1
|
Liu W, Jin W, Wilde PJ, Jin Y, Pan Y, Han J. Understanding the mechanism of high viscosity food delaying gastric emptying. Food Funct 2024; 15:5382-5396. [PMID: 38639045 DOI: 10.1039/d4fo00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Controlling the structure and viscosity of food can influence the development of diet-related diseases. Food viscosity has been linked with health through its impact on human digestion and gastrointestinal transit, however, there is limited understanding of how the viscosity of food regulates gastric emptying. Here, we used model food preparations with different viscosities using guar gum, to explore the mechanism underlying the influence of viscosity on gastric motility, gastric emptying and postprandial blood glucose. Based on experiments in human volunteers and animals, we demonstrated that high viscosity meals increased gastric antrum area and gastric retention rate. Viscosity also affected gut hormone secretion, reduced the gene expression level of interstitial cells of Cajal, resulting in a delay of gastric emptying and limiting the increase in postprandial glucose. This improved mechanistic understanding of food viscosity during gastric digestion is important for designing new foods to benefit human health.
Collapse
Affiliation(s)
- Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Weiping Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Peter J Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yujie Pan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Choi NR, Kim JN, Lee MJ, Kim BJ. Inhibitory Effects of Jakyakgamcho-Tang (Glycyrrhiza uralensis and Paeonia lactiflora) on the Pacemaker Potential of the Interstitial Cells of Cajal in the Murine Small Intestine. APPLIED SCIENCES 2022; 12:4175. [DOI: 10.3390/app12094175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Jakyakgamcho-tang (JYGCT) has been used to treat various diseases. The interstitial cells of Cajal (ICC) regulate gastrointestinal (GI) motility as pacemaker cells. Here, we examined the effects of JYGCT on the pacemaker potential of the ICC in the small intestine. We observed that JYGCT inhibited the pacemaker potential in a dose-dependent manner. Glibenclamide did not affect the pacemaker potential and on these conditions, JYGCT also had no effect on the pacemaker potential. Pretreatment with capsazepine or SB452533 blocked the JYGCT-induced effects. In the presence of SQ-22536, JYGCT did not inhibit the pacemaker potential. Additionally, JYGCT inhibited spontaneous [Ca2+]i oscillations and JYGCT-induced ITR increase was associated with TMEM16A, motilin and substance P activation. Moreover, JYGCT was effective in alleviating the symptoms of irritable bowel syndrome. Our results suggest that JYGCT inhibited the pacemaker potential of the ICC via KATP, the TRPV1 or the cyclic AMP pathway, and intracellular Ca2+ regulation, indicating that JYGCT can affect ICC and thus have the function of regulating GI motility. Therefore, JYGCT may be used as a GI motility disorder regulator or disease prevention agent.
Collapse
Affiliation(s)
- Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Min Jae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
3
|
Lee JY, Kim N, Yoon H, Shin CM, Park YS, Lee DH. A Randomized, Double-Blinded, Placebo-controlled Study to Evaluate the Efficacy and Safety of DA-9701 (Motilitone) in Patients With Functional Dyspepsia and Constipation-type Irritable Bowel Syndrome Overlap: A Pilot Study. J Neurogastroenterol Motil 2022; 28:265-275. [PMID: 35232894 PMCID: PMC8978125 DOI: 10.5056/jnm20236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background/Aims To assess the effects and safety of DA-9701 in patients with constipation-type irritable bowel syndrome (IBS-C) which frequently accompany functional dyspepsia (FD). Methods FD and IBS-C were diagnosed based on the Rome III criteria. Randomized subjects were administered 30 mg of DA-9701 (Motilitone) or placebo 3 times a day for 4 weeks. The study endpoints were evaluated the percentage of responders in the overall symptom evaluation of IBS-C and FD. Results Thirty IBS-C patients and 30 placebos were prospectively enrolled. The proportion of responders with improvement in overall symptoms of IBS-C was 53.33% in the DA-9701 group and 40.00% in the placebo group (P = 0.301). Compared to the placebo group, the decrease of abdominal pain score in the DA-9701 group was significantly higher at week 3 in the DA-9701 group (0.96 ± 0.77 vs 0.55 ± 0.79, P = 0.042) but no significance at week 4. There was no significant difference in total IBS quality of life score at week 4 between the 2 groups (P = 0.897). Among patients with IBS-C accompanied by FD, the proportion of responders in the DA-9701 group was 50.00% (15/30), which was higher than 31.03% (9/29) of the placebo group (P = 0.138). Conclusions DA-9701 showed trend of treatment efficacy in patients with FD and IBS-C overlap including overall improvement, and safety, compared to placebo but without significance probably due to small numbers. It is suggested the need for a large-scale clinical trial to confirm this preliminary effect of DA-9701.
