1
|
Yu D, Cai W, Shen T, Wu Y, Ren C, Li T, Hu C, Zhu M, Yu J. PM 2.5 exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol Toxicol 2023; 39:2615-2630. [PMID: 36786954 PMCID: PMC10693534 DOI: 10.1007/s10565-023-09791-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Dry eye disease (DED) is the most common disease affecting vision and quality of life. PM2.5 was a potential risk of DED. Herein, we conducted animal exposure and cell-based studies to evaluate the pathogenic effect of PM2.5 exposure on the ocular surface and DED etiological mechanisms. C57 mice were exposed to filtered air and PM2.5 aerosol. We assessed health conditions and inflammation of the ocular surface by corneal fluorescein staining and immunohistochemistry. In parallel, cultured human corneal epithelial cells (HCETs) were treated with PM2.5, followed by characterization of cell viability, intracellular ATP level, mitochondrial activities, and expression level of DED relevant mRNA and proteins. In mice, PM2.5 exposure induced severe superficial punctate keratopathy and inflammation in their cornea. In HCETs, cell proliferation and ROS generation followed dose-response and time-dependent manner; meanwhile, mitochondrial ROS (mtROS) level increased and mitochondrial membrane potential (MMP) level decreased. Inflammation cascade was triggered even after short-term exposure. The reduction of ATP production was alleviated with Nrf2 overexpression, NF-κB P65 knockdown, or ROS clearance. Nrf2 overexpression and P65 knockdown reduced inflammatory reaction through decreasing expression of P65 and increasing of Nrf2, respectively. They partly alleviated changes of ROS/mtROS/MMP. This research proved that PM2.5 would cause DED-related inflammation reaction on corneal epithelial cells and further explored its mechanism: ROS from mitochondrial dysfunctions of corneal epithelial cells after PM2.5 exposure partly inhibited the expression of anti-inflammatory protein Nrf2 led the activation of inflammatory protein P65 and its downstream molecules, which finally caused inflammation reaction.
Collapse
Affiliation(s)
- Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Liu D, Vithran DTA, Kwabena BR, Xiao W, Li Y. CC chemokines and receptors in osteoarthritis: new insights and potential targets. Arthritis Res Ther 2023; 25:113. [PMID: 37400871 PMCID: PMC10316577 DOI: 10.1186/s13075-023-03096-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease accompanied by the activation of innate and adaptive immune systems-associated inflammatory responses. Due to the local inflammation, the expression of various cytokines was altered in affected joints, including CC motif chemokine ligands (CCLs) and their receptors (CCRs). As essential members of chemokines, CCLs and CCRs played an important role in the pathogenesis and treatment of OA. The bindings between CCLs and CCRs on the chondrocyte membrane promoted chondrocyte apoptosis and the release of multiple matrix-degrading enzymes, which resulted in cartilage degradation. In addition, CCLs and CCRs had chemoattractant functions to attract various immune cells to osteoarthritic joints, further leading to the aggravation of local inflammation. Furthermore, in the nerve endings of joints, CCLs and CCRs, along with several cellular factors, contributed to pain hypersensitivity by releasing neurotransmitters in the spinal cord. Given this family's diverse and complex functions, targeting the functional network of CCLs and CCRs is a promising strategy for the prognosis and treatment of OA in the future.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Bosomtwe Richmond Kwabena
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Afzali MF, Radakovich LB, Sykes MM, Campbell MA, Patton KM, Sanford JL, Vigon N, Ek R, Narez GE, Marolf AJ, Sikes KJ, Haut Donahue TL, Santangelo KS. Early removal of the infrapatellar fat pad/synovium complex beneficially alters the pathogenesis of moderate stage idiopathic knee osteoarthritis in male Dunkin Hartley guinea pigs. Arthritis Res Ther 2022; 24:282. [PMID: 36578046 PMCID: PMC9795160 DOI: 10.1186/s13075-022-02971-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The infrapatellar fat pad (IFP) is the largest adipose deposit in the knee; however, its contributions to the homeostasis of this organ remain undefined. To determine the influence of the IFP and its associated synovium (IFP/synovium complex or IFP/SC) on joint health, this study evaluated the progression of osteoarthritis (OA) following excision of this unit in a rodent model of naturally-occurring disease. METHODS Male Dunkin-Hartley guinea pigs (n=18) received surgical removal of the IFP in one knee at 3 months of age; contralateral knees received sham surgery as matched internal controls. Mobility and gait assessments were performed prior to IFP/SC removal and monthly