1
|
Szućko-Kociuba I, Trzeciak-Ryczek A, Kupnicka P, Chlubek D. Neurotrophic and Neuroprotective Effects of Hericium erinaceus. Int J Mol Sci 2023; 24:15960. [PMID: 37958943 PMCID: PMC10650066 DOI: 10.3390/ijms242115960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.
Collapse
Affiliation(s)
- Izabela Szućko-Kociuba
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| |
Collapse
|
2
|
Han Y, Huang J, Zhao C, Zhang F, Gu Y, Wang C, Jin E. Hericium erinaceus polysaccharide improves the microstructure, immune function, proliferation and reduces apoptosis of thymus and spleen tissue cells of immunosuppressed mice. Biosci Biotechnol Biochem 2023; 87:279-289. [PMID: 36494196 DOI: 10.1093/bbb/zbac198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
In order to study the effect of Hericium erinaceus polysaccharide (HEP) on the immune and antioxidation functions of immunosuppressed mice. The control group received distilled water orally and the model and experimental groups I, II, and III received 0, 80, 160, and 320 mg/kg HEP respectively for a fortnight after re-molding with cyoclphosphnalide (CTX). Compared with the control group, the secretion of IL-2, IL-4, and IFN-γ, the activity or content of T-AOC, T-SOD, and GSH-PX, and the expression of PCNA mRNA in the thymus and spleen were reduced in immunosuppressed mice (P < .05 or P < .01). Compared with immunosuppressed mice, the levels of IL-2, IFN-γ, and GSH-PX and the PCNA mRNA expression of spleen and thymus were increased (P < .05 or P < .01), and the microstructure were also obviously improved in the experimental group III. Overall, 320 mg/kg of HEP significantly improved the immune and antioxidant functions.
Collapse
Affiliation(s)
- Yujiao Han
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Jialiang Huang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China.,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, China
| | - Chenfang Wang
- College of life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China.,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, China
| |
Collapse
|
3
|
Cho HW, Choi S, Seo K, Kim KH, Jeon JH, Kim CH, Lim S, Jeong S, Chun JL. Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:937-949. [PMID: 36287790 PMCID: PMC9574611 DOI: 10.5187/jast.2022.e66] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.
Collapse
Affiliation(s)
- Hyun-Woo Cho
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Soyoung Choi
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Kangmin Seo
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Jung-Hwan Jeon
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Chan Ho Kim
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Sejin Lim
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Sohee Jeong
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Ju Lan Chun
- National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| |
Collapse
|
4
|
Evaluation of Prebiotic Properties of Galactooligosaccharides Produced by Transgalactosylation Using Partially Purified β-Galactosidase from Enterobacter aerogenes KCTC2190. Appl Biochem Biotechnol 2022; 195:2294-2316. [PMID: 35841532 DOI: 10.1007/s12010-022-04073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
Transgalactosylation reaction is the penultimate step in the production of galactooligosaccharides (GOSs) which has prominent applications in the treatment of disorders. In the present study, partially purified β-galactosidase from Enterobacter aerogenes KCTC2190 was used for the synthesis of prebiotic GOSs. GOSs were produced using lactose as substrate. Structural elucidation of collected fractions of GOSs by liquid chromatography electrospray ionization mass spectrometry exhibited the appearance of major peaks of produced GOSs at m/z 241.20, 481.39, 365.11, 527.17, and 701.51 respectively. GOSs facilitated the growth of potential probiotic strains (Lactobacillus delbrueckii ssp. helveticus, Bifidobacterium bifidum, and Lactiplantibacillus plantarum) and liberated propionate and butyrate as principal short-chain fatty acids which established its prebiotic potency. Synbiotic combinations exhibited good antioxidant activities. Synbiotic combinations also exhibited antimicrobial activities against pathogenic microorganisms namely Staphylococcus aureus and Escherichia coli. Synbiotic combinations of GOSs and the respective probiotic microorganisms were able to decrease viable human bone cancer cells (MG-63).
