, differentiation and apoptosis. They are aberrantly expressed in multiple neurodegenerative diseases. In this study, we employed a lncRNA-mRNA microarray analysis to determine whether and how lncRNAs are involved in sevoflurane-induced hippocampal neuronal apoptosis in neonatal mice. Our data showed that a single 6-h sevoflurane exposure of P7 mice resulted in significant morphological changes and apoptosis in the hippocampus. Moreover, the microarray simultaneously revealed 817 lncRNAs and 856 of their potential coding targets that related to apoptosis, of which 31 lncRNAs (19 up and 12 down) and 25 mRNAs were significantly differentially expressed (P < 0.05) after sevoflurane exposure. Importantly, we found that Bcl2l11 (BIM), which potentiates mitochondria-dependent apoptosis and its nearby enhancer-like lncRNA ENSMUST00000136025, were both more highly expressed in sevoflurane-treated samples compared with control samples. Subsequent qRT-PCR results confirmed the changes. Further CNC network indicated that lncRNA ENSMUST00000136025 was positively correlated with Bim. Moreover, sevoflurane induced a significant increase of pro-apoptotic protein BIM and Bax but a reduction of anti-apoptotic proteins Bcl-2 in the hippocampus. Our study first demonstrates that aberrantly expressed lncRNAs play a role in sevoflurane-induced hippocampal apoptosis. We noted that up-regulated ENSMUST00000136025 highly likely induced the over-expression of BIM, which eventually promoted mitochondria-mediated apoptosis. Such findings further broaden the understanding of molecular mechanisms responsible for sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoyu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Zhibin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Yanqing Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
| | - Wen He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
20
|
In Vivo Monitoring of Sevoflurane-induced Adverse Effects in Neonatal Nonhuman Primates Using Small-animal Positron Emission Tomography. Anesthesiology 2016; 125:133-46. [DOI: 10.1097/aln.0000000000001154] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Animals exposed to sevoflurane during development sustain neuronal cell death in their developing brains. In vivo micro-positron emission tomography (PET)/computed tomography imaging has been utilized as a minimally invasive method to detect anesthetic-induced neuronal adverse effects in animal studies.
Methods
Neonatal rhesus monkeys (postnatal day 5 or 6, 3 to 6 per group) were exposed for 8 h to 2.5% sevoflurane with or without acetyl-l-carnitine (ALC). Control monkeys were exposed to room air with or without ALC. Physiologic status was monitored throughout exposures. Depth of anesthesia was monitored using quantitative electroencephalography. After the exposure, microPET/computed tomography scans using 18F-labeled fluoroethoxybenzyl-N-(4-phenoxypyridin-3-yl) acetamide (FEPPA) were performed repeatedly on day 1, 1 and 3 weeks, and 2 and 6 months after exposure.
Results
Critical physiologic metrics in neonatal monkeys remained within the normal range during anesthetic exposures. The uptake of [18F]-FEPPA in the frontal and temporal lobes was increased significantly 1 day or 1 week after exposure, respectively. Analyses of microPET images recorded 1 day after exposure showed that sevoflurane exposure increased [18F]-FEPPA uptake in the frontal lobe from 0.927 ± 0.04 to 1.146 ± 0.04, and in the temporal lobe from 0.859 ± 0.05 to 1.046 ± 0.04 (mean ± SE, P < 0.05). Coadministration of ALC effectively blocked the increase in FEPPA uptake. Sevoflurane-induced adverse effects were confirmed by histopathologic evidence as well.
Conclusions
Sevoflurane-induced general anesthesia during development increases glial activation, which may serve as a surrogate for neurotoxicity in the nonhuman primate brain. ALC is a potential protective agent against some of the adverse effects associated with such exposures.
