1
|
Xiao T, Yu X, Tao J, Tan J, Zhao Z, Zhang C, Duan X. Mechanism of P-Hydroxy Benzyl Alcohol Against Cerebral Ischemia Based on Metabonomics Analysis. Int J Mol Sci 2025; 26:317. [PMID: 39796170 PMCID: PMC11719616 DOI: 10.3390/ijms26010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in Gastrodia elata and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method. Metabolomics technology was employed to analyze the metabolic changes in ischemic neurons induced by HBA, and potential therapeutic targets were verified. The protective effects of HBA on ischemic neurons and their mitochondria were examined through multiple indicators, and the related mechanisms were verified. HBA can improve post-ischemic cognitive impairment in rats, and its mechanism is related to the regulation of the choline-activated phospholipase D2/Sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway to improve mitochondrial function and reduce autophagic activity to maintain mitochondrial homeostasis. It is concluded that HBA has a protective effect on neuronal damage and cognitive impairment caused by cerebral ischemia by regulating key metabolites and signaling pathways, and that it provides a new molecular target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China; (T.X.); (X.Y.); (J.T.); (J.T.); (Z.Z.); (C.Z.)
| |
Collapse
|
2
|
Verwaerde P, Estrella C, Burlet S, Barrier M, Marotte AA, Clincke G. First-In-Human Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses of AZP2006, A Synthetic Compound for the Treatment of Alzheimer's Disease and Related Diseases. J Alzheimers Dis 2024; 98:715-727. [PMID: 38427472 DOI: 10.3233/jad-220883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are major neurodegenerative conditions with tau pathology in common but distinct symptoms-AD involves cognitive decline while PSP affects balance and eye movement. Progranulin (PGRN) is a growth factor implicated in neurodegenerative diseases, including AD and PSP. AZP2006, a synthetic compound, targets tauopathies by stabilizing PGRN levels and reducing tau aggregation and neuroinflammation. Objective Evaluate the safety, tolerability, and pharmacokinetics of AZP2006. Methods A first-in-Human phase 1 study comprised a single ascending dose (SAD) and a multiple ascending dose study (MAD). The SAD study included 64 healthy male volunteers and tested singles oral doses of 3 to 500 mg of AZP2006 free base equivalent or placebo. In the MAD study, 24 healthy male volunteers were administered oral doses of 30, 60, and 120 mg per day of AZP2006 or placebo for 10 days. Results No serious adverse events were observed. Clinical, biological, and electrocardiogram findings were non-relevant. Nineteen minor adverse events resolved before study completion. The safety profile indicated no specific risks. The multiple ascending dose study was halted, and the optional dose level of 180 mg was not performed due to high levels of M2 metabolite in plasma that necessitated additional preclinical evaluation of M2. Both AZP2006 and its M2 metabolite were quickly absorbed and widely distributed in tissues. Exposure increased more than proportionally with dose. Conclusions AZP2006 had a favorable safety profile and was rapidly absorbed. Elevated M2 metabolite levels necessitated further studies to clarify excretion and metabolism mechanisms.
