1
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
2
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Lee JM, Kim HS, Kim A, Chang YS, Lee JG, Cho J, Kim EY. ABT-737, a BH3 Mimetic, Enhances the Therapeutic Effects of Ionizing Radiation in K-ras Mutant Non-Small Cell Lung Cancer Preclinical Model. Yonsei Med J 2022; 63:16-25. [PMID: 34913280 PMCID: PMC8688371 DOI: 10.3349/ymj.2022.63.1.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Tumor radioresistance and dose-limiting toxicity restrict the curative potential of radiotherapy, requiring novel approaches to overcome the limitations and augment the efficacy. Here, we investigated the effects of signal transducer and activator of transcription 3 (STAT3) activation and autophagy induction by irradiation on antiapoptotic proteins and the effectiveness of the BH3 mimetic ABT-737 as a radiosensitizer using K-ras mutant non-small cell lung cancer (NSCLC) cells and a KrasG12D:p53fl/fl mouse (KP mouse) model. MATERIALS AND METHODS A549 and H460 cells were irradiated, and the expression of Bcl-2 family proteins, JAK/STAT transcriptional pathway, and autophagic pathway were evaluated by immunoblotting. The radiosensitizing effects of ABT-737 were evaluated using A549 and H460 cell lines with clonogenic assays and also by a KP mouse model with microcomputed tomography and immunohistochemistry. RESULTS In A549 and H460 cells and mouse lung tissue, irradiation-induced overexpression of the antiapoptotic molecules Bcl-xL, Bcl-2, Bcl-w, and Mcl-1 through JAK/STAT transcriptional signaling induced dysfunction of the autophagic pathway. After treatment with ABT-737 and exposure to irradiation, the number of surviving clones in the cotreatment group was significantly lower than that in the group treated with radiation or ABT-737 alone. In the KP mouse lung cancer model, cotreatment with ABT-737 and radiation-induced significant tumor regression; however, body weight changes in the combination group were not significantly different, suggesting that combination treatment did not cause systemic toxicity. CONCLUSION These findings supported the radiosensitizing activity of ABT-737 in preclinical models, and suggested that clinical trials using this strategy may be beneficial in K-ras mutant NSCLC.
Collapse
Affiliation(s)
- Jung Mo Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hey Soo Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Arum Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Wu Y, Tian L, Xu Y, Zhang M, Xiang S, Zhao J, Wang Z. CXCR7 silencing inhibits the migration and invasion of human tumor endothelial cells derived from hepatocellular carcinoma by suppressing STAT3. Mol Med Rep 2018; 18:1644-1650. [PMID: 29901083 DOI: 10.3892/mmr.2018.9114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
C-X-C chemokine receptor type 7 (CXCR7) is reported to be overexpressed in tumor endothelial cells (TECs), which are the primary target cells of antivascular chemotherapy. However, the role of CXCR7 in TECs is not fully understood. In the present study, CXCR7 expression was inhibited in TECs derived from hepatocellular carcinoma (HCC) using short hairpin (sh)RNA plasmids to investigate the role of CXCR7 in the regulation of migration and invasion of TECs as well as its underlying mechanisms. The data showed that the downregulation of CXCR7 significantly inhibited the migration and invasion of TECs. Further study showed that silencing CXCR7 resulted in decreased phosphorylated signal transducer and activator of transcription 3 (STAT3) at Tyr705 and its downstream target genes in TECs, including matrix metalloproteinase‑2 (MMP2) and vascular endothelial growth factor (VEGF). However, restoring STAT3 phosphorylation abolished the CXCR7‑shRNA‑induced decrease in TECs migration and invasion, as well as the downregulation of MMP2 and VEGF in TECs. These findings indicate that CXCR7 may regulate the migration and invasion of TECs derived from HCC via the STAT3 signaling pathway and that CXCR7 could be a potential target for the antivascular therapy of HCC.
