1
|
Serna-García M, Peiró R, Serna E, Santacreu MA. Ovarian Transcriptomic Analysis Reveals Differential Expression Genes Associated with Cell Death Process after Selection for Ovulation Rate in Rabbits. Animals (Basel) 2020; 10:ani10101924. [PMID: 33092110 PMCID: PMC7593938 DOI: 10.3390/ani10101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Transcriptomic analysis showed nineteen potential biomarkers in ovarian tissue from females belonged to a rabbit line selected for ovulation rate for 10 generations and the control line. These females differed not only in ovulation rate but also in prenatal survival since similar litter size were observed. Abstract Litter size is an essential trait in rabbit meat production but with low heritability. A selection experiment for ovulation rate has been performed for 10 generations to improve litter size in rabbits. The selected line increased two ova more than the control line but nevertheless a negative correlation was observed with prenatal survival. A transcriptomic study was performed, using microarrays, in ovarian tissue from females belonging to the selected line and the control line. Our results showed 1357 differential expressed genes and nineteen potential biomarkers associated with prenatal mortality, which could explain differences between litter size in rabbits. Cell death was the most relevant process.
Collapse
Affiliation(s)
- Marta Serna-García
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain;
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, São Paulo, Brazil
| | - Rosa Peiró
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Eva Serna
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Correspondence: (E.S.); (M.A.S.); Tel.: +34-963864100 (ext. 83171) (E.S.); +34-963879436 (M.A.S.)
| | - María Antonia Santacreu
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain;
- Correspondence: (E.S.); (M.A.S.); Tel.: +34-963864100 (ext. 83171) (E.S.); +34-963879436 (M.A.S.)
| |
Collapse
|
2
|
Peng H, Chen J, Gao Y, Huo J, Wang C, Zhang Y, Xiao T. Valosin-containing protein is associated with maintenance of meiotic arrest in mouse oocytes†. Biol Reprod 2020; 100:963-970. [PMID: 30476006 DOI: 10.1093/biolre/ioy244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/06/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Valosin-containing protein (VCP) is a member of the highly conserved AAA (ATPase associated with a variety of cellular activities) superfamily. A previous study has shown that targeted deletion of Vcp in mice results in early embryonic lethality. The aim of the present study was to analyze the expression and localization of VCP and its function in meiotic arrest of mouse oocytes. Vcp mRNA and protein were expressed in multiple mouse tissues. In the ovary, VCP protein was mainly expressed in oocytes and granulosa cells. After ovulation and fertilization, Vcp mRNA and protein were detected in oocytes and preimplantation embryos. Furthermore, VCP protein was localized in both the cytoplasm and nucleus of germinal vesicle (GV)-stage oocytes and preimplantation embryos. Moreover, knockdown of Vcp in GV-stage oocytes led to a significantly increased rate of germinal vesicle breakdown (GVBD). In addition, inhibition of VCP protein improved the GVBD rate in mouse GV-stage oocytes. When VCP inhibition was reversed, the final GVBD rate returned to normal. These results provide the first evidence for a novel function of VCP in meiotic arrest of mouse oocytes.
Collapse
Affiliation(s)
- Hui Peng
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Jing Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Yuyun Gao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Jianchao Huo
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Chongchong Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Yanyan Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| |
Collapse
|
3
|
Eymery A, Liu Z, Ozonov EA, Stadler MB, Peters AHFM. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 2016; 143:2767-79. [PMID: 27317807 DOI: 10.1242/dev.132746] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/02/2016] [Indexed: 01/13/2023]
Abstract
Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life.