thereafter. Animals were harvested at 7 months of age. Ten set of these knees were processed for microcomputed tomography (microCT), histopathology, transcript expression analyses, and immunohistochemistry (IHC); 8 sets of knees were dedicated to microCT and biomechanical testing (material properties of knee joints tissues and anterior drawer laxity). RESULTS Fibrous connective tissue (FCT) developed in place of the native adipose depot. Gait demonstrated no significant differences between IFP/SC removal and contralateral hindlimbs. MicroCT OA scores were improved in knees containing the FCT. Quantitatively, IFP/SC-containing knees had more osteophyte development and increased trabecular volume bone mineral density (vBMD) in femora and tibiae. Histopathology confirmed maintenance of articular cartilage structure, proteoglycan content, and chondrocyte cellularity in FCT-containing knees. Transcript analyses revealed decreased expression of adipose-related molecules and select inflammatory mediators in FCTs compared to IFP/SCs. This was verified via IHC for two key inflammatory agents. The medial articular cartilage in knees with native IFP/SCs showed an increase in equilibrium modulus, which correlated with increased amounts of magnesium and phosphorus. DISCUSSION/CONCLUSION Formation of the FCT resulted in reduced OA-associated changes in both bone and cartilage. This benefit may be associated with: a decrease in inflammatory mediators at transcript and protein levels; and/or improved biomechanical properties. Thus, the IFP/SC may play a role in the pathogenesis of knee OA in this strain, with removal prior to disease onset appearing to have short-term benefits.
Collapse
Affiliation(s)
- Maryam F. Afzali
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Lauren B. Radakovich
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Madeline M. Sykes
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Margaret A. Campbell
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Kayley M. Patton
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Joseph L. Sanford
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Nicole Vigon
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Ryan Ek
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Gerardo E. Narez
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Angela J. Marolf
- grid.47894.360000 0004 1936 8083Department of Environmental and Radiological Health Sciences, Colorado State University, 123 Flint Cancer Center, Fort Collins, CO 80523 USA
| | - Katie J. Sikes
- grid.47894.360000 0004 1936 8083Department of Clinical Sciences, Colorado State University, 1678 Clinical Sciences, Fort Collins, CO 80523 USA
| | - Tammy L. Haut Donahue
- grid.56061.340000 0000 9560 654XBiomedical Engineering Department, The University of Memphis, 3806 Norriswood, Memphis, TN 38152 USA
| | - Kelly S. Santangelo
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| |
Collapse
|
4
|
Klyne DM, Barbe MF, James G, Hodges PW. Does the Interaction between Local and Systemic Inflammation Provide a Link from Psychology and Lifestyle to Tissue Health in Musculoskeletal Conditions? Int J Mol Sci 2021; 22:ijms22147299. [PMID: 34298917 PMCID: PMC8304860 DOI: 10.3390/ijms22147299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal conditions are known to involve biological, psychological, social and, often, lifestyle elements. However, these domains are generally considered in isolation from each other. This siloed approach is unlikely to be adequate to understand the complexity of these conditions and likely explains a major component of the disappointing effects of treatment. This paper presents a hypothesis that aims to provide a foundation to understand the interaction and integration between these domains. We propose a hypothesis that provides a plausible link between psychology and lifestyle factors with tissue level effects (such as connective tissue dysregulation/accumulation) in musculoskeletal conditions that is founded on understanding the molecular basis for interaction between systemic and local inflammation. The hypothesis provides plausible and testable links between mind and body, for which empirical evidence can be found for many aspects. We present this hypothesis from the perspective of connective tissue biology and pathology (fibrosis), the role of inflammation locally (tissue level), and how this inflammation is shaped by systemic inflammation through bidirectional pathways, and various psychological and lifestyle factors via their influence on systemic inflammation. This hypothesis provides a foundation for new consideration of the development and refinement of personalized multidimensional treatments for individuals with musculoskeletal conditions.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
- Correspondence: ; Tel.: +61-7-3365-4569