Collapse
|
3
|
Purrahman D, Mahmoudian-Sani MR, Saki N, Wojdasiewicz P, Kurkowska-Jastrzębska I, Poniatowski ŁA. Involvement of progranulin (PGRN) in the pathogenesis and prognosis of breast cancer. Cytokine 2022; 151:155803. [DOI: 10.1016/j.cyto.2022.155803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/26/2021] [Accepted: 01/09/2022] [Indexed: 12/19/2022]
|
4
|
Wang XM, Zeng P, Fang YY, Zhang T, Tian Q. Progranulin in neurodegenerative dementia. J Neurochem 2021; 158:119-137. [PMID: 33930186 DOI: 10.1111/jnc.15378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-β (Aβ) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Teng Zhang
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Niklowitz P, Rothermel J, Lass N, Barth A, Reinehr T. Is there a link between progranulin, obesity, and parameters of the metabolic syndrome in children? Findings from a longitudinal intervention study. Pediatr Diabetes 2019; 20:1047-1055. [PMID: 31469472 DOI: 10.1111/pedi.12915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The inflammatory cytokine progranulin has been proposed to play a role in obesity and its associated comorbidities such as insulin resistance. OBJECTIVE In a longitudinal study, we analyzed the links between progranulin, parameters of fat mass, insulin resistance, and metabolic syndrome (MetS) in obese children. METHODS We measured the following parameters in 88 obese children at baseline, at the end of a 1-year lifestyle intervention and 1-year later (=2 years after baseline): progranulin, bioactive leptin, body mass index-SD score (BMI-SDS), waist circumference, body fat based on skinfold measurements and bioimpedance analyses, lipids, transaminases, insulin resistance index homeostasis model assessment (HOMA), and blood pressure. As a control, we determined progranulin in 23 normal-weight children. RESULTS The progranulin concentrations did not differ significantly (P = .795) between obese and normal-weight children. Progranulin concentrations decreased significantly during and after the lifestyle intervention in children with and without decrease of BMI-SDS. There was no relationship between progranulin concentrations and pubertal stage or gender. Progranulin was not significantly associated with insulin resistance HOMA, parameters of the MetS or transaminases both in cross-sectional and longitudinal multiple linear regression analyses adjusted to multiple confounders. Progranulin was significantly, negatively related to age (b-coefficient -1.24 ± .97, P = .012, r2 = .07). CONCLUSIONS Our data do not support the hypothesis that progranulin is an important link between obesity, insulin resistance, and MetS in childhood.
Collapse
Affiliation(s)
- Petra Niklowitz
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Juliane Rothermel
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Nina Lass
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Andre Barth
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| |
Collapse
|
6
|
Reinehr T. Inflammatory markers in children and adolescents with type 2 diabetes mellitus. Clin Chim Acta 2019; 496:100-107. [PMID: 31276632 DOI: 10.1016/j.cca.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
This review examines the potential relationship between serum inflammation markers and type 2 diabetes mellitus (T2DM). Inflammation markers have been proposed as prognostic markers for the development of T2DM and its complications. Furthermore, modulation of the inflammatory process may offer future treatment strategies for T2DM. This review focuses on children and adolescents because there is usually little, if any, complications associated with other disease processes, use of medications, or active tobacco smoking. Furthermore, β-cell failure in young age cannot be solely explained by aging and exhaustion of β-cells due to insulin resistance. Pediatric studies have demonstrated that pro-inflammatory cytokines TNF-α, IL-6, IL-1β, IFNγ, PEDF, and fetuin A were increased in insulin resistance, while the anti-inflammatory cytokines adiponectin and omentin were decreased. Furthermore, TNF-α, fetuin A, FGF-21 were altered in obese children with T2DM suggesting a direct involvement in β-cell failure. Future studies focusing on children and adolescents may facilitate our understanding of T2DM as an inflammatory disease process.
Collapse
Affiliation(s)
- Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Str. 5, D-45711 Datteln, Germany.