Collapse
Affiliation(s)
- Angeline Eymery
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland Faculty of Sciences, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
4
|
Qian D, Li Z, Zhang Y, Huang Y, Wu Q, Ru G, Chen M, Wang B. Response of Mouse Zygotes Treated with Mild Hydrogen Peroxide as a Model to Reveal Novel Mechanisms of Oxidative Stress-Induced Injury in Early Embryos. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1521428. [PMID: 27738489 PMCID: PMC5055977 DOI: 10.1155/2016/1521428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023]
Abstract
Our study aimed to develop embryo models to evaluate the impact of oxidative stress on embryo development. Mouse zygotes, which stayed at G1 phase, were treated with prepared culture medium (containing 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, or 0.1 mM hydrogen peroxide (H2O2)) for 30 min in experiment 1. The dose-effects of H2O2 on embryo development were investigated via comparisons of the formation rate at each stage (2- and 4-cell embryos and blastocysts). Experiment 2 was carried out to compare behaviors of embryos in a mild oxidative-stressed status (0.03 mM H2O2) with those in a control (0 mM H2O2). Reactive oxygen species (ROS) levels, variation of mitochondrial membrane potential (MMP), expression of γH2AX, and cell apoptosis rate of blastocyst were detected. We observed a dose-dependent decrease on cleavage and blastocyst rates. Besides, higher level of ROS, rapid reduction of MMP, and the appearance of γH2AX revealed that embryos are injured early in mild oxidative stress. Additionally, γH2AX may involve during DNA damage response in early embryos. And the apoptotic rate of blastocyst may significantly increase when DNA damage repair is inadequate. Most importantly, our research provides embryo models to study cell cycle regulation and DNA damage response under condition of different levels of oxidative stress.
Collapse
Affiliation(s)
- Diting Qian
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- *Zhiling Li:
| | - Yuting Zhang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yue Huang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Que Wu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Gaizhen Ru
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Man Chen
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Bin Wang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
5
|
Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene 2015; 571:212-20. [PMID: 26117173 DOI: 10.1016/j.gene.2015.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm biopsies were obtained from morphologically high quality blastocysts resulting in live birth and three biopsies were obtained from non-implanting blastocysts of a comparable morphology. Total RNA was extracted from all samples followed by complete transcriptome sequencing. Using a set of filtering criteria, we obtained a list of 181 genes that were differentially expressed between trophectoderm biopsies from embryos resulting in either live birth or no implantation (negative hCG), respectively. We found that 37 of the 181 genes displayed significantly differential expression (p<0.05), e.g. EFNB1, CYTL1 and TEX26 and TESK1, MSL1 and EVI5 in trophectoderm biopsies associated with live birth and non-implanting, respectively. Out of the 181 genes, almost 80% (145 genes) were up-regulated in biopsies from un-implanted embryos, whereas only 20% (36 genes) showed an up-regulation in the samples from embryos resulting in live birth. Our findings suggest the presence of molecular differences visually undetectable between implanted and non-implanted embryos, and represent a proof of principle study.
Collapse
Affiliation(s)
- Kirstine Kirkegaard
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark.
| | - Palle Villesen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Jacob Malte Jensen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Johnny Juhl Hindkjær
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, DK-7100 Vejle, Denmark; Institute of Regional Health Services Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hans Jakob Ingerslev
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
6
|
Hung CM, Chang CC, Lin CW, Chen CC, Hsu YC. GADD45γ induces G2/M arrest in human pharynx and nasopharyngeal carcinoma cells by cucurbitacin E. Sci Rep 2014; 4:6454. [PMID: 25245461 PMCID: PMC4171705 DOI: 10.1038/srep06454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common form of malignant cancer, for which radiotherapy or chemotherapy are the main treatment methods. Cucurbitacin E (CuE) is a natural compound-based drug which from the climbing stem of Cucumic melo L (Guadi). Previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study, investigated anti-proliferation and cell cycle G2/M arrest induced by CuE in Detroit 562 cells (pharynx carcinoma) and HONE-1 (nasopharyngeal carcinoma) cells. Results indicate that the cytotoxicity is associated with accumulation in G2/M cell-cycle phases. CuE produced cell cycle arrest as well as the downregulation of cyclin B1 and CDC2 expression. In addition, treated cells with CuE and GADD45γ SiRNA that also coincided with GADD45γ gene activation in cell cycle arrest. Both effects increased proportionally with the dose of CuE; however, proliferation inhibition and mitosis delay was dependant on the amount of CuE treatment in the cancer cells.