Collapse
Affiliation(s)
- Ye Wu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Lei Tian
- Department of Anesthesia, General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Yongle Xu
- Department of Vascular Surgery, General Hospital of PLA, Beijing 100853, P.R. China
| | - Minhong Zhang
- Department of Vascular Surgery, General Hospital of PLA, Beijing 100853, P.R. China
| | - Shengqing Xiang
- Department of Pharmacy, General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Jianguo Zhao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Zhenxia Wang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| |
Collapse
|
5
|
Masliantsev K, Pinel B, Balbous A, Guichet PO, Tachon G, Milin S, Godet J, Duchesne M, Berger A, Petropoulos C, Wager M, Karayan-Tapon L. Impact of STAT3 phosphorylation in glioblastoma stem cells radiosensitization and patient outcome. Oncotarget 2017; 9:3968-3979. [PMID: 29423098 PMCID: PMC5790515 DOI: 10.18632/oncotarget.23374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/29/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and lethal primary malignant brain tumor. The standard treatment for glioblastoma patients involves surgical resection with concomitant radio and chemotherapy. Despite today’s clinical protocol, the prognosis for patients remains very poor with a median survival of 15 months. Tumor resistance and recurrence is strongly correlated with a subpopulation of highly radioresistant and invasive cells termed Glioblastoma Stem Cells (GSCs). The transcription factor STAT3 has been found to be constitutively activated in different tumors including GBM and enhanced tumor radioresistance. In this study, we assessed radiosensitization of GSC lines isolated from patients by inhibition of STAT3 activation using Stattic or WP1066. We showed that inhibitor treatment before cell irradiation decreased the surviving fraction of GSCs suggesting that STAT3 inhibition could potentiate radiation effects. Finally, we investigated STAT3 activation status on 61 GBM clinical samples and found a preferential phosphorylation of STAT3 on Serine727 (pS727). Moreover, we found that pS727 was associated with a significant lower overall patient survival and progression-free survival but not pY705. Taken together, our results suggest that pS727-STAT3 could be a potential prognostic marker and could constitute a therapeutic target to sensitize highly radioresistant GSCs.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Baptiste Pinel
- CHU de Poitiers, Service d'Oncologie Radiothérapique, Poitiers F-86021, France
| | - Anaïs Balbous
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Gaëlle Tachon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Serge Milin
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers F-86021, France
| | - Julie Godet
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers F-86021, France
| | - Mathilde Duchesne
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers F-86021, France
| | - Antoine Berger
- CHU de Poitiers, Service d'Oncologie Radiothérapique, Poitiers F-86021, France
| | - Christos Petropoulos
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Michel Wager
- Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Service de Neurochirurgie, Poitiers F-86021, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| |
Collapse
|
6
|
Xu F, Li X, Yan L, Yuan N, Fang Y, Cao Y, Xu L, Zhang X, Xu L, Ge C, An N, Jiang G, Xie J, Zhang H, Jiang J, Li X, Yao L, Zhang S, Zhou D, Wang J. Autophagy Promotes the Repair of Radiation-Induced DNA Damage in Bone Marrow Hematopoietic Cells via Enhanced STAT3 Signaling. Radiat Res 2017; 187:382-396. [PMID: 28327001 DOI: 10.1667/rr14640.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Autophagy protects hematopoietic cells from radiation damage in part by promoting DNA damage repair. However, the molecular mechanisms by which autophagy regulates DNA damage repair remain largely elusive. Here, we report that this radioprotective effect of autophagy depends on STAT3 signaling in murine bone marrow mononuclear cells (BM-MNCs). Specifically, we found that STAT3 activation and nuclear translocation in BM-MNCs were increased by activation of autophagy with an mTOR inhibitor and decreased by knockout of the autophagy gene Atg7. The autophagic regulation of STAT3 activation is likely mediated by induction of KAP1 degradation, because we showed that KAP1 directly interacted with STAT3 in the cytoplasm and knockdown of KAP1 increased the phosphorylation and nuclear translocation of STAT3. Subsequently, activated STAT3 transcriptionally upregulated the expression of BRCA1, which increased the ability of BM-MNCs to repair radiation-induced DNA damage. This novel finding that activation of autophagy can promote DNA damage repair in BM-MNCs via the ATG-KAP1-STAT3-BRCA1 pathway suggests that autophagy plays an important role in maintaining genomic integrity of BM-MNCs and its activation may confer protection of BM-MNCs against radiation-induced genotoxic stress.