| |
Collapse
|
7
|
Zhao RZ, Jiang S, Ru NY, Jiao B, Yu ZB. Comparison of hypoxic effects induced by chemical and physical hypoxia on cardiomyocytes. Can J Physiol Pharmacol 2019; 97:980-988. [PMID: 31136722 DOI: 10.1139/cjpp-2019-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The degree and duration of chemical hypoxia induced by sodium dithionite (Na2S2O4) have not been reported. It is not yet clear how much reduction in the O2 concentration (physical hypoxia) can lead to hypoxia in cultured cardiomyocytes. In this study, oxygen microelectrodes were used to measure changes in the O2 concentration in media containing different concentrations of Na2S2O4. Then, hypoxic effects of 0.8, 1.0, and 2.0 mM Na2S2O4 or 1%, 3%, and 5% O2 in cultured cardiomyocytes from neonatal rats were observed and compared. The results showed that the O2 concentration failed to remain constant by Na2S2O4 treatment during the 180-minute observation period. Only the 2.0 mM Na2S2O4 group significantly increased the expression of hypoxia-inducible factor 1α (HIF-1α) and hypoxic responses. Notably, 3% O2 only significantly increased the expression of HIF-1α in cardiomyocytes, while 1% O2 not only increased the expression of HIF-1α but also increased the apoptotic rate in cardiomyocytes. These results suggest that Na2S2O4 is not suitable for establishing a hypoxic model in cultured neonatal rat cardiomyocytes, and neonatal rat cardiomyocytes cultured at or below 1% O2 induced significant hypoxic effects, which can be used as a starting O2 concentration for establishing a hypoxic cell model.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China
| | - Ning-Yu Ru
- Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China.,Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China
| | - Bo Jiao
- Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China.,Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China.,Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an 710032, China
| |
Collapse
|
8
|
Shen J, Zhao Z, Shang W, Liu C, Zhang B, Xu Z, Cai H. Fabrication and evaluation a transferrin receptor targeting nano-drug carrier for cerebral infarction treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:192-200. [PMID: 30663409 DOI: 10.1080/21691401.2018.1548471] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After cerebral infarction, the regeneration of microvascular played an important role in the recovery. Ginsenoside Rg1 (Rg1) had good effects on promoting angiogenesis and neuro-protection in cerebral infarction treatment. However, the blood-brain barrier (BBB) restricted Rg1 to enter into cerebral tissue. Transferrin receptor (TfR) was over-expressed in the BBB. In this study, we fabricated a TfR targeting nano-carrier (PATRC) to penetrate the BBB for treatment of cerebral infarction. A TfR targeted peptide was conjugated with the nano-carrier wrapped hydrophobic Rg1. The nanoscale size (132 ± 12 nm), polydispersity index (PDI =0.29) and the zeta potential (-38mv) were tested with dynamic light scattering optical system. Surface morphology (ellipse, mean diameter 122 ± 26 nm) was detected by transmission electron microscope (TEM). PATRC implement cell targeting ability on rat brain microvascular endothelial cells RBE4 in vitro detected by immunofluorescence and flow cytometry methods. Comparing with Rg1 threated group, the PATRC exhibited more prominent ability on the tube formation ability (p < .05) in vitro. Comparing with the Rg1 treated group, PATRC penetrated BBB in vivo detected by HPLC, decreased the brain infarction volume tested with TTC staining and promoted regeneration of microvascular in infarction zone detected by CD31 immunofluorescence. PATRC has great potentiality for wide application in clinic.