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Greg James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| |
Collapse
|
5
|
Ren J, Sun L, Sun X, Ma Z, Wang X, An Z, Zhao J. Diagnostic value of serum connective tissue growth factor in rheumatoid arthritis. Clin Rheumatol 2021; 40:2203-2209. [PMID: 33389316 DOI: 10.1007/s10067-020-05566-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Serum connective tissue growth factor (CTGF) is reported to be a potential biomarker for the diagnosis of rheumatoid arthritis (RA). Our study aimed to investigate the prevalence of serum CTGF and the association with the clinical features in RA patients. Serum samples were obtained from 180 patients with RA, 168 patients with other rheumatic diseases, including 43 systemic lupus erythematosus (SLE), 34 osteoarthritis (OA), 17 primary Sjögren's syndrome (pSS), 20 ankylosing spondylitis (AS), 23 psoriatic arthritis (PsA), 6 reactive arthritis (ReA), 20 systemic sclerosis (SSc), and 5 systemic vasculitis (SV), and 64 healthy individuals. The clinical and laboratory data of patients with RA were collected. Levels of CTGF in serum were measured by enzyme linked immunosorbent assay (ELISA). Associations between CTGF and the clinical features of RA were analyzed. The positivity of serum CTGF among RA patients (33.89%) was significantly higher than those of SLE (9.3%), OA (0%), AS (0%), pSS (0%), PsA (0%), ReA (0%), SSc (5%), SV (0%), and healthy controls (4.69%) (p < 0.0001). The mean concentration of serum CTGF in RA was also significantly higher than those in other rheumatic diseases and healthy controls (p < 0.001). At the cut-off value of 263.30 pg/ml, the sensitivity, specificity, positive predictive value, and negative predictive value of serum CTGF for RA were 33.89%, 96.55%, 88.41%, and 55.45%, respectively. Anti-cyclic citrullinated peptide (anti-CCP) antibody (p < 0.001), rheumatoid factor (RF) (p < 0.001), IgG (p = 0.025), and IgM (p = 0.004) in CTGF-positive patients were higher than those in CTGF-negative patients. Besides, the positive rate of serum CTGF was significantly higher in RA patients with interstitial lung disease (ILD) (53.1%, 26/49) than RA-non-ILD patients (26.7%, 35/131, p = 0.003). Serum CTGF, as a novel biomarker, has certain diagnostic value for RA. Further studies are necessary to get more knowledge for the diagnostic performance of CTGF in RA. KEY POINTS: • Serum CTGF, as a novel biomarker, has certain diagnostic value for RA, the sensitivity, specificity, positive predictive value, and negative predictive value of which were 33.89%, 96.55%, 88.41%, and 55.45%, respectively. • Serum CTGF was more common to be positive in RA-ILD patients (53.1%, 26/49) than RA-non-ILD patients (26.7%, 35/131, p = 0.003).
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Xing Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Xinyu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhuo An
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
6
|
Sanjurjo-Rodriguez C, Altaie A, Mastbergen S, Baboolal T, Welting T, Lafeber F, Pandit H, McGonagle D, Jones E. Gene Expression Signatures of Synovial Fluid Multipotent Stromal Cells in Advanced Knee Osteoarthritis and Following Knee Joint Distraction. Front Bioeng Biotechnol 2020; 8:579751. [PMID: 33178674 PMCID: PMC7591809 DOI: 10.3389/fbioe.2020.579751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder. Although joint replacement remains the standard of care for knee OA patients, knee joint distraction (KJD), which works by temporarily off-loading the joint for 6–8 weeks, is becoming a novel joint-sparing alternative for younger OA sufferers. The biological mechanisms behind KJD structural improvements remain poorly understood but likely involve joint-resident regenerative cells including multipotent stromal cells (MSCs). In this study, we hypothesized that KJD leads to beneficial cartilage-anabolic and anti-catabolic changes in joint-resident MSCs and investigated gene expression profiles of synovial fluid (SF) MSCs following KJD as compared with baseline. To obtain further insights into the effects of local biomechanics on MSCs present in late OA joints, SF MSC gene expression was studied in a separate OA arthroplasty cohort and compared with subchondral bone (SB) MSCs from medial (more loaded) and lateral (less loaded) femoral condyles from the same joints. In OA arthroplasty cohort (n = 12 patients), SF MSCs expressed lower levels of ossification- and hypotrophy-related genes [bone sialoprotein (IBSP), parathyroid hormone 1 receptor (PTH1R), and runt-related transcription factor 2 (RUNX2)] than did SB MSCs. Interestingly, SF MSCs expressed 5- to 50-fold higher levels of transcripts for classical extracellular matrix turnover molecules matrix metalloproteinase 1 (MMP1), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and