Collapse
|
21
|
Zhou ZB, Yang XY, Tang Y, Zhou X, Zhou LH, Feng X. Subclinical concentrations of sevoflurane reduce oxidative stress but do not prevent hippocampal apoptosis. Mol Med Rep 2016; 14:721-7. [PMID: 27222114 PMCID: PMC4918604 DOI: 10.3892/mmr.2016.5336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Sevoflurane is generally considered a pro-apoptotic agent in the neonatal brain. However, recent studies have suggested that low levels of sevoflurane anesthesia may be neuroprotective and have a memory enhancing effect. The present study aimed to investigate whether sevoflurane exerts a neuroprotective effect at subclinical concentrations, with regard to oxidative state. In the current study, postnatal day 7 (P7) Sprague-Dawley rats were continuously exposed to 0.3, 1.3, or 2.3% sevoflurane for 6 h. ELISA was used to quantify the levels of superoxide dismutase, glutathione peroxidase (GSH-px) and malondialdehyde (MDA) in the plasma and the hippocampus. Terminal deoxynucleotidyl-transferase dUTP nick-end labeling staining was used to observe hippocampal neuronal apoptosis. Altered object exploration tests for recognition memory were employed to investigate long-term behavioral effects at postnatal day 28. The results demonstrated that a single 6 h exposure to a subclinical concentration (1.3%) of sevoflurane at P7 reduces MDA and GPH-px production in rats. Sevoflurane induced hippocampal apoptosis in a dose-dependent manner and altered recognition memory testing indicated no differences among the groups. Although early exposure to a subclinical concentration of sevoflurane reduced oxidative stress, it did not prevent the process of sevoflurane-induced hippocampal apoptosis. These changes did not affect subsequent recognition memory in juvenile rats.
Collapse
Affiliation(s)
- Zhi-Bin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Yu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhong Shan Medical College, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Li-Hua Zhou
- Department of Anatomy, Zhong Shan Medical College, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
22
|
Ocmen E, Derbent A, Micilli SC, Cankurt U, Aksu I, Dayi A, Yilmaz O, Gokmen N. Erythropoietin diminishes isoflurane-induced apoptosis in rat frontal cortex. Paediatr Anaesth 2016; 26:444-51. [PMID: 26921217 DOI: 10.1111/pan.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND During the brain growth spurt, anesthetic drugs can cause cellular and behavioral changes in the developing brain. The aim of this study was to determine the neuroprotective effect of erythropoietin after isoflurane anesthesia in rat pups. METHODS A total of 42, 7-day-old Wistar rats were divided into three groups. Control group (GC; n = 14): Rats breathed 100% oxygen for 6 h; Isoflurane group (GI; n = 14): Rats were exposed to 1.5% isoflurane in 100% oxygen for 6 h; Isoflurane + erythropoietin group (GIE; n = 14): 1000 IU·kg(-1) (intraperitoneal; IP) Erythropoietin was administered after isoflurane anesthesia. Each group was divided into two groups for pathology and learning and memory tests. Silver, caspase-3, and fluoro-jade C staining were used for detecting apoptotic cells in frontal cortex, striatum, hippocampus, thalamus, and amygdala. Morris water maze was used to evaluate learning and memory. RESULTS There was a significant increase in apoptotic cell count after isoflurane anesthesia in the frontal cortex when compared with control group (29.0 ± 9.27 vs 3.28 ± 0.75 [P = 0.002], 20.85 ± 10.94 vs 2.0 ± 0.81 [P = 0.002] and 24.57 ± 10.4 vs 5.14 ± 0.69 [P = 0.024] with silver, caspase-3, and fluoro-jade C staining, respectively). The apoptotic cell count in the frontal cortex was significantly higher in GIE than GC with caspase-3 staining (9.14 ± 3.13 vs 2.0 ± 0.81, P = 0.002). The apoptotic cell count in GIE was significantly reduced in the frontal cortex when compared with GI (4.0 ± 0.81 vs 29.0 ± 9.27 [P = 0.002], 9.14 ± 3.13 vs 20.85 ± 10.94 [P = 0.04] and 4.0 ± 1.63 vs 24.57 ± 10.4 [P = 0.012] with silver, caspase-3, and fluoro-jade C staining, respectively). CONCLUSIONS A total of 1000 IU·kg(-1) IP erythropoietin diminished isoflurane-induced neuroapoptosis. Further experimental studies have to be planned to reveal the optimal dose and timing of erythropoietin before adaptation to clinical practice.
Collapse
Affiliation(s)
- Elvan Ocmen
- Department of Anesthesiology and Reanimation, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Abdurrahim Derbent
- Department of Anesthesiology and Reanimation, School of Medicine, Ege University, Izmir, Turkey
| | - Serap C Micilli
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ulker Cankurt
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilkay Aksu
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayfer Dayi
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Necati Gokmen
- Department of Anesthesiology and Reanimation, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
23
|
Abstract
The results of several retrospective clinical studies suggest that exposure to anesthetic agents early in life is correlated with subsequent learning and behavioral disorders. Although ongoing prospective clinical trials may help to clarify this association, they remain confounded by numerous factors. Thus, some of the most compelling data supporting the hypothesis that a relatively short anesthetic exposure can lead to a long-lasting change in brain function are derived from animal models. The mechanism by which such changes could occur remains incompletely understood. Early studies identified anesthetic-induced neuronal apoptosis as a possible mechanism of injury, and more recent work suggests that anesthetics may interfere with several critical processes in brain development. The function of the mature brain requires the presence of circuits, established during development, which perform the computations underlying learning and cognition. In this review, we examine the mechanisms by which anesthetics could disrupt brain circuit formation, including effects on neuronal survival and neurogenesis, neurite growth and guidance, formation of synapses, and function of supporting cells. There is evidence that anesthetics can disrupt aspects of all of these processes, and further research is required to elucidate which are most relevant to pediatric anesthetic neurotoxicity.