Collapse
Affiliation(s)
- Junyi Shen
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Zhiming Zhao
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Wei Shang
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Chunli Liu
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Beibei Zhang
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Zihan Xu
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| | - Hui Cai
- a Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine , Nanjing University , Nanjing , China
| |
Collapse
|
9
|
Elia LP, Mason AR, Alijagic A, Finkbeiner S. Genetic Regulation of Neuronal Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. J Neurosci 2019; 39:3332-3344. [PMID: 30696728 PMCID: PMC6788815 DOI: 10.1523/jneurosci.3498-17.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Deficient progranulin levels cause dose-dependent neurological syndromes: haploinsufficiency leads to frontotemporal lobar degeneration (FTLD) and nullizygosity produces adult-onset neuronal ceroid lipofuscinosis. Mechanisms controlling progranulin levels are largely unknown. To better understand progranulin regulation, we performed a genome-wide RNAi screen using an ELISA-based platform to discover genes that regulate progranulin levels in neurons. We identified 830 genes that raise or lower progranulin levels by at least 1.5-fold in Neuro2a cells. When inhibited by siRNA or some by submicromolar concentrations of small-molecule inhibitors, 33 genes of the druggable genome increased progranulin levels in mouse primary cortical neurons; several of these also raised progranulin levels in FTLD model mouse neurons. "Hit" genes regulated progranulin by transcriptional or posttranscriptional mechanisms. Pathway analysis revealed enrichment of hit genes from the autophagy-lysosome pathway (ALP), suggesting a key role for this pathway in regulating progranulin levels. Progranulin itself regulates lysosome function. We found progranulin deficiency in neurons increased autophagy and caused abnormally enlarged lysosomes and boosting progranulin levels restored autophagy and lysosome size to control levels. Our data link the ALP to neuronal progranulin: progranulin levels are regulated by autophagy and, in turn, progranulin regulates the ALP. Restoring progranulin levels by targeting genetic modifiers reversed FTLD functional deficits, opening up potential opportunities for future therapeutics development.SIGNIFICANCE STATEMENT Progranulin regulates neuron and immune functions and is implicated in aging. Loss of one functional allele causes haploinsufficiency and leads to frontotemporal lobar degeneration (FTLD), the second leading cause of dementia. Progranulin gene polymorphisms are linked to Alzheimer's disease (AD) and complete loss of function causes neuronal ceroid lipofuscinosis. Despite the critical role of progranulin levels in neurodegenerative disease risk, almost nothing is known about their regulation. We performed an unbiased screen and identified specific pathways controlling progranulin levels in neurons. Modulation of these pathways restored levels in progranulin-deficient neurons and reversed FTLD phenotypes. We provide a new comprehensive understanding of the genetic regulation of progranulin levels and identify potential targets to treat FTLD and other neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Amanda R Mason
- Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, and
| | - Amela Alijagic
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
- Departments of Neurology and Physiology, University of California, San Francisco, California 94143
| |
Collapse
|
10
|
Microglial Progranulin: Involvement in Alzheimer's Disease and Neurodegenerative Diseases. Cells 2019; 8:cells8030230. [PMID: 30862089 PMCID: PMC6468562 DOI: 10.3390/cells8030230] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer’s disease have proven resistant to new treatments. The complexity of neurodegenerative disease mechanisms can be highlighted by accumulating evidence for a role for a growth factor, progranulin (PGRN). PGRN is a glycoprotein encoded by the GRN/Grn gene with multiple cellular functions, including neurotrophic, anti-inflammatory and lysosome regulatory properties. Mutations in the GRN gene can lead to frontotemporal lobar degeneration (FTLD), a cause of dementia, and neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Both diseases are associated with loss of PGRN function resulting, amongst other features, in enhanced microglial neuroinflammation and lysosomal dysfunction. PGRN has also been implicated in Alzheimer’s disease (AD). Unlike FTLD, increased expression of PGRN occurs in brains of human AD cases and AD model mice, particularly in activated microglia. How microglial PGRN might be involved in AD and other neurodegenerative diseases will be discussed. A unifying feature of PGRN in diseases might be its modulation of lysosomal function in neurons and microglia. Many experimental models have focused on consequences of PGRN gene deletion: however, possible outcomes of increasing PGRN on microglial inflammation and neurodegeneration will be discussed. We will also suggest directions for future studies on PGRN and microglia in relation to neurodegenerative diseases.