tissue inhibitor of metalloproteinase-3 (TIMP3), all (p < 0.05) potentially indicating greater cartilage remodeling ability of OA SF MSCs, compared with SB MSCs. In KJD cohort (n = 9 patients), joint off-loading resulted in sustained, significant increase in SF MSC colonies’ sizes and densities and a notable transcript upregulation of key cartilage core protein aggrecan (ACAN) (weeks 3 and 6), as well as reduction in pro-inflammatory C–C motif chemokine ligand 2 (CCL2) expression (weeks 3 and 6). Additionally, early KJD changes (week 3) were marked by significant increases in MSC chondrogenic commitment markers gremlin 1 (GREM1) and growth differentiation factor 5 (GDF5). In combination, our results reveal distinct transcriptomes on joint-resident MSCs from different biomechanical environments and show that 6-week joint off-loading leads to transcriptional changes in SF MSCs that may be beneficial for cartilage regeneration. Biomechanical factors should be certainly considered in the development of novel MSC-based therapies for OA.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodriguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Physiotherapy, Medicine and Biomedical Sciences department, CIBER-BBN, Institute of Biomedical Research of A Coruña (INIBIC)-Centre of Advanced Scientific Researches (CICA), University of A Coruña, A Coruña, Spain
| | - Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Simon Mastbergen
- University Medical Center Utrecht, Rheumatology & Clinical Immunology, Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tim Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Floris Lafeber
- University Medical Center Utrecht, Rheumatology & Clinical Immunology, Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Han D, Fang Y, Tan X, Jiang H, Gong X, Wang X, Hong W, Tu J, Wei W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med 2020; 24:9518-9532. [PMID: 32686306 PMCID: PMC7520283 DOI: 10.1111/jcmm.15669] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA), the most ubiquitous degenerative disease affecting the entire joint, is characterized by cartilage degradation and synovial inflammation. Although the pathogenesis of OA remains poorly understood, synovial inflammation is known to play an important role in OA development. However, studies on OA pathophysiology have focused more on cartilage degeneration and osteophytes, rather than on the inflamed and thickened synovium. Fibroblast-like synoviocytes (FLS) produce a series of pro-inflammatory regulators, such as inflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2 ). These regulators are positively associated with the clinical symptoms of OA, such as inflammatory pain, joint swelling and disease development. A better understanding of the inflammatory immune response in OA-FLS could provide a novel approach to comprehensive treatment strategies for OA. Here, we have summarized recently published literatures referring to epigenetic modifications, activated signalling pathways and inflammation-associated factors that are involved in OA-FLS-mediated inflammation. In addition, the current related clinical trials and future perspectives were also summarized.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifei Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Cao Z, Liu W, Qu X, Bi H, Sun X, Yu Q, Cheng G. miR-296-5p inhibits IL-1β-induced apoptosis and cartilage degradation in human chondrocytes by directly targeting TGF-β1/CTGF/p38MAPK pathway. Cell Cycle 2020; 19:1443-1453. [PMID: 32378978 DOI: 10.1080/15384101.2020.1750813] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is characterized by apoptosis of chondrocytes and an imbalance of extracellular matrix (ECM) synthesis and catabolism. Emerging evidence has demonstrated that miRNAs are involved in OA pathologies, but the role of miR-296-5p in OA remains unclear. The present study proposes to reveal the functions and mechanisms of miR-296-5p in a cell model of OA. In this study, human chondrocytes were treated with 5 ml interleukin-1 beta (IL-1β) to induce apoptosis and cartilage degradation. Our results showed that miR-296-5p was downregulated in chondrocytes stimulated with IL-1β. Overexpressed miR-296-5p enhanced cell proliferation and inhibited apoptosis and matrix degrading enzyme expression in response to IL-1β stimulation, and knockdown of miR-296-5p showed the opposite effect. Further, we found that miR-296-5p directly targeted the 3'-untranslated region (3'-UTR) of TGF-β1 mRNA, and miR-296-5p inactivated the TGF-β1/CTGF/p38MAPK signaling pathway. Overexpression of TGF-β1 alleviated the inhibition of miR-296-5p on chondrocyte apoptosis and cartilage degradation. In conclusion, miR-296-5p inhibited the progression of OA through the CTGF/p38MAPK pathway by directly targeting TGF-β1.