Collapse
|
5
|
Xie G, Tang L, Xie Y, Xie L. Secondary Metabolites from Hericium erinaceus and Their Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072157. [PMID: 35408555 PMCID: PMC9000484 DOI: 10.3390/molecules27072157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
Abstract
Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects.
Collapse
Affiliation(s)
- Guangbo Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
- Correspondence: (G.X.); (L.X.)
| | - Lan Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
| | - Yu Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Correspondence: (G.X.); (L.X.)
| |
Collapse
|
6
|
Purification, structural characterization and antioxidant activity of a new arabinogalactan from Dorema ammoniacum gum. Int J Biol Macromol 2022; 194:1019-1028. [PMID: 34848241 DOI: 10.1016/j.ijbiomac.2021.11.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/24/2023]
Abstract
Gum ammoniacum is a polymer obtained from Dorema ammoniacum and its medicinal use was already known to the ancient times. In this study, a new D. ammoniacum carbohydrate (DAC-1) with a molecular weight of 27.1 kDa was extracted by hot water and then purified on DEAE-52-cellulose and Sephadex G-100 columns. The structural features of DAC-1 were investigated by partial acid hydrolysis, fourier-transform infrared spectroscopy (FT-IR), methylation, gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detection (GC-FID), and 1D and 2D nuclear magnetic resonance spectroscopy (1D & 2D NMR). The results indicated that DAC-1 was an arabinogalactan including galactose, arabinose, rhamnose, glucuronic acid and 4-O-methyl-β-d-glucopyranosyl uronic acid (meGlcpA) with a relative percentage of 44.63%, 23.30%, 13.46%. 12.47%, and 6.14%. The structure units of DAC-1 were elucidated as 3,1)-β-D-Galp-(6 → 1)-β-D-Galp-(3,6 → containing four branch chains of →1,6)-β-D-Galp-(3 → 1)-α-L-Araf-(5 → 1)-β-D-GlcpA-(4 → 1)-α-L-Rhap-T (two times), →1,6)-β-D-Galp-(3→1)-β-D-Galp-(3 → 1)-β-D-Galp-(3 → 1)-β-D-Galp-(3 → 1)-α-L-Araf-T and →1,6)-β-D-Galp-(3 → 1)-α-L-Araf-(5 → 1)-β-D-meGlcpA-T. X-ray diffraction (XRD) pattern indicated a semi-crystalline structure. Thermal behavior of the polysaccharide was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and revealed temperatures higher than 200 °C as dominant region of weight loss. DAC-1 showed acceptable antioxidant activity when analyzed by DPPH, ABTS, FRAP, and OH radical removal methods.
Collapse
|
7
|
Lamar RT, Monda H, Sleighter R. Use of Ore-Derived Humic Acids With Diverse Chemistries to Elucidate Structure-Activity Relationships (SAR) of Humic Acids in Plant Phenotypic Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:758424. [PMID: 34925408 DOI: 10.3389/fpls.2021.758424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
For legal reasons, the publisher has withdrawn this article from public view. For additional information, please contact the publisher.