Collapse
|
11
|
Liu Y, Yu F, Zhang B, Zhou M, Bei Y, Zhang Y, Tang J, Yang Y, Huang Y, Xiang Q, Zhao Y, Liang Q, Liu Y. Improving the protective effects of aFGF for peripheral nerve injury repair using sulfated chitooligosaccharides. Asian J Pharm Sci 2018; 14:511-520. [PMID: 32104478 PMCID: PMC7032102 DOI: 10.1016/j.ajps.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Injury to the peripheral nerves can result in temporary or life-long neuronal dysfunction and subsequent economic or social disability. Acidic fibroblast growth factor (aFGF) promotes the growth and survival of neurons and is a possible treatment for peripheral nerve injury. Yet, the actual therapeutic utility of aFGF is limited by its short half-life and instability in vivo. In the present study, we prepared sulfated chitooligosaccharides (SCOS), which have heparin-like properties, to improve the bioactivity of aFGF. We investigated the protective effects of SCOS with or without aFGF on RSC96 cells exposed to Na2S2O4 hypoxia/reoxygenation injury. Cell viability was measured by MTT assay and cytotoxicity induced by Na2S2O4 was assessed by lactate dehydrogenase (LDH) release into the culture medium. Pretreatment with aFGF and SCOS dramatically decreased LDH release after injury compared to pretreatment with aFGF or SCOS alone. We subsequently prepared an aFGF/SCOS thermo-sensitive hydrogel with poloxamer and examined its effects in vivo. Paw withdrawal thresholds and thermal withdrawal latencies were measured in rats with sciatic nerve injury. Local injection of the aFGF/SCOS hydrogels (aFGF: 40, 80 µg/kg) increased the efficiency of sciatic nerve repair compared to aFGF (80 µg/kg) hydrogel alone. Especially aFGF/SCOS thermo-sensitive hydrogel decreased paw withdrawal thresholds from 117.75 ± 8.38 (g, 4 d) to 65.74 ± 3.39 (g, 10 d), but aFGF alone group were 140.58 ± 27.54 (g, 4 d) to 89.12 ± 5.60 (g, 10 d) (aFGF dose was 80 µg/kg, P < 0.05, n = 8). The thermal withdrawal latencies decreased from 11.61 ± 2.26 (s, 4 d) to 2.37 ±0.67 (s, 10 d). However, aFGF alone group were from 17.69 ± 1.47 (s, 4 d) to 4.65 ± 1.73 (s, 10 d) (P < 0.05, n = 8). Furthermore, the aFGF/SCOS hydrogels also exhibited good biocompatibility in mice. In summary, SCOS improved the protective effects of aFGF in RSC96 cells injured with Na2S2O4 and increased the efficiency of nerve repair and recovery of function in rats with sciatic nerve injury. These findings pave an avenue for the development of novel prophylactic and therapeutic strategies for peripheral nerve injury.
Collapse
Affiliation(s)
- Yanmei Liu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Beibei Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meng Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yu Bei
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yifan Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jianzhong Tang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Qian Liang
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Yang Liu
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Chronic inflammation, adipokines, and hepatokines have been identified as basis of insulin resistance and β cell failure in animal models. We present our current knowledge concerning the potential relationship between these cytokines, inflammation, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM) in the pediatric population. RECENT FINDINGS Pro-inflammatory cytokines related to insulin resistance and MetS in children are tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, interferon gamma, pigment epithelium-derived factor, chemerin, vaspin, and fetuin A. Anti-inflammatory cytokines associated with insulin resistance and MetS in children are leptin, adiponectin, omentin, fibroblast growth factor (FGF)-21, osteocalcin, and irisin. These anti-inflammatory cytokines are decreased (adiponectin, omentin, and osteocalcin) or increased (leptin, FGF-21, and irisin) in obesity suggesting a resistance state. TNF-α, fetuin A, and FGF-21 are altered in obese children with T2DM suggesting an involvement in β cell failure. These cytokines, adipokines, and hepatokines may be able to predict development of MetS and T2DM and have a potential therapeutic target ameliorating insulin resistance.