Collapse
Affiliation(s)
- Zhilin Cao
- Department of Orthopedics, Yantaishan Hospital , Yantai, Shandong Province, China
| | - Wenguang Liu
- Department of Joint Surgery, The Second Hospital of Shandong University , Jinan, Shandong Province, China
| | - Xiaoyi Qu
- Department of Nursing, Nurse School of Yantai City of Shandong Province , China
| | - Haiyong Bi
- Department of Orthopedics, Yantaishan Hospital , Yantai, Shandong Province, China
| | - Xiujiang Sun
- Department of Orthopedics, Yantaishan Hospital , Yantai, Shandong Province, China
| | - Qian Yu
- Department of Hospital Surgary, Yantaishan Hospital , Yantai, Shandong Province, China
| | - Gong Cheng
- Department of Orthopedics, Yantaishan Hospital , Yantai, Shandong Province, China
| |
Collapse
|
9
|
The Role of CTGF in Inflammatory Responses Induced by Silica Particles in Human Bronchial Epithelial Cells. Lung 2019; 197:783-791. [DOI: 10.1007/s00408-019-00272-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 01/31/2023]
|
10
|
Kouroupis D, Bowles AC, Willman MA, Perucca Orfei C, Colombini A, Best TM, Kaplan LD, Correa D. Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Sci Rep 2019; 9:10864. [PMID: 31350444 PMCID: PMC6659713 DOI: 10.1038/s41598-019-47391-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
The infrapatellar fat pad (IFP) serves as a reservoir of Mesenchymal Stem Cells (MSC), and with adjacent synovium plays key roles in joint disease including the production of Substance P (SP) affecting local inflammatory responses and transmitting nociceptive signals. Here, we interrogate human IFP-derived MSC (IFP-MSC) reaction to inflammatory and pro-fibrotic environments (cell priming by TNFα/IFNγ and TNFα/IFNγ/CTGF exposure respectively), compared with bone marrow-derived MSC (BM-MSC). Naïve IFP-MSC exhibit increased clonogenicity and chondrogenic potential compared with BM-MSC. Primed cells experienced dramatic phenotypic changes, including a sharp increase in CD10, upregulation of key immunomodulatory transcripts, and secreted growth factors/cytokines affecting key pathways (IL-10, TNF-α, MAPK, Ras and PI3K-Akt). Naïve, and more so primed MSC (both) induced SP degradation in vitro, reproduced with their supernatants and abrogated with thiorphan, a CD10 inhibitor. These findings were reproduced in vivo in a rat model of acute synovitis, where transiently engrafted human IFP-MSC induced local SP reduction. Functionally, primed IFP-MSC demonstrated sustained antagonism of activated human peripheral blood mononuclear cells (PBMC) proliferation, significantly outperforming a declining dose-dependent effect with naïve cohorts. Collectively, our in vitro and in vivo data supports cell priming as a way to enhance the immunoregulatory properties of IFP-MSC, which selectively engraft in areas of active synovitis/IFP fibrosis inducing SP degradation, resulting in a cell-based product alternative to BM-MSC to potentially treat degenerative/inflammatory joint diseases.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Annie C Bowles
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Miami, FL, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Thomas M Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Lee D Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
The pathogenic role of connective tissue growth factor in osteoarthritis. Biosci Rep 2019; 39:BSR20191374. [PMID: 31262970 PMCID: PMC6639465 DOI: 10.1042/bsr20191374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, and connective tissue growth factor (CTGF) is found to be up-regulated in adjacent areas of cartilage surface damage. CTGF is present in osteophytes of late stage OA. In the present study, we have reviewed association of CTGF in the development and progression of OA and the potential effects of CTGF as a therapeutic agent for the treatment of OA. We have reviewed the recent articles on CTGF and OA in databases like PubMed, google scholar, and SCOPUS and collected the information for the articles. CTGF is usually up-regulated in synovial fluid of OA that stimulates the production of inflammatory cytokines. CTGF also activates nuclear factor-κB, increases the production of chemokines and cytokines, and up-regulates matrix metalloproteinases-3 (MMP-3) that in turn leads to the reduction in proteoglycan contents in joint cartilage. Consequently, cartilage homeostasis is imbalanced that might contribute to the pathogenesis of OA by developing synovial inflammation and cartilage degradation. CTGF might serve as a useful biomarker for the prognosis and treatment of OA, and recent studies have taken attempt to use CTGF as therapeutic target of OA. However, more investigations with clinical trials are necessary to validate the possibility of use of CTGF as a biomarker in OA diagnosis and therapeutic target for OA treatment.