Collapse
Affiliation(s)
- Ju Yup Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, South Korea.,Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, South Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Hang L, Zhou Y, Meng YY, Feng Y, Wang YS, Yuan JY. Progress in understanding of relationship between short chain fatty acids and irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2021; 29:1102-1109. [DOI: 10.11569/wcjd.v29.i19.1102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional intestinal disease whose pathogenesis has not yet been fully defined. The main clinical manifestations of IBS are irregular abdominal pain, abdominal distension, and changes in stool character and defecation habits. As one of the pathogeneses of IBS, intestinal flora imbalance plays an important role in the development of IBS. The vast majorities of short chain fatty acids (SCFAs) are produced through the interaction of intestinal flora with host diet in the colon. As one of the main metabolites of intestinal flora, SCFAs have the effects of intestinal barrier protection, immune regulation, anti-inflammation, and regulation of visceral sensitivity in the intestine. In recent years, with the increasing attention to SCFAs, studies on the relationship between SCFAs and IBS are emerging. This review summarizes the progress in the understanding of the relationship between SCFAs and IBS in recent five years.
Collapse
Affiliation(s)
- Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang-Yang Meng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yin-Shu Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
5
|
Arslanova A, Tarasova A, Alexandrova A, Novoselova V, Shaidullov I, Khusnutdinova D, Grigoryeva T, Yarullina D, Yakovleva O, Sitdikova G. Protective Effects of Probiotics on Cognitive and Motor Functions, Anxiety Level, Visceral Sensitivity, Oxidative Stress and Microbiota in Mice with Antibiotic-Induced Dysbiosis. Life (Basel) 2021; 11:764. [PMID: 34440509 PMCID: PMC8398215 DOI: 10.3390/life11080764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Accumulating clinical and preclinical data indicate a prominent role of gut microbiota in regulation of physiological functions. The gut-brain axis imbalance due to gut dysbiosis is associated with a range of neurodegenerative diseases. Probiotics were suggested not only to restore intestinal dysbiosis but also modulate stress response and improve mood and anxiety symptoms. In this study, we assessed the effects of probiotic lactobacilli on behavioral reactions, the level of oxidative stress and microbiota content in mice administered to broad-spectrum antibiotics. Our study demonstrates that antibiotic treatment of adolescent mice for two weeks resulted in higher mortality and lower weight gain and induced significant changes in behavior including lower locomotor and exploratory activity, reduced muscle strength, visceral hypersensitivity, higher level of anxiety and impaired cognitive functions compared to the control group. These changes were accompanied by decreased diversity and total amount of bacteria, abundance of Proteobacteria and Verrucomicrobia phyla, and reduced Firmicutes/Bacteroides ratio in the gut microbiota. Moreover, a higher level of oxidative stress was found in brain and skeletal muscle tissues of mice treated with antibiotics. Oral administration of two Lactobacillus strains prevented the observed changes and improved not only microbiota content but also the behavioral alterations, suggesting a neuroprotective and antioxidant role of probiotics.