Collapse
|
24
|
Lee JH, Zhang J, Wei L, Yu SP. Neurodevelopmental implications of the general anesthesia in neonate and infants. Exp Neurol 2015; 272:50-60. [PMID: 25862287 DOI: 10.1016/j.expneurol.2015.03.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Each year, about six million children, including 1.5 million infants, in the United States undergo surgery with general anesthesia, often requiring repeated exposures. However, a crucial question remains of whether neonatal anesthetics are safe for the developing central nervous system (CNS). General anesthesia encompasses the administration of agents that induce analgesic, sedative, and muscle relaxant effects. Although the mechanisms of action of general anesthetics are still not completely understood, recent data have suggested that anesthetics primarily modulate two major neurotransmitter receptor groups, either by inhibiting N-methyl-D-aspartate (NMDA) receptors, or conversely by activating γ-aminobutyric acid (GABA) receptors. Both of these mechanisms result in the same effect of inhibiting excitatory activity of neurons. In developing brains, which are more sensitive to disruptions in activity-dependent plasticity, this transient inhibition may have longterm neurodevelopmental consequences. Accumulating reports from preclinical studies show that anesthetics in neonates cause cellular toxicity including apoptosis and neurodegeneration in the developing brain. Importantly, animal and clinical studies indicate that exposure to general anesthetics may affect CNS development, resulting in long-lasting cognitive and behavioral deficiencies, such as learning and memory deficits, as well as abnormalities in social memory and social activity. While the casual relationship between cellular toxicity and neurological impairments is still not clear, recent reports in animal experiments showed that anesthetics in neonates can affect neurogenesis, which could be a possible mechanism underlying the chronic effect of anesthetics. Understanding the cellular and molecular mechanisms of anesthetic effects will help to define the scope of the problem in humans and may lead to preventive and therapeutic strategies. Therefore, in this review, we summarize the current evidence on neonatal anesthetic effects in the developmental CNS and discuss how factors influencing these processes can be translated into new therapeutic strategies.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Zhang
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA.
| |
Collapse
|
25
|
Qiu J, Shi P, Mao W, Zhao Y, Liu W, Wang Y. Effect of apoptosis in neural stem cells treated with sevoflurane. BMC Anesthesiol 2015; 15:25. [PMID: 25774088 PMCID: PMC4359390 DOI: 10.1186/s12871-015-0018-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND At present, sevoflurane inhalation anesthesia used on infants is well-known. But long-time exposure to inhalation anesthetic could cause neurologic disorder, especially nerve degeneration in infant and developing brain. The central nervous system degeneration of infants could affect the memory and cognitive function. γ-Aminobutyric acid (GABA) is a known inhibitory neurotransmitter in central nervous system. Inhalation anesthetic sevoflurane may activate GABAA receptor to inhibit central nervous system, leading to apoptosis of neural degeneration, cognitive dysfunction in the critical period of brain development. METHODS Neural stem cells were derived from Wistar embryos, cultured in vitro. Third generation of neural stem cells were randomly divided into four groups according to cultured suspension: Sevoflurane group (Group S), GABAA receptor antagonists, Bicuculline group (Group B), Sevoflurane + GABAA receptor antagonists, Bicuculline group (Group S + B), dimethyl sulphoxide (DMSO) group (Group D). Group B and Group D did not receive sevoflurane preconditioning. Group S and Group S + B were pretreated with 1 minimum alveolar concentration (MAC) sevoflurane for 0 h, 3 h, 6 h, and 12 h. Group S + B and Group B were pretreated with bicuculline (10 uM). Group D was treated with DMSO (10 uL/mL). After treatments above, all groups were cultured for 48 h. Then we measured the cells viability by Cell Counting Kit (CCK-8) assay, cytotoxicity by Lactate Dehydrogenase (LDH) assay, apoptosis ratio with Annexin V/propidium iodide (PI) staining by flow cytometry, and the expression of GABAAR, anti-apoptotic protein Bcl-2, pro-apoptotic protein Bax and Caspase-3 by western blotting. RESULTS After exposing to sevoflurane for 0 h, 3 h, 6 h, and 12 h with 1MAC, we found that cell viability obviously decreased and cytotoxicity increased in time-dependent way. And Annexin V/PI staining indicated increased apoptosis ratio by flow cytometry. The protein level of GABAA receptor, pro-apoptotic protein Bax and apoptosis protein Caspase-3 increased; while anti-apoptotic protein Bcl-2 decreased. And bicuculline could reverse all detrimental results caused by sevoflurane. CONCLUSION Sevoflurane can inhibit the central nervous system by activating GABAA, resulting in apoptosis of neural stem cells, thus leading to the NSCs degeneration.