Collapse
|
12
|
Wei JL, Fu W, Hettinghouse A, He WJ, Lipson KE, Liu CJ. Role of ADAMTS-12 in Protecting Against Inflammatory Arthritis in Mice By Interacting With and Inactivating Proinflammatory Connective Tissue Growth Factor. Arthritis Rheumatol 2018; 70:1745-1756. [PMID: 29750395 DOI: 10.1002/art.40552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE It has been reported that ADAMTS-12 is a susceptibility gene for rheumatoid arthritis (RA) development, and its level is significantly increased in RA patients. In addition, ADAMTS-12 is reported to be required for inflammation in otherwise healthy subjects. This study was undertaken to determine the role of ADAMTS-12 and the underlying mechanisms in the pathogenesis of inflammatory arthritis. METHODS The collagen-induced arthritis (CIA) model was established in ADAMTS-12-deficient mice and their control littermates to determine the role of ADAMTS-12 in vivo. Micro-computed tomography scanning was used to demonstrate the destruction of the ankle joint; histologic analysis illustrated synovitis, pannus formation, and bone and cartilage destruction; enzyme-linked immunosorbent assay was performed to measure serum levels of inflammatory cytokines; and protein-protein interaction assays were performed to detect the interactions of ADAMTS-12 and its various deletion mutants with connective tissue growth factor (CTGF). RESULTS Deficiency of ADAMTS-12 led to accelerated inflammatory arthritis in the CIA mouse model. Loss of ADAMTS-12 caused enhanced osteoclastogenesis. In vitro and in vivo protein-protein interaction assays demonstrated that ADAMTS-12 bound and processed CTGF, a previously unrecognized substrate of ADAMTS-12. In addition, deletion of ADAMTS-12 enhanced, while overexpression of ADMATS-12 reduced, CTGF-mediated inflammation. Furthermore, ADAMTS-12 regulation of inflammation was largely lost in CTGF-deficient macrophages. Importantly, blocking of CTGF attenuated elevated inflammatory arthritis seen in the ADAMTS-12-deficient CIA mouse model. CONCLUSION This study provides evidence that ADAMTS-12 is a critical regulator of inflammatory arthritis and that this is mediated, at least in part, through control of CTGF turnover.
Collapse
Affiliation(s)
- Jian-Lu Wei
- New York University Medical Center, New York, New York, and Shandong University Qilu Hospital, Jinan, China
| | - Wenyu Fu
- New York University Medical Center, New York, New York
| | | | - Wen-Jun He
- New York University Medical Center, New York, New York
| | | | - Chuan-Ju Liu
- New York University Medical Center and New York University School of Medicine, New York, New York
| |
Collapse
|
13
|
Ahmed AS, Gedin P, Hugo A, Bakalkin G, Kanar A, Hart DA, Druid H, Svensson C, Kosek E. Activation of NF-κB in Synovium versus Cartilage from Patients with Advanced Knee Osteoarthritis: A Potential Contributor to Inflammatory Aspects of Disease Progression. THE JOURNAL OF IMMUNOLOGY 2018; 201:1918-1927. [PMID: 30135182 DOI: 10.4049/jimmunol.1800486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/22/2018] [Indexed: 02/01/2023]
Abstract
The aim was to assess the activation and association of the NF-κB system across synovial membrane (SM) and articular cartilage (AC) in patients with knee osteoarthritis (OA) and ascertain its potential effects on catabolic mediator expression in advanced OA. SM and AC were obtained from 40 OA patients undergoing total knee arthroplasty and from 19 postmortem control subjects. NF-κB subunit RelA in nuclear and cytosolic fractions and NF-κB1-DNA binding in nuclear extracts was assessed by ELISA, whereas NFKB1, RELA, IL-8, IL-6, and MMP3 gene expression were analyzed by reverse transcriptase-quantitative PCR in tissues. We observed higher SM nuclear RelA protein levels and upregulated NF-κB1-DNA binding in OA patients compared with postmortem controls. However, in AC, lower nuclear RelA levels were observed compared with cytosolic extracts in patients. Nuclear RelA levels correlated positively with NF-κB1-DNA binding in SM and AC in patients. SM RELA and MMP3 mRNA levels were upregulated, whereas IL-8 and IL-6 as well as AC RELA were downregulated in patients compared with controls. In SM, nuclear RelA levels correlated positively with MMP3 gene expression in patients. A negative correlation was observed between SM nuclear RelA levels and AC NF-κB1-DNA binding, and SM nuclear NF-κB1-DNA binding correlated negatively with AC MMP3 and NFKB1 mRNA levels in patients. These findings highlight NF-κB-triggered cross-talk and feedback mechanisms between SM and AC in OA. Further, our findings strongly support a role for an activated NF-κB system in the transcriptional mechanism of inflammatory processes, especially in SM of patients with advanced OA.
