1
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
2
|
Sun J, Ge Y, Chao T, Bai R, Wang C. The Role of miRNA in the Regulation of Angiogenesis in Ischemic Heart Disease. Curr Probl Cardiol 2023; 48:101637. [PMID: 36773949 DOI: 10.1016/j.cpcardiol.2023.101637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Despite continued improvements in primary prevention and treatment, ischemic heart disease (IHD) is the most common cause of mortality in both developing and developed countries. Promoting angiogenesis and reconstructing vascular network in ischemic myocardium are critical process of postischemic tissue repair. Effective strategies to promote survival and avoid apoptosis of endothelial cells in the ischemic myocardium can help to achieve long-term cardiac angiogenesis. Therefore, it is of great importance to investigate the molecular pathophysiology of angiogenesis in-depth and to find the key targets that promote angiogenesis. Recently years, many studies have found that microRNAs play important regulatory roles in almost all process of angiogenesis, including vascular sprouting, proliferation, survival and migration of vascular endothelial cells, recruitment of vascular progenitor cells, and control of angiopoietin expression. This review presents detailed information about the regulatory role of miRNAs in the angiogenesis of IHD in recent years, and provides new therapeutic ideas for the treatment of IHD.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Ramberg S, Krasnov A, Colquhoun D, Wallace C, Andreassen R. Expression Analysis of Moritella viscosa-Challenged Atlantic Salmon Identifies Disease-Responding Genes, MicroRNAs and Their Predicted Target Genes and Pathways. Int J Mol Sci 2022; 23:ijms231911200. [PMID: 36232504 PMCID: PMC9569996 DOI: 10.3390/ijms231911200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Moritella viscosa is a bacterial pathogen causing winter-ulcer disease in Atlantic salmon. The lesions on affected fish lead to increased mortality, decreased fish welfare, and inferior meat quality in farmed salmon. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation by guiding the miRNA-induced silencing complex to specific mRNA transcripts (target genes). The goal of this study was to identify miRNAs responding to Moritella viscosa in salmon by investigating miRNA expression in the head-kidney and the muscle/skin from lesion sites caused by the pathogen. Protein coding gene expression was investigated by microarray analysis in the same materials. Seventeen differentially expressed guide-miRNAs (gDE-miRNAs) were identified in the head-kidney, and thirty-nine in lesion sites, while the microarray analysis reproduced the differential expression signature of several thousand genes known as infection-responsive. In silico target prediction and enrichment analysis suggested that the gDE-miRNAs were predicted to target genes involved in immune responses, hemostasis, angiogenesis, stress responses, metabolism, cell growth, and apoptosis. The majority of the conserved gDE-miRNAs (e.g., miR-125, miR-132, miR-146, miR-152, miR-155, miR-223 and miR-2188) are known as infection-responsive in other vertebrates. Collectively, the findings indicate that gDE-miRNAs are important post-transcriptional gene regulators of the host response to bacterial infection.
Collapse
Affiliation(s)
- Sigmund Ramberg
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), 1430 Ås, Norway
| | | | | | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
4
|
Peng HY, Li MQ, Li HP. MiR-137 Restricts the Viability and Migration of HTR-8/SVneo Cells by Downregulating FNDC5 in Gestational Diabetes Mellitus. Curr Mol Med 2020; 19:494-505. [PMID: 31109274 DOI: 10.2174/1566524019666190520100422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increasing number of studies have described the pathological changes of placenta tissues in gestational diabetes mellitus (GDM), although the underlying mechanisms involved in this process remain uncertain. The aim of the present study was to verify the possible role of microRNA-137 (miR)-137 and FNDC5 in regulating the biological function of trophoblasts in high glucose (HG) conditions during the GDM period. METHODS Expression levels of miR-137 and FNDC5 were measured in placenta specimens, the HG-treated trophoblast cell line HTR-8/SVneo and miR-137- overexpressing HTR-8/SVneo cells using reverse transcription quantitative-PCR or western blotting. The viability of HTR-8/SVneo cells was tested using a Cell Counting kit- 8 (CCK8) assay, with cell migration assessed using scratch and transwell assays. RESULTS It was observed that the expression levels of miR-137 were increased and the expression levels of FNDC5 were decreased in the placenta tissues of women with severe GDM and in HG-exposed HTR-8/SVneo cells. In addition, upregulating miR-137 in HTR-8/SVneo cells downregulated the expression levels of FNDC5. The viability and migration of HTR-8/SVneo cells were suppressed by increased miR-137 expression levels, and upregulating FNDC5 in miR-137-overexpressing HTR-8/SVneo cells resulted in the reversal of all these effects. CONCLUSIONS The data from the present study suggest that miR-137 suppresses the viability and migration of trophoblasts via downregulating FNDC5 in GDM, which may contribute to the pathology of placenta tissues and occurrence of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Hua-Ping Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