Collapse
Affiliation(s)
| | - Hiarhi Monda
- Bio Huma Netics, Inc., Gilbert, AZ, United States
| | | |
Collapse
|
8
|
Tu JQ, Liu HP, Wen YH, Chen P, Liu ZT. A novel polysaccharide from Hericium erinaceus: Preparation, structural characteristics, thermal stabilities, and antioxidant activities in vitro. J Food Biochem 2021; 45:e13871. [PMID: 34402085 DOI: 10.1111/jfbc.13871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A novel polysaccharide fraction (HEP) from Hericium erinaceus was successively isolated and purified in the present study. We researched its structure and thermal stabilities, and further studied its antioxidant activities in vitro. The results showed that HEP was an acid heteropolysaccharide, with an average molecular weight of approximately 19.7 kDa by high-performance gel permeation chromatography. Ion chromatography indicated that HEP was mainly composed of fucose:galactose:glucose:mannose:gluconic acid (Fuc:Gal:Glu:Man:GlcA) in a molar ratio of 1:2.87:0.09:0.12:0.01. Additionally, Fourier-transformed infrared and NMR spectroscopy further demonstrated that HEP was a pyranose containing α-configuration, mainly consisting of α-1-4-Fuc and α-1-6-Gal as the main chain, with →3,6)-α-D-Man-(1→and→1,6)-Glc was branched, with α-D-GlcpA-(1 as T-terminal. The specific rotation of HEP was +55°; by the differential scanning calorimetry and the thermal stability measurement of thermogravimetric analysis for HEP showed that the pyrolysis process of HEP was mainly divided into two processes, and its melting point was 75.93℃. In vitro anti-oxidation experiments showed that HEP had a certain ability to scavenge DPPH, hydroxyl, superoxide anion, and ABTS radicals. It was found that HEP had a strong ability to scavenge DPPH-free radicals, and the highest scavenging rate could reach 91.72% ± 0.17%, which was basically equivalent to the scavenging ability of Vitamin C (Vc). Therefore, it was revealed that HEP might be used as a natural antioxidant component. PRACTICAL APPLICATIONS: A novel polysaccharide (HEP) had a potent activity possibly due to its monosaccharide composition, sugar residues, and physicochemical properties. This research proved the potential of HEP in anti-oxidation and provided the possibility of developing new natural anti-oxidation products.
Collapse
Affiliation(s)
- Jian-Qiu Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Hui-Ping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Ya-Hui Wen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zi-Tian Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
9
|
Vieira TF, Corrêa RCG, Peralta RA, Peralta-Muniz-Moreira RF, Bracht A, Peralta RM. An Overview of Structural Aspects and Health Beneficial Effects of Antioxidant Oligosaccharides. Curr Pharm Des 2020; 26:1759-1777. [PMID: 32039673 DOI: 10.2174/1381612824666180517120642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. METHODS The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. RESULTS The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. CONCLUSION A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.
Collapse
Affiliation(s)
- Tatiane F Vieira
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil
| | - Rúbia C G Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.,Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation (ICETI), Centro Universitário de Maringá, Maringá, Paraná, Brazil
| | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, SC, Brazil
| | | | - Adelar Bracht
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Rosane M Peralta
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
10
|
Saleh SAA, Abd El-Galil AA, Sakr EAE, Taie HAA, Mostafa FA. Physiochemical, kinetic and thermodynamic studies on Aspergillus wewitschiae MN056175 inulinase with extraction of prebiotic and antioxidant Cynara scolymus leaves fructo-oligosaccharides. Int J Biol Macromol 2020; 163:1026-1036. [PMID: 32663564 DOI: 10.1016/j.ijbiomac.2020.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Utilization of agricultural wastes as cheap natural resources for production of bioactive products is currently attracting global attention. For this purpose, this study focused on isolation of Aspergillus wewitschiae MN056175 as promising producer of inulinase, then investigating physiochemical, kinetics and thermodynamics of the obtained inulinase, and its ability to extract bioactive fructo-oligosaccharides (FOS) from Cynara scolymus leaves (artichoke leaves, AL). A. wewitschiae MN056175 inulinase gave the maximum activity at temperature 60 °C and inulin concentration 1%. The kinetics including Km and Vmax were determined to be 105.26 mg·ml-1 and 83.33 μmol·ml-1·min-1, respectively. The thermodynamics including, Ea (activation energy) and Ed (activation energy for denaturation) were determined to be 21.82 and 73.21 kJ·mol-1, Kd, T1/2, D-value, ΔH°, ΔG° and ΔS° at 40, 50 and 60 °C which indicated the stability of A. wewitschiae MN056175 inulinase. Moreover, this inulinase was capable of hydrolyzing Cynara scolymus leaves into reducing sugar and 15 FOS with different DP, total carbohydrate, and protein content under different conditions designed by central composite design (CCD). The 15 AL FOS showed different high antioxidant and prebiotic activities. Central FOS with probiotic bacteria exhibited significant antimicrobial activity against tested gram positive bacteria in a way higher than those recorded against gram negative bacteria.