Collapse
Affiliation(s)
- Aisha S Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Per Gedin
- Ortho Center Stockholm, Löwenströmska Hospital, 194 89 Upplands Väsby, Sweden
| | - Anders Hugo
- Ortho Center Stockholm, Löwenströmska Hospital, 194 89 Upplands Väsby, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 751 05 Uppsala, Sweden
| | - Alkass Kanar
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Swedish National Board of Forensic Medicine, 171 65 Solna, Sweden
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Swedish National Board of Forensic Medicine, 171 65 Solna, Sweden
| | - Camilla Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, 194 89 Upplands Väsby, Sweden
| |
Collapse
|
14
|
Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone 2016; 85:81-90. [PMID: 26812612 DOI: 10.1016/j.bone.2016.01.019] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/12/2016] [Accepted: 01/22/2016] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) has traditionally been defined as a prototypical non-inflammatory arthropathy, but today there is compelling evidence to suggest that it has an inflammatory component. Many recent studies have shown the presence of synovitis in a large number of patients with OA and demonstrated a direct association between joint inflammation and the progression of OA. Pro-inflammatory cytokines, reactive oxygen species (ROS), nitric oxide, matrix degrading enzymes and biomechanical stress are major factors responsible for the progression of OA in synovial joints. The aim of this review is to discuss the significance of a wide range of implicated inflammatory mediators and their contribution to the progression of OA. We also discuss some of the currently available guidelines, practices, and prospects. In addition, this review argues for new innovation in methodologies and instrumentation for the non-invasive detection of inflammation in OA by modern imaging techniques. We propose that identifying early inflammatory events and targeting these alterations will help to ameliorate the major symptoms such as inflammation and pain in OA patients.
Collapse
Affiliation(s)
- Maryam Rahmati
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, The APPROACH Innovative Medicines Initiative (IMI) Consortium, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran.
| |
Collapse
|
15
|
Lin CH, Wang YH, Chen YW, Lin YL, Chen BC, Chen MC. Transcriptional and posttranscriptional regulation of CXCL8/IL-8 gene expression induced by connective tissue growth factor. Immunol Res 2016; 64:369-384. [PMID: 26071024 DOI: 10.1007/s12026-015-8670-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Connective tissue growth factor (CTGF), a CCN family member, is a secreted protein regulating cellular functions, including fibrosis, apoptosis, adhesion, migration, differentiation, proliferation, angiogenesis, and chondrogenesis. CTGF increases proinflammatory factor production; however, inflammatory cytokine regulation by CTGF is poorly understood. The aim of this study was to identify novel biological functions and elucidate the functional mechanisms of CTGF. Specifically, the study focused on the ability of CTGF-primed monocytes to secrete interleukin 8 (CXCL8/IL-8) and determined the signaling pathways involved in CTGF-induced CXCL8/IL-8 gene regulation during inflammation. We transfected wild-type or mutant CXCL8/IL-8 promoter-derived luciferase reporter constructs into 293T cells to examine the effect of CTGF on the CXCL8/IL-8 promoter. The results showed that the activator protein-1 and nuclear factor κB binding sites of the CXCL8/IL-8 promoter are essential for CTGF-induced CXCL8/IL-8 transcription. Moreover, the CTGF-induced activation of p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase, and extracellular signal-regulated kinase (ERK) is involved in this process. In addition, adenosine-uridine-rich elements (AREs) of the CXCL8/IL-8 3'-untranslated region (3'-UTR) reduce CXCL8/IL-8 mRNA stability. To investigate whether CTGF regulates CXCL8/IL-8 gene expression at the posttranscriptional level, we transfected 293 cells with serial luciferase constructs containing different segments of the CXCL8/IL-8 3'-UTR and then stimulated the cells with CTGF. The results suggested that CTGF stabilized luciferase mRNA and increased luciferase activity by regulating the CXCL8/IL-8 3'-UTR. Moreover, the p38 MAPK pathway may contribute to CTGF-induced CXCL8/IL-8 mRNA stabilization.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Wen Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Liang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chieh Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