Collapse
Affiliation(s)
- Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Str. 5, D-45711, Datteln, Germany.
| | - Christian Ludwig Roth
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
13
|
Trichosanthis Pericarpium Aqueous Extract Protects H9c2 Cardiomyocytes from Hypoxia/Reoxygenation Injury by Regulating PI3K/Akt/NO Pathway. Molecules 2018; 23:molecules23102409. [PMID: 30241309 PMCID: PMC6222483 DOI: 10.3390/molecules23102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Trichosanthis Pericarpium (TP) is a traditional Chinese medicine for treating cardiovascular diseases. In this study, we investigated the effects of TP aqueous extract (TPAE) on hypoxia/reoxygenation (H/R) induced injury in H9c2 cardiomyocytes and explored the underlying mechanisms. H9c2 cells were cultured under the hypoxia condition induced by sodium hydrosulfite for 30 min and reoxygenated for 4 h. Cell viability was measured by MTT assay. The amounts of LDH, NO, eNOS, and iNOS were tested by ELISA kits. Apoptotic rate was detected by Annexin V-FITC/PI staining. QRT-PCR was performed to analyze the relative mRNA expression of Akt, Bcl-2, Bax, eNOS, and iNOS. Western blotting was used to detect the expression of key members in the PI3K/Akt pathway. Results showed that the pretreatment of TPAE remarkably enhanced cell viability and decreased apoptosis induced by H/R. Moreover, TPAE decreased the release of LDH and expression of iNOS. In addition, TPAE increased NO production and Bcl-2/Bax ratio. Furthermore, the mRNA and protein expression of p-Akt and eNOS were activated by TPAE pretreatment. On the contrary, a specific inhibitor of PI3K, LY294002 not only inhibited TPAE-induced p-Akt/eNOS upregulation but alleviated its anti-apoptotic effects. In conclusion, results indicated that TPAE protected against H/R injury in cardiomyocytes, which consequently activated the PI3K/Akt/NO signaling pathway.
Collapse
|
14
|
Cooper YA, Nachun D, Dokuru D, Yang Z, Karydas AM, Serrero G, Yue B, Boxer AL, Miller BL, Coppola G. Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment. Ann Clin Transl Neurol 2018; 5:616-629. [PMID: 29761124 PMCID: PMC5945969 DOI: 10.1002/acn3.560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Changes in progranulin (GRN) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). METHODS Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's (n = 186), MCI (n = 118), and control (n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. RESULTS We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males (P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort (F2,505 = 10.41, P = 3.72*10-5). This finding was replicated in the AddNeuroMed (F2,271 = 17.9, P = 4.83*10-8) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression (P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis (P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. INTERPRETATION Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.
Collapse
Affiliation(s)
- Yonatan A. Cooper
- Human Genetics and Genomics Graduate ProgramUniversity of California Los AngelesLos AngelesCalifornia
- Medical Scientist Training ProgramDavid Geffen School of Medicine at the University of California Los AngelesLos AngelesCalifornia
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Daniel Nachun
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Deepika Dokuru
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Zhongan Yang
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Anna M. Karydas
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoSan FranciscoCalifornia
| | - Ginette Serrero
- A&G Pharmaceutical, Inc.9130 Red Branch RdColumbiaMaryland21045
- Greenebaum Cancer CenterUniversity of MarylandBaltimoreMaryland21201
| | - Binbin Yue
- Greenebaum Cancer CenterUniversity of MarylandBaltimoreMaryland21201
| | | | - Adam L. Boxer
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoSan FranciscoCalifornia
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoSan FranciscoCalifornia
| | - Giovanni Coppola
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
- Department of NeurologyUniversity of California Los AngelesLos AngelesCalifornia
| |
Collapse
|
15
|