Collapse
Affiliation(s)
- Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chen-Wei Lin
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| |
Collapse
|
7
|
Deutsch DR, Fröhlich T, Otte KA, Beck A, Habermann FA, Wolf E, Arnold GJ. Stage-Specific Proteome Signatures in Early Bovine Embryo Development. J Proteome Res 2014; 13:4363-76. [DOI: 10.1021/pr500550t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daniela R. Deutsch
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Kathrin A. Otte
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andrea Beck
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Felix A. Habermann
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, ‡Molecular Animal Breeding
and Biotechnology, Department of Veterinary Sciences and Gene Center, and §Institute of Anatomy,
Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
8
|
Cui C, Ren X, Liu D, Deng X, Qin X, Zhao X, Wang E, Yu B. 14-3-3 epsilon prevents G2/M transition of fertilized mouse eggs by binding with CDC25B. BMC DEVELOPMENTAL BIOLOGY 2014; 14:33. [PMID: 25059436 PMCID: PMC4222595 DOI: 10.1186/s12861-014-0033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Background The 14-3-3 (YWHA) proteins are highly conserved in higher eukaryotes, participate in various cellular signaling pathways including cell cycle regulation, development and growth. Our previous studies demonstrated that 14-3-3ε (YWHAE) is responsible for maintaining prophase | arrest in mouse oocyte. However, roles of 14-3-3ε in the mitosis of fertilized mouse eggs have remained unclear. Here, we showed that 14-3-3ε interacts and cooperates with CDC25B phosphorylated at Ser321 regulating G2/M transition of mitotic progress of fertilized mouse eggs. Results Disruption of 14-3-3ε expression by RNAi prevented normal G2/M transition by inhibition of MPF activity and leaded to the translocation of CDC25B into the nucleus from the cytoplasm. Overexpression of 14-3-3ε-WT and unphosphorylatable CDC25B mutant (CDC25B-S321A) induced mitotic resumption in dbcAMP-arrested eggs. In addition, we examined endogenous and exogenous distribution of 14-3-3ε and CDC25B. Endogenous 14-3-3ε and CDC25B were co-localized primarily in the cytoplasm at the G1, S, early G2 and M phases whereas CDC25B was found to accumulate in the nucleus at the late G2 phase. Upon coexpression with RFP–14-3-3ε, GFP–CDC25B–WT and GFP–CDC25B–S321A were predominantly cytoplasmic at early G2 phase and then GFP–CDC25B–S321A moved to the nucleus whereas CDC25B-WT signals were observed in the cytoplasm without nucleus accumulation at late G2 phase at presence of dbcAMP. Conclusions Our data indicate that 14-3-3ε is required for the mitotic entry in the fertilized mouse eggs. 14-3-3ε is primarily responsible for sequestering the CDC25B in cytoplasm and 14-3-3ε binding to CDC25B-S321 phosphorylated by PKA induces mitotic arrest at one-cell stage by inactivation of MPF in fertilized mouse eggs.
Collapse
|
9
|
Sheppard CL, Lee LCY, Hill EV, Henderson DJP, Anthony DF, Houslay DM, Yalla KC, Cairns LS, Dunlop AJ, Baillie GS, Huston E, Houslay MD. Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression. Cell Signal 2014; 26:1958-74. [PMID: 24815749 DOI: 10.1016/j.cellsig.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to locate primarily not only in the perinuclear region of Rat-1 cells but also at the cell margins. We propose that the sequestration of PDE4D9 in a specific complex together with AMPK, ERK, MK2 and the H2O2-activatable 'switch' kinase allows for its selective multi-site phosphorylation, activation and regulation in mitosis.
Collapse
Affiliation(s)
- Catherine L Sheppard
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Louisa C Y Lee
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Elaine V Hill
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - David J P Henderson
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Diana F Anthony
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Daniel M Houslay
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Krishna C Yalla
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Lynne S Cairns
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Allan J Dunlop
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Elaine Huston
- Institute of Pharmaceutical Science, King's College London, 5th Floor, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Miles D Houslay
- Institute of Pharmaceutical Science, King's College London, 5th Floor, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|