5
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
6
|
Kong L, Zuo R, Wang M, Wang W, Xu J, Chai Y, Guan J, Kang Q. Silencing MicroRNA-137-3p, which Targets RUNX2 and CXCL12 Prevents Steroid-induced Osteonecrosis of the Femoral Head by Facilitating Osteogenesis and Angiogenesis. Int J Biol Sci 2020; 16:655-670. [PMID: 32025213 PMCID: PMC6990928 DOI: 10.7150/ijbs.38713] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
The main pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) includes decreased osteogenic capacity of bone marrow-derived mesenchymal stem cells (BMSCs) and damaged blood supply to the femoral head. MicroRNAs (miRNAs) have been shown to play prominent roles in SONFH development. However, there is no report that a specific miRNA targeting two genes in two different pathogenic pathways has been applied to this disease. The present study investigated the effects of transplantation of miR-137-3p-silenced BMSCs on the prevention and early treatment of SONFH. First, western blotting and dual luciferase assays were employed to verify that miR-137-3p directly targets Runx2 and CXCL12. Then, silencing of miR-137-3p was found to facilitate osteogenic differentiation of BMSCs, which was confirmed by alkaline phosphatase (ALP) staining, alizarin red staining and qRT-PCR. Silencing of miR-137-3p also promoted angiogenesis by human umbilical vein endothelial cells (HUVECs) in the presence or absence of glucocorticoids. Thereafter, overexpression of Runx2 and CXCL12 without the 3′ untranslated region (3′UTR) partially rescued the effects of miR-137-3p on osteogenesis and angiogenesis, respectively. This finding further supported the hypothesis that miR-137-3p exerts its functions partly by regulating the genes, Runx2 and CXCL12. We also demonstrated that SONFH was partially prevented by transplantation of miR-137-3p-silenced BMSCs into a rat model. Micro-CT and histology showed that the transplantation of miR-137-3p-silenced BMSCs significantly improved bone regeneration. Additionally, the results of enzyme-linked immunosorbent assays (ELISA) and flow cytometry suggested that stromal cell-derived factor-1α (SDF-1α) and endothelial progenitor cells (EPCs) participated in the process of vascular repair. Taken together, these findings show that silencing of miR-137-3p directly targets the genes, Runx2 and CXCL12, which can play critical roles in SONFH repair by facilitating osteogenic differentiation and mobilizing EPCs.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Rongtai Zuo
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Mengwei Wang
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wenbo Wang
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yimin Chai
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Junjie Guan
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
7
|
Peng HY, Li HP, Li MQ. High glucose induces dysfunction of human umbilical vein endothelial cells by upregulating miR-137 in gestational diabetes mellitus. Microvasc Res 2018; 118:90-100. [PMID: 29505767 DOI: 10.1016/j.mvr.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/07/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
Recent studies have revealed considerable dysfunction of vascular endothelial cells (VECs) and abnormal expression of microRNA (miR)-137 in women with gestational diabetes mellitus (GDM), and the aim of this study was to clarify the underlying mechanism and possible role of microRNA (miR)-137 in dysfunction of VECs during GDM. We found increased levels of miR-137 in the plasma of GDM women and high-glucose (HG)-exposed HUVECs. Upregulating miR-137 in HUVECs elevated the chemokine (C-C motif) ligand 2 (CCL2) secretion and enhanced the chemotaxis and adhesion of U937 and THP-1 (two human acute monocytic leukemia cell lines) cells to HUVECs in a co-culture system. Moreover, HG stimulation and/or overexpression of miR-137 inhibited the viability, upregulated the expression levels of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), E-selectin, and inflammatory cytokine interleukin (IL)-6, and downregulated the production of IL-8, vascular endothelial growth factor (VEGF), and angiogenesis of HUVECs in vitro. These results imply that up-regulated miR-137 by HG can restrict the viability and angiogenesis, promote the activation and inflammatory cytokine secretion of VECs, and stimulate the monocyte chemotaxis and adhesion to VECs. Ultimately, we have concluded that miR-137 is crucial to HG-induced VEC dysfunction and may be involved in pathology of GDM.