Collapse
Affiliation(s)
- Jianlei Qiu
- Department of Anesthesiology, Dezhou People’s Hospital, Dezhou, Shandong China
- School of Medicine, Shandong University, Ji’nan, Shandong China
| | - Pengcai Shi
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong China
| | - Wude Mao
- Department of Anesthesiology, Jiaozhou Central Hospital of Qingdao, Qingdao, Shandong China
| | - Yuyi Zhao
- Department of Anesthesiology, Dezhou People’s Hospital, Dezhou, Shandong China
| | - Wenshuai Liu
- Department of Emergency, Dezhou People’s Hospital, Dezhou, Shandong China
| | - Yuelan Wang
- School of Medicine, Shandong University, Ji’nan, Shandong China
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong China
| |
Collapse
|
26
|
Equipotent Subanesthetic Concentrations of Sevoflurane and Xenon Preventing Cold-stimulated Vocalization of Neonatal Rats. Anesthesiology 2014; 121:1194-202. [DOI: 10.1097/aln.0000000000000423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background:
The effects of inhaled anesthetics on the developing brain are studied using neonatal rodents exposed to fractions of minimum alveolar concentration (to avoid cardiorespiratory compromise). However, these fractions cannot be assumed to be equipotent. Xenon’s anesthetic and neuroprotective properties warrant investigation in these models. Therefore, equipotent, subanesthetic concentrations of inhaled anesthetics are needed.
Methods:
Forty-eight Wistar rats (Charles River Laboratories, Kent, United Kingdom) on postnatal day 9 were randomized to eight concentrations of inhaled anesthetics: isoflurane, sevoflurane, or xenon. Exposure was closely monitored in individual metal-based chambers resting on a 35°C mat to maintain normothermia. A 25°C mat was used to stimulate vocalization and a sound recording made (1 min, 1 to 100 kHz). Rectal temperature or partial pressure of carbon dioxide and pH of mixed arteriovenous blood were measured immediately after the exposure. Concentration–response models were constructed using logistic regression (dependent variable: vocalization and explanatory variable: concentration). The effects of all other explanatory variables were assessed by inserting them individually into the model.
Results:
The effective inhaled concentrations preventing cold-stimulated vocalization in 50 and 95% of neonatal rats (EiC50 and EiC95) on postnatal day 9 were 0.46 and 0.89% sevoflurane and 20.15 and 34.81% xenon, respectively. The effect on the EiC50 of all other explanatory variables, including duration, was minimal. Stability of EiC50 isoflurane was not achieved over three durations (40, 80, and 120 min exposure). Partial pressure of carbon dioxide and pH in mixed arteriovenous blood appeared normal.
Conclusions:
The authors report equipotent subanesthetic concentrations of sevoflurane and xenon in neonatal rats with preserved cardiopulmonary function. This may be useful in designing neonatal rodent models of anesthesia.