Collapse
Affiliation(s)
- Alisa Arslanova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Aksiniya Tarasova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Anastasia Alexandrova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (V.N.); (D.Y.)
| | - Vera Novoselova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (V.N.); (D.Y.)
| | - Ilnar Shaidullov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Dilyara Khusnutdinova
- “Omics Technologies” Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (D.K.); (T.G.)
| | - Tatiana Grigoryeva
- “Omics Technologies” Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (D.K.); (T.G.)
| | - Dina Yarullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (V.N.); (D.Y.)
| | - Olga Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| |
Collapse
|
6
|
Shaidullov IF, Sorokina DM, Sitdikov FG, Hermann A, Abdulkhakov SR, Sitdikova GF. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol 2021; 21:37. [PMID: 33499840 PMCID: PMC7836204 DOI: 10.1186/s12876-021-01613-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is defined as a multifactorial disorder associated with visceral hypersensitivity, altered gut motility and dysfunction of the brain-gut axis. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. Short chain fatty acids (SCFAs) induce both inhibitory and stimulatory action on colon motility, however, their effects on the IBS model were not investigated. The aim of our study was to investigate the level of SFCAs in feces and their effects on colon motility in a mouse model of IBS. Methods IBS model was induced in mice by intracolonic infusion of 1% acetic acid during the early postnatal period. Mice colon hypersensitivity was assessed by the threshold of the abdominal withdrawal reflex in response to colorectal distention. Colon contractility was studied using proximal colon specimens in isometric conditions. Transit rates were assessed by the pellet propulsion in the isolated colon. Concentrations of SCFAs in feces were measured using gas–liquid chromatography. Results The concentration of SCFAs in feces of IBS model mice was higher compared to the control group. Visceral sensitivity to colorectal distension and colonic transit rate were increased indicating IBS with predominant diarrhea. The frequency and amplitude of spontaneous contractions of proximal colon segments from IBS mice were higher, but carbachol induced contractions were lower compared to control. During acute application of SCFAs (sodium propionate, sodium acetate or butyric acid) dose-dependently (0.5–30 mM) decreased tonic tension, frequency and amplitude of spontaneous and carbachol-evoked contractions. In the mouse IBS group the inhibitory effects SCFAs on spontaneous and carbachol-evoked contractions were less pronounced. At the same time intraluminal administration of butyrate (5 mM) increased the transit rate in the colon of both groups, but its stimulatory effect was more pronounced in mouse IBS model group. Conclusion Our data indicate that the increased transit rate in the mouse IBS model group is associated with a disbalance of activating and inhibiting action of SCFAs due to chronically elevated SCFA levels, which may impact the pathogenesis of IBS with predominant diarrhea syndrome.
Collapse
Affiliation(s)
- Ilnar F Shaidullov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Dina M Sorokina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Farit G Sitdikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Anton Hermann
- Department of Biosciences, University of Salzburg, Hellbrunnerstr.34, 5020, Salzburg, Austria
| | - Sayar R Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Guzel F Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia.