Collapse
Affiliation(s)
- Fei Xu
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Xin Li
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lili Yan
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Na Yuan
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Yixuan Fang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Yan Cao
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Li Xu
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Xiaoying Zhang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lan Xu
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Chaorong Ge
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Ni An
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Gaoyue Jiang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Jialing Xie
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Han Zhang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Jiayi Jiang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Xiaotian Li
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lei Yao
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Suping Zhang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China.,b Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Daohong Zhou
- b Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Jianrong Wang
- a Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
7
|
Inhibition of STAT3 enhances the radiosensitizing effect of temozolomide in glioblastoma cells in vitro and in vivo. J Neurooncol 2016; 130:89-98. [DOI: 10.1007/s11060-016-2231-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/31/2016] [Indexed: 11/25/2022]
|
8
|
Georgakilas AG, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias CE, Bagos PG, Michalopoulos I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 2015; 368:164-72. [DOI: 10.1016/j.canlet.2015.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022]
|
9
|
Gao L, Li FS, Chen XH, Liu QW, Feng JB, Liu QJ, Su X. Radiation Induces Phosphorylation of STAT3 in a Dose- and Time-dependent Manner. Asian Pac J Cancer Prev 2014; 15:6161-4. [DOI: 10.7314/apjcp.2014.15.15.6161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Huang CY, Tai WT, Hsieh CY, Hsu WM, Lai YJ, Chen LJ, Shiau CW, Chen KF. A sorafenib derivative and novel SHP-1 agonist, SC-59, acts synergistically with radiotherapy in hepatocellular carcinoma cells through inhibition of STAT3. Cancer Lett 2014; 349:136-43. [PMID: 24735751 DOI: 10.1016/j.canlet.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022]
Abstract
Radiotherapy shows limited benefit as treatment for hepatocellular carcinoma (HCC). In this study, we aimed to overcome the radioresistance of HCC by using a novel sorafenib derivative, SC-59 that targets SHP-1-related signaling. HCC cell lines (SK-Hep1, Hep3B, and Huh7) were treated with sorafenib, SC-59, radiation, sorafenib plus radiation, or SC-59 plus radiation, and then apoptosis, colony formation, signal transduction and the phosphatase activity were analyzed. The synergistic effect of radiotherapy and SC-59 was analyzed using a combination index (CI) approach. In vivo efficacy was determined in a Huh7-bearing subcutaneous model. Mice were treated with radiation (5 Gy, one fraction per day) for 4 days, SC-59 (10mg/kg/day) for 24 days, or a combination. Tumor samples were further analyzed for p-STAT3 and SHP-1 activity. SC-59 displayed a better synergistic effect when used in combination with radiotherapy than sorafenib in HCC cell lines. SC-59 downregulated p-STAT3 and its downstream targets and increased SHP-1 phosphatase activity. Both ectopic STAT3 and inhibition of SHP-1 abolished SC-59-induced radiosensitization. Moreover, SC-59 significantly synergized radiotherapy in a Huh7 xenograft model by targeting SHP-1/STAT3 signaling. The novel sorafenib derivative, SC-59, acting as a SHP-1 agonist, displays a better synergistic effect when used in combination with radiotherapy than sorafenib for the treatment of HCC. Further clinical investigation is warranted.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ying Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Mai Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Jiun Lai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|