16
|
Remst DFG, Blaney Davidson EN, van der Kraan PM. Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatology (Oxford) 2015; 54:1954-63. [PMID: 26175472 DOI: 10.1093/rheumatology/kev228] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
Synovial fibrosis is often found in OA, contributing heavily to joint pain and joint stiffness, the main symptoms of OA. At this moment the underlying mechanism of OA-related synovial fibrosis is not known and there is no cure available. In this review we discuss factors that have been reported to be involved in synovial fibrosis. The aim of the study was to gain insight into how these factors contribute to the fibrotic process and to determine the best targets for therapy in synovial fibrosis. In this regard, the following factors are discussed: TGF-β, connective tissue growth factor, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, tissue inhibitor of metalloproteinase 1, A disintegrin and metalloproteinase domain 12, urotensin-II, prostaglandin F2α and hyaluronan.
Collapse
Affiliation(s)
- Dennis F G Remst
- Radboud University Medical Center, Experimental Rheumatology, Nijmegen, The Netherlands
| | | | - Peter M van der Kraan
- Radboud University Medical Center, Experimental Rheumatology, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Wen Y, Li J, Wang L, Tie K, Magdalou J, Chen L, Wang H. UDP-glucose dehydrogenase modulates proteoglycan synthesis in articular chondrocytes: its possible involvement and regulation in osteoarthritis. Arthritis Res Ther 2014; 16:484. [PMID: 25465897 PMCID: PMC4298080 DOI: 10.1186/s13075-014-0484-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022] Open
Abstract
Introduction The objective of this study was to investigate the possible role of UDP-glucose dehydrogenase (UGDH) in osteoarthritis (OA) and uncover whether, furthermore how interleukin-1beta (IL-1β) affects UGDH gene expression. Methods UGDH specific siRNAs were applied to determine the role of UGDH in proteoglycan (PG) synthesis in human articular chondrocytes. Protein levels of UGDH and Sp1 in human and rat OA cartilage were detected. Then, human primary chondrocytes were treated with IL-1β to find out whether and how IL-1β could regulate the gene expression of UGDH and its trans-regulators, that is Sp1, Sp3 and c-Krox. Finally, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) inhibitor SP600125 were used to pick out the pathway that mediated the IL-1β-modulated PGs synthesis and gene expression of UGDH, Sp1, Sp3 and c-Krox. Results UGDH specific siRNAs markedly inhibited UGDH mRNA and protein expression, and thus led to an obvious suppression of PGs synthesis in human articular chondrocytes. UGDH protein level in human and rat OA cartilage were much lower than the corresponding controls and negatively correlated to the degree of OA. Decrease in Sp1 protein level was also observed in human and rat OA cartilage respectively. Meanwhile, IL-1β suppressed UGDH gene expression in human articular chondrocytes in the late phase, which also modulated gene expression of Sp1, Sp3 and c-Krox and increased both Sp3/Sp1 and c-Krox/Sp1 ratio. Moreover, the inhibition of SAP/JNK and p38 MAPK pathways both resulted in an obvious attenuation of the IL-1β-induced suppression on the UGDH gene expression. Conclusions UGDH is essential in the PGs synthesis of articular chondrocytes, while the suppressed expression of UGDH might probably be involved in advanced OA, partly due to the modulation of p38 MAPK and SAP/JNK pathways and its trans-regulators by IL-1β. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0484-2) contains supplementary material, which is available to authorized users.
Collapse
|