Milajerdi A, Maghbooli Z, Mohammadi F, Hosseini B, Mirzaei K. Progranulin concentration in relation to bone mineral density among obese individuals. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:179-186. [PMID: 29641735 PMCID: PMC10118980 DOI: 10.20945/2359-3997000000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Adipose tissue, particularly visceral adipose tissue, secretes a variety of cytokines, among which progranulin is a glycoprotein related to the immune system. Along with other secreted proteins, progranulin may be associated with bone mineral density. The aim of this study was to find out whether there are associations between the progranulin and bone mineral density among obese people. SUBJECTS AND METHODS This cross-sectional study was conducted on 244 obese participants (aged 22-52). Serum progranulin, high sensitive C-reactive protein, oxidised-low dencity lipoprotein, tumor necrosis factor-α, parathormone, vitamin D, and interleukins of 1 β, 4, 6, 10, 13, and 17 concentrations were measured. Anthropometric measurements, body composition and bone mineral density were also assessed. RESULTS Serum progranulin was directly associated with interleukin-6 and interleukin-1β, while it had a negative association with interleukin-17 and tumor necrosis factor-α. We also observed a statistically significant direct association between progranulin concentration and visceral fat, abdominal fat, waist, abdominal and hip circumferences, hip T-score, and Z-score and T-score for the lumbar region. A partial correlation test has also shown a significant positive correlation regarding serum progranulin and the hip Z-score. Moreover, progranulin level is inversely associated with ospteopenia (P = 0.04 and CI: 0.17,0.96). CONCLUSION Our study revealed that central obesity may be related to increased progranulin concentration. In addition, progranulin concentration was directly related to bone formation parameters, which indicates the protective effects of progranulin on bone density. Further studies are needed to clarify the exact mechanisms underlying these associations.
Collapse
Affiliation(s)
- Alireza Milajerdi
- Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zhila Maghbooli
- Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Mohammadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Banafsheh Hosseini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
16
|
Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun 2017; 490:231-238. [DOI: 10.1016/j.bbrc.2017.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
17
|
Peng K, Qiu Y, Li J, Zhang ZC, Ji FH. Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med 2017; 14:689-695. [PMID: 28672986 PMCID: PMC5488536 DOI: 10.3892/etm.2017.4537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/23/2017] [Indexed: 02/03/2023] Open
Abstract
Systemic administration of dexmedetomidine provides cardioprotection against ischemia/reperfusion (I/R) injury; however, the direct effects of dexmedetomidine on cardiomyocytes have not been clarified. The present study investigated the effects of dexmedetomidine on primary neonatal rat cardiomyocytes under hypoxic/reoxygenation (H/R) conditions. In order to simulate in vivo I/R injury, primary neonatal rat cardiomyocytes were cultured under hypoxic conditions for 1 h and subsequently reoxygenated for 24 h. The effects of preconditioning with dexmedetomidine 2 h before hypoxia and postconditioning during reoxygenation were also examined. Cellular viability and activity were analyzed by monitoring the dynamic response profile of living cells using a real-time cell analyzer system. A special scaled index, defined as the normalized cell index (NCI), was used to minimize the influence of inter-experimental variations. The dose-effect curve was generated from the area under the time-course curve values of NCI. H/R exposure markedly decreased cell viability and activity. Furthermore, no cytotoxicity was associated with a clinically relevant concentration of dexmedetomidine. Preconditioning with dexmedetomidine concentration-dependently ameliorated the reductions in NCI in cardiomyocytes following H/R injury. Additionally, postconditioning with dexmedetomidine improved the reductions in NCI at concentrations between 3 and 200 nM. Finally, the effect of 3–40 nM dexmedetomidine postconditioning was greater than preconditioning. These results indicated that preconditioning and postconditioning with dexmedetomidine attenuated H/R injury in primary neonatal rat cardiomyocytes at the cellular level.
Collapse
Affiliation(s)
- Ke Peng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yun Qiu
- Department of Anesthesiology, Suzhou Yongding Hospital, Suzhou, Jiangsu 215299, P.R. China
| | - Jian Li
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhao-Cai Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Fu-Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
18
|
Ma XL, Zhang F, Wang YX, He CC, Tian K, Wang HG, An D, Heng B, Liu YQ. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway. Chem Biol Interact 2016; 254:73-82. [PMID: 27238724 DOI: 10.1016/j.cbi.2016.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 01/25/2023]
Abstract
In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2.
Collapse
Affiliation(s)
- Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|