Collapse
Affiliation(s)
- Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Hua-Ping Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Ethanol Induces Enhanced Vascularization Bioactivity of Endothelial Cell-Derived Extracellular Vesicles via Regulation of MicroRNAs and Long Non-Coding RNAs. Sci Rep 2017; 7:13794. [PMID: 29062004 PMCID: PMC5653762 DOI: 10.1038/s41598-017-14356-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, have been identified as regulators of vascular remodeling and have promise as therapeutics for vascularization applications. Towards development of EVs as therapeutics, it has been demonstrated that physiological stimuli of angiogenic phenotypes in EV-producing cells can enhance the potency of EVs for vascularization. The goal of this study was to assess whether ethanol, which induces angiogenic phenotypes in endothelial cells, could be employed to enhance endothelial-derived EV vascularization bioactivity. The results indicate that ethanol conditioning of endothelial cells increases the ability of endothelial EVs to induce a pro-vascularization response. This response is due in part to increased CD34 expression in recipient endothelial cells that may result from downregulation of microRNA-106b in EVs isolated from ethanol-conditioned producer endothelial cells. Further, ethanol-induced upregulation of long non-coding RNAs (lncRNAs) HOTAIR and MALAT1 in endothelial EVs was observed to play a significant role in mediating pro-angiogenic effects of these vesicles. Overall, these studies validate ethanol conditioning as a method to enhance the bioactivity of endothelial EVs via regulation of EV-associated microRNAs (miRNAs) and, especially, lncRNAs. Further, the results suggest that alcohol consumption may activate endothelial EVs towards a pro-vascularization phenotype, which could have implications for alcohol-induced tumor angiogenesis.
Collapse
|
9
|
Gu Y, Ampofo E, Menger MD, Laschke MW. miR‐191 suppresses angiogenesis by activation of NF‐kB signaling. FASEB J 2017; 31:3321-3333. [DOI: 10.1096/fj.201601263r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| |
Collapse
|
10
|
Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. Oncogenesis 2017; 6:e303. [PMID: 28287613 PMCID: PMC5533948 DOI: 10.1038/oncsis.2017.7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 01/30/2017] [Indexed: 01/17/2023] Open
Abstract
Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood–tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C–X–C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma.
Collapse
|
11
|
Rhodes CJ, Im H, Cao A, Hennigs JK, Wang L, Sa S, Chen PI, Nickel NP, Miyagawa K, Hopper RK, Tojais NF, Li CG, Gu M, Spiekerkoetter E, Xian Z, Chen R, Zhao M, Kaschwich M, Del Rosario PA, Bernstein D, Zamanian RT, Wu JC, Snyder MP, Rabinovitch M. RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2015; 192:356-66. [PMID: 26030479 DOI: 10.1164/rccm.201408-1528oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension is characterized by endothelial dysregulation, but global changes in gene expression have not been related to perturbations in function. OBJECTIVES RNA sequencing was used to discriminate changes in transcriptomes of endothelial cells cultured from lungs of patients with idiopathic pulmonary arterial hypertension versus control subjects and to assess the functional significance of major differentially expressed transcripts. METHODS The endothelial transcriptomes from the lungs of seven control subjects and six patients with idiopathic pulmonary arterial hypertension were analyzed. Differentially expressed genes were related to bone morphogenetic protein type 2 receptor (BMPR2) signaling. Those down-regulated were assessed for function in cultured cells and in a transgenic mouse. MEASUREMENTS AND MAIN RESULTS Fold differences in 10 genes were significant (P < 0.05), four increased and six decreased in patients versus control subjects. No patient was mutant for BMPR2. However, knockdown of BMPR2 by siRNA in control pulmonary arterial endothelial cells recapitulated 6 of 10 patient-related gene changes, including decreased collagen IV (COL4A1, COL4A2) and ephrinA1 (EFNA1). Reduction of BMPR2-regulated transcripts was related to decreased β-catenin. Reducing COL4A1, COL4A2, and EFNA1 by siRNA inhibited pulmonary endothelial adhesion, migration, and tube formation. In mice null for the EFNA1 receptor, EphA2, versus control animals, vascular endothelial growth factor receptor blockade and hypoxia caused more severe pulmonary hypertension, judged by elevated right ventricular systolic pressure, right ventricular hypertrophy, and loss of small arteries. CONCLUSIONS The novel relationship between BMPR2 dysfunction and reduced expression of endothelial COL4 and EFNA1 may underlie vulnerability to injury in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Christopher J Rhodes