| |
Collapse
|
7
|
D’Antongiovanni V, Pellegrini C, Fornai M, Colucci R, Blandizzi C, Antonioli L, Bernardini N. Intestinal epithelial barrier and neuromuscular compartment in health and disease. World J Gastroenterol 2020; 26:1564-1579. [PMID: 32327906 PMCID: PMC7167418 DOI: 10.3748/wjg.v26.i14.1564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
A number of digestive and extra-digestive disorders, including inflammatory bowel diseases, irritable bowel syndrome, intestinal infections, metabolic syndrome and neuropsychiatric disorders, share a set of clinical features at gastrointestinal level, such as infrequent bowel movements, abdominal distension, constipation and secretory dysfunctions. Several lines of evidence indicate that morphological and molecular changes in intestinal epithelial barrier and enteric neuromuscular compartment contribute to alterations of both bowel motor and secretory functions in digestive and extra-digestive diseases. The present review has been conceived to provide a comprehensive and critical overview of the available knowledge on the morphological and molecular changes occurring in intestinal epithelial barrier and enteric neuromuscular compartment in both digestive and extra-digestive diseases. In addition, our intent was to highlight whether these morphological and molecular alterations could represent a common path (or share some common features) driving the pathophysiology of bowel motor dysfunctions and related symptoms associated with digestive and extra-digestive disorders. This assessment might help to identify novel targets of potential usefulness to develop original pharmacological approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
| | | | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
8
|
Ramos D, Catita J, López-Luppo M, Valença A, Bonet A, Carretero A, Navarro M, Nacher V, Mendez-Ferrer S, Meseguer A, Casellas A, Mendes-Jorge L, Ruberte J. Vascular Interstitial Cells in Retinal Arteriolar Annuli Are Altered During Hypertension. Invest Ophthalmol Vis Sci 2019; 60:473-487. [PMID: 30707220 DOI: 10.1167/iovs.18-25000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose It has been suggested that arteriolar annuli localized in retinal arterioles regulate retinal blood flow acting as sphincters. Here, the morphology and protein expression profile of arteriolar annuli have been analyzed under physiologic conditions in the retina of wild-type, β-actin-Egfp, and Nestin-gfp transgenic mice. Additionally, to study the effect of hypertension, the KAP transgenic mouse has been used. Methods Cellular architecture has been studied using digested whole mount retinas and transmission electron microscopy. The profile of protein expression has been analyzed on paraffin sections and whole mount retinas by immunofluorescence and histochemistry. Results The ultrastructural analysis of arteriolar annuli showed a different cell population found between endothelial and muscle cells that matched most of the morphologic criteria established to define interstitial Cajal cells. The profile of protein expression of these vascular interstitial cells (VICs) was similar to that of interstitial Cajal cells and different from the endothelial and smooth muscle cells, because they expressed β-actin, nestin, and CD44, but they did not express CD31 and α-SMA or scarcely express F-actin. Furthermore, VICs share with pericytes the expression of NG2 and platelet-derived growth factor receptor beta (PDGFR-β). The high expression of Ano1 and high activity of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase observed in VICs was diminished during hypertensive retinopathy suggesting that these cells might play a role on the motility of arteriolar annuli and that this function is altered during hypertension. Conclusions A novel type of VICs has been described in the arteriolar annuli of mouse retina. Remarkably, these cells undergo important molecular modifications during hypertensive retinopathy and might thus be a therapeutic target against this disease.
Collapse
Affiliation(s)
- David Ramos
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Anatomy, Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana López-Luppo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andreia Valença
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aina Bonet
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Carretero
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Navarro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Victor Nacher
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Simon Mendez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, and NHS-Blood and Transplant, Cambridge, United Kingdom
| | - Anna Meseguer
- Renal Physiopathology Group, CIBBM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Luísa Mendes-Jorge
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Uranga JA, García-Martínez JM, García-Jiménez C, Vera G, Martín-Fontelles MI, Abalo R. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat. Neurogastroenterol Motil 2017; 29. [PMID: 28261911 DOI: 10.1111/nmo.13047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. METHODS Male Wistar rats received saline or cisplatin (2 mg kg-1 week-1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. KEY RESULTS Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). CONCLUSIONS & INFERENCES Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated.