Collapse
Affiliation(s)
- Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Asmaa A Abd El-Galil
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
11
|
LEW SY, YOW YY, LIM LW, WONG KH. Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich’s ataxia patient. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.09919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Coltelli MB, Danti S, De Clerk K, Lazzeri A, Morganti P. Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. J Funct Biomater 2020; 11:jfb11010020. [PMID: 32197310 PMCID: PMC7151585 DOI: 10.3390/jfb11010020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
The present review had the aim of describing the methodologies of synthesis and properties of biobased pullulan, a microbial polysaccharide investigated in the last decade because of its interesting potentialities in several applications. After describing the implications of pullulan in nano-technology, biodegradation, compatibility with body and skin, and sustainability, the current applications of pullulan are described, with the aim of assessing the potentialities of this biopolymer in the biomedical, personal care, and cosmetic sector, especially in applications in contact with skin.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (M.-B.C.); (P.M.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
| | - Karen De Clerk
- Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 70A, 9052 Ghent, Belgium;
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Pierfrancesco Morganti
- Department of Mental Health and Physics and Preventive Medicine, Unit of Dermatology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Academy of History of Health Care Art, 00193 Rome, Italy
- Correspondence: (M.-B.C.); (P.M.)
| |
Collapse
|
13
|
Foo RQ, Jahromi MF, Chen WL, Ahmad S, Lai KS, Idrus Z, Liang JB. Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro. Microorganisms 2020; 8:E255. [PMID: 32075189 PMCID: PMC7074813 DOI: 10.3390/microorganisms8020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the palm oil industry, and compared its efficacy with commercial prebiotics- fructooligosaccharide (FOS) and mannanoligosaccharide (MOS)-against S. Enteritidis in vitro. Based on the degree of polymerization (DP), PKC oligosaccharides were further divided into 'Small' (DP ≤ 6) and 'Big' (DP > 6) fractions. Results showed that the Small and Big PKC fractions were able to reduce (p < 0.05) S. Enteritidis adherence to Cancer coli-2 (Caco-2) cells at 0.1 mg/ mL while MOS and FOS showed significant reduction at 1.0 mg/mL and 10.0 mg/mL, respectively. In terms of S. Enteritidis clearance, oligosaccharide-treated macrophages showed better S. Enteritidis clearance over time at 50 µg/mL for Small, Big and MOS, while FOS required a concentration of 500 µg/mL for a similar effect. This data highlights that oligosaccharides from PKC, particularly those of lower DP, were more effective than MOS and FOS at reducing S. Enteritidis adherence and enhancing S. Enteritidis clearance in a cell culture model.
Collapse
Affiliation(s)
- Rui Qing Foo
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
| | - Mohammad Faseleh Jahromi
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
- Arianabiotech co. No 118, Parsian Industrial Zone, Mashad 9354195366, Khorasan Razavi, Iran
| | - Wei Li Chen
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
| | - Syahida Ahmad
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, UAE;
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
- Office of the Deputy Vice Chancellor (Research & Innovation), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Juan Boo Liang
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
| |
Collapse
|
14
|
Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Anti-Inflammatory Effect of Erinacine C on NO Production Through Down-Regulation of NF-κB and Activation of Nrf2-Mediated HO-1 in BV2 Microglial Cells Treated with LPS. Molecules 2019; 24:molecules24183317. [PMID: 31547327 PMCID: PMC6766924 DOI: 10.3390/molecules24183317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023] Open
Abstract
Previous studies have revealed the anti-inflammatory and neuroprotective properties of Hericium erinaceus extracts, including the fact that the active ingredient erinacine C (EC) can induce the synthesis of nerve growth factor. However, there is limited research on the use and mechanisms of action of EC in treating neuroinflammation. Hence, in this study, the inflammatory responses of human BV2 microglial cells induced by LPS were used to establish a model to assess the anti-neuroinflammatory efficacy of EC and to clarify its possible mechanisms of action. The results showed that EC was able to reduce the levels of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) proteins produced by LPS-induced BV2 cells, in addition to inhibiting the expression of NF-κB and phosphorylation of IκBα (p-IκBα) proteins. Moreover, EC was found to inhibit the Kelch-like ECH-associated protein 1 (Keap1) protein, and to enhance the nuclear transcription factor erythroid 2-related factor (Nrf2) and the expression of the heme oxygenase-1 (HO-1) protein. Taken together, these data suggest that the mechanism of action of EC involves the inhibition of IκB, p-IκBα, and iNOS expressions and the activation of the Nrf2/HO-1 pathway.