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Hogune Im
- 2 Cardiovascular Institute.,4 Department of Genetics, and
| | - Aiqin Cao
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Jan K Hennigs
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Lingli Wang
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Silin Sa
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Pin-I Chen
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Nils P Nickel
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Kazuya Miyagawa
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Rachel K Hopper
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Nancy F Tojais
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Caiyun G Li
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Mingxia Gu
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Edda Spiekerkoetter
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Zhaoying Xian
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Rui Chen
- 2 Cardiovascular Institute.,4 Department of Genetics, and
| | - Mingming Zhao
- 2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Mark Kaschwich
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Patricia A Del Rosario
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Roham T Zamanian
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- 2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Marlene Rabinovitch
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| |
Collapse
|
12
|
Veliceasa D, Biyashev D, Qin G, Misener S, Mackie AR, Kishore R, Volpert OV. Therapeutic manipulation of angiogenesis with miR-27b. Vasc Cell 2015; 7:6. [PMID: 26161255 PMCID: PMC4497374 DOI: 10.1186/s13221-015-0031-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/08/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Multiple studies demonstrated pro-angiogenic effects of microRNA (miR)-27b. Its targets include Notch ligand Dll4, Sprouty (Spry)-2, PPARγ and Semaphorin (SEMA) 6A. miR-27 effects in the heart are context-dependent: although it is necessary for ventricular maturation, targeted overexpression in cardiomyocytes causes hypertrophy and dysfunction during development. Despite significant recent advances, therapeutic potential of miR-27b in cardiovascular disease and its effects in adult heart remain unexplored. Here, we assessed the therapeutic potential of miR-27b mimics and inhibitors in rodent models of ischemic disease and cancer. METHODS We have used a number of models to demonstrate the effects of miR-27b mimicry and inhibition in vivo, including subcutaneous Matrigel plug assay, mouse models of hind limb ischemia and myocardial infarction and subcutaneous Lewis Lung carcinoma. RESULTS Using mouse model of myocardial infarction due to the coronary artery ligation, we showed that miR-27b mimic had overall beneficial effects, including increased vascularization, decreased fibrosis and increased ejection fraction. In mouse model of critical limb ischemia, miR-27b mimic also improved tissue re-vascularization and perfusion. In both models, miR-27b mimic clearly decreased macrophage recruitment to the site of hypoxic injury. In contrast, miR-27b increased the recruitment of bone marrow derived cells to the neovasculature, as was shown using mice reconstituted with fluorescence-tagged bone marrow. These effects were due, at least in part, to the decreased expression of Dll4, PPARγ and IL10. In contrast, blocking miR-27b significantly decreased vascularization and reduced growth of subcutaneous tumors and decreased BMDCs recruitment to the tumor vasculature. CONCLUSIONS Our study demonstrates the utility of manipulating miR-27b levels in the treatment of cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Dorina Veliceasa
- Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL USA ; Department of Urology, University of Illinois at Chicago Medical College, Chicago, IL USA
| | - Dauren Biyashev
- Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Gangjian Qin
- Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Sol Misener
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander Roy Mackie
- Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Raj Kishore
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA USA
| | - Olga V Volpert
- Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL USA ; Northwestern University, Feinberg Cardiovascular Research Institute, Chicago, IL USA
| |
Collapse
|