Collapse
Affiliation(s)
- J A Uranga
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - J M García-Martínez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - C García-Jiménez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - G Vera
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - M I Martín-Fontelles
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - R Abalo
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
10
|
β1/2 or M2/3 Receptors Are Required for Different Gastrointestinal Motility Responses Induced by Acupuncture at Heterotopic or Homotopic Acupoints. PLoS One 2016; 11:e0168200. [PMID: 27978539 PMCID: PMC5158317 DOI: 10.1371/journal.pone.0168200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
Acupuncture at homotopic acupoints or heterotopic acupoints is known to either inhibit or facilitate gastrointestinal motility, depending on the acupoint location. However, little effort has been made to investigate the roles of specific receptors (such as adrenergic and muscarinic acetylcholine receptors) in mediating the effects of acupuncture at heterotopic and homotopic acupoints. Different adrenergic receptor subtypes or cholinergic receptor subtypes are predominantly expressed in various sections of the gut, resulting in variations between the effects of acupuncture at heterotopic or homotopic acupoints on gastrointestinal motility. Here, we investigated the role of β1/β2 receptors and M2/M3 receptors in gastrointestinal motility regulated by acupuncture at ST37, a heterotopic acupoint, and ST25, a homotopic acupoint, by simultaneously recording intraluminal pressures in the distal colon and stomach or jejunum and examining fecal phenol red excretion in β1/2 receptor-knockout mice and M2/3 receptor-knockout mice. We found that knockout of the M2/3 receptor significantly inhibited ST37 acupuncture-induced enhancement of gastric motility, jejunal motility, and colonic motility. Additionally, knocking out of the β1/2 receptor significantly diminished the ST25 acupuncture-induced inhibition of gastric motility and jejunal motility without significantly altering the enhancement of colonic motility induced by acupuncture at ST25. Acupuncture at ST37 significantly accelerated gastrointestinal transition in β1/2 receptor-knockout mice and their wild-type littermates. However, this acceleration of gastrointestinal transition was markedly diminished in M2/3 receptor-knockout mice relative to their wild-type littermates. Acupuncture at ST25 significantly increased gastrointestinal transition in β1/2 receptor-knockout mice and significantly decreased gastrointestinal transition in M2/3 receptor-knockout mice without altering gastrointestinal transition in wild-type littermates of either. Our study revealed that M2/3 receptors are required for the gastrointestinal motility associated with whole gastrointestinal transition enhanced by acupuncture at heterotopic acupoints, whereas β1/2 receptors are required for the same gastrointestinal motility processes inhibited by acupuncture at homotopic acupoints. Therefore, our findings reveal important biological mechanisms underlying acupuncture treatment of disorders involving gastrointestinal motility dysfunction.
Collapse
|
11
|
Scirocco A, Matarrese P, Carabotti M, Ascione B, Malorni W, Severi C. Cellular and Molecular Mechanisms of Phenotypic Switch in Gastrointestinal Smooth Muscle. J Cell Physiol 2016; 231:295-302. [PMID: 26206426 DOI: 10.1002/jcp.25105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 10/16/2023]
Abstract
As a general rule, smooth muscle cells (SMC) are able to switch from a contractile phenotype to a less mature synthetic phenotype. This switch is accompanied by a loss of differentiation with decreased expression of contractile markers, increased proliferation as well as the synthesis and the release of several signaling molecules such as pro-inflammatory cytokines, chemotaxis-associated molecules, and growth factors. This SMC phenotypic plasticity has extensively been investigated in vascular diseases, but interest is also emerging in the field of gastroenterology. It has in fact been postulated that altered microenvironmental conditions, including the composition of microbiota, could trigger the remodeling of the enteric SMC, with phenotype changes and consequent alterations of contraction and impairment of gut motility. Several molecular actors participate in this phenotype remodeling. These include extracellular molecules such as cytokines and extracellular matrix proteins, as well as intracellular proteins, for example, transcription factors. Epigenetic control mechanisms and miRNA have also been suggested to participate. In this review key roles and actors of smooth muscle phenotypic switch, mainly in GI tissue, are described and discussed in the light of literature data available so far. J. Cell. Physiol. 231: 295-302, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annunziata Scirocco
- Department of Internal Medicine and Medical Specialties, University Sapienza Rome, Rome, Italy
| | - Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore di Sanit, à, Rome, Italy
- Center of Metabolomics, Rome, Italy
| | - Marilia Carabotti
- Department of Internal Medicine and Medical Specialties, University Sapienza Rome, Rome, Italy
| | - Barbara Ascione
- Department of Drug Research and Evaluation, Istituto Superiore di Sanit, à, Rome, Italy
| | - Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanit, à, Rome, Italy
- San Raffaele Pisana Institute, Rome, Italy
| | - Carola Severi
- Department of Internal Medicine and Medical Specialties, University Sapienza Rome, Rome, Italy
| |
Collapse
|