Collapse
|
16
|
Hou Y, Liu L, Ding X. Structural characterization and immune regulation of a new heteropolysaccharide from Catathelasma imperiale(Fr.) sing. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_673_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Zhao D, Ding X, Hou Y, Hou W, Liu L, Xu T, Yang D. Structural characterization, immune regulation and antioxidant activity of a new heteropolysaccharide from Cantharellus cibarius Fr. Int J Mol Med 2018; 41:2744-2754. [PMID: 29393398 PMCID: PMC5846660 DOI: 10.3892/ijmm.2018.3450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/26/2018] [Indexed: 11/07/2022] Open
Abstract
A new heteropolysaccharide was extracted and purified from the fruiting bodies of Cantharellus cibarius Fr. The Cantharellus cibarius Fr. polysaccharide (CC-1) had a molecular weight of 61,056 kDa and was mainly formed of the glucose and xylose at ratio of 5:1. Structure identification of CC-1 was analysed by a combined application of total hydrolysis, high performance liquid chromatography (HPLC), methylation analysis, gas chromatography-mass spectrometry (GC-MS), infrared (IR) spectra and nuclear magnetic resonance (NMR) spectroscopy. The experimental results showed that CC-1 had a backbone of 1,4-linked-β-D-glucose which branched at O-6 and the branches were mainly composed of 6→1)-α-D-xylopyranose residue. CC-1 exhibited significant in vitro antioxidant effect and proliferation effect of immune cells. The activity study showed CC-1 has ability to clear the ABTS+ free radical and DPPH− free radical in a certain range of concentration. The proliferation activity of the immune cells showed that the proliferation effect on B cells was very significant (P<0.001) in the concentration of 0.625–80 mg/ml; and the effect of T cell proliferation was also very significant (P<0.001) in the concentration of 5–20 mg/ml. The result of this study introduced Cantharellus cibarius Fr. as a possible valuable source in exhibiting unique immunoregulatory and antioxidant properties.
Collapse
Affiliation(s)
- Daqun Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Wanru Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Lu Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Ting Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Danni Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
18
|
|
19
|
Wang XL, Xu KP, Long HP, Zou H, Cao XZ, Zhang K, Hu JZ, He SJ, Zhu GZ, He XA, Xu PS, Tan GS. New isoindolinones from the fruiting bodies of Hericium erinaceum. Fitoterapia 2016; 111:58-65. [DOI: 10.1016/j.fitote.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
|
20
|
Friedman M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7108-23. [PMID: 26244378 DOI: 10.1021/acs.jafc.5b02914] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The culinary and medicinal mushroom Hericium erinaceus is widely consumed in Asian countries, but apparently not in the United States, for its nutritional and health benefits. To stimulate broader interest in the reported beneficial properties, this overview surveys and consolidates the widely scattered literature on the chemistry (isolation and structural characterization) of polysaccharides and secondary metabolites such as erinacines, hericerins, hericenones, resorcinols, steroids, mono- and diterpenes, and volatile aroma compounds, nutritional composition, food and industrial uses, and exceptional nutritional and health-promoting aspects of H. erinaceus. The reported health-promoting properties of the mushroom fruit bodies, mycelia, and bioactive pure compounds include antibiotic, anticarcinogenic, antidiabetic, antifatigue, antihypertensive, antihyperlipodemic, antisenescence, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties and improvement of anxiety, cognitive function, and depression. The described anti-inflammatory, antioxidative, and immunostimulating properties in cells, animals, and humans seem to be responsible for the multiple health-promoting properties. A wide range of research advances and techniques are described and evaluated. The collated information and suggestion for further research might facilitate and guide further studies to optimize the use of the whole mushrooms and about 70 characterized actual and potential bioactive secondary metabolites to help prevent or treat human chronic, cognitive, and neurological diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|