Collapse
|
27
|
Pellegrini L, Bennis Y, Velly L, Grandvuillemin I, Pisano P, Bruder N, Guillet B. Erythropoietin protects newborn rat against sevoflurane-induced neurotoxicity. Paediatr Anaesth 2014; 24:749-59. [PMID: 24725211 DOI: 10.1111/pan.12372] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Recent data on newborn animals exposed to anesthetics have raised safety concerns regarding anesthesia practices in young children. Indeed, studies on rodents have demonstrated a widespread increase in brain apoptosis shortly after exposure to sevoflurane, followed by long-term neurologic impairment. In this context, we aimed to evaluate the protective effect of rh-EPO, a potent neuroprotective agent, in rat pups exposed to sevoflurane. MATERIAL AND METHODS At postnatal day 7, 75 rat pups were allocated into three groups: SEVO + EPO (n = 27) exposed to sevoflurane 2 vol% (0.5 MAC) for 6 h in an air/O2 mixture (60/40) + 5000 UI.kg(-1) rh-EPO IP; SEVO (n = 27) exposed to sevoflurane + vehicle IP; and CONTROL (n = 21) exposed to the mixture without sevoflurane + vehicle IP. Three days after anesthesia (D10), apoptosis was quantified on brain extract with TUNEL method and caspase 3. NGF and BDNF expression was determined by Western blotting. Rats reaching adulthood were evaluated in terms of exploration capacities (object exploration duration) together with spatial and object learning (water maze and novel object test). RESULTS Sevoflurane exposure impaired normal behavior in adult rats by reducing the exploratory capacities during the novel object test and impaired both spatial and object learning capacities in adult rats (water maze, ratio time to find platform 3rd trial/1st trial: 1.1 ± 0.2 vs 0.4 ± 0.1; n = 9, SEVO vs CONTROL; P = 0.01). Rh-EPO reduced sevoflurane-induced behavior and learning abnormalities in adult rats (water maze, ratio time to find platform 3rd trial/1st trial: 0.3 ± 0.1 vs 1.1 ± 0.2; n = 9, SEVO + EPO vs SEVO; P = 0.01). Three days after anesthesia, rh-EPO prevented sevoflurane-induced brain apoptosis (5 ± 3 vs 35 ± 6 apoptotic cells·mm(-2) ; n = 6, SEVO + EPO vs SEVO; P = 0.01) and elevation of caspase three level and significantly increased the brain expression of BDNF and NGF (n = 6, SEVO + EPO vs SEVO; P = 0.01). CONCLUSION Six hours of sevoflurane anesthesia in newborn rats induces significant long-term cognitive impairment. A single administration of rh-EPO immediately after postnatal exposure to sevoflurane reduces both early activation of apoptotic phenomenon and late onset of neurologic disorders.
Collapse
Affiliation(s)
- Lionel Pellegrini
- Department of Anesthesia, APHM, CHU Timone, Marseille, France; INSERM UMR_S 1076, Aix-Marseille University, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
29
|
ZHENG SQ, AN LX, CHENG X, WANG YJ. Sevoflurane causes neuronal apoptosis and adaptability changes of neonatal rats. Acta Anaesthesiol Scand 2013; 57:1167-74. [PMID: 23889296 DOI: 10.1111/aas.12163] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neonatal exposure to sevoflurane can induce neurodegeneration and learning deficits in developing brain. We hypothesised that with the increase in the concentration and duration of sevoflurane, neurodegeneration of neonatal rats aggravates and causes behaviour changes as the rats grow. METHODS Twenty-one post-natal day (P)7 Wistar rats were randomly divided into seven groups. Blood analysis was performed after anaesthesia. According to the results, 120 P7 Wistar rats were randomly divided into five groups: Con sham anaesthesia; Sevo 1%-2 h: exposed to 1% sevoflurane for 2 h; Sevo 1%-4 h, Sevo 2%-2 h and Sevo 2%-4 h. Caspase-3 positive cells in brain were detected by immunohistochemistry at 6 h after the end of anaesthesia. The cleaved poly(ADP-ribose) polymerase (c-PARP-1) in cortex and hippocampus was detected by Western blot analysis. Behavioural tests such as Morris water maze and Open-field Test were performed when the rats were 5-week old, 8-week old, and 14-week old. RESULTS Three per cent sevoflurane induced carbon dioxide accumulation. The level of c-PARP-1 in hippocampus area was significantly increased in Group 2%-4h. The number of caspase-3 positive cells in Group Sevo 1%-2h, Group Sevo 2%-2h and Group Sevo 2%-4h was greater than that in Group Con. Rats exposed to sevoflurane had longer travel distance and time in open field when they were 5 weeks old. Animals from different groups had similar performance in Morris water maze. CONCLUSION Exposure to 2% sevoflurane causes neuronal apoptosis of neonatal rats, and long-time exposure aggravates that. The adaptability in new environment is transiently decreased when the anaesthesia rats are 5 weeks old.
Collapse
Affiliation(s)
| | - L. X. AN
- Department of Anesthesiology; Beijing TianTan Hospital, Capital Medical University; Beijing; China
| | - X. CHENG
- Department of Anesthesiology; Beijing TianTan Hospital, Capital Medical University; Beijing; China
| | | |
Collapse
|