1
|
Heyman E, Meeremans M, Van Poucke M, Peelman L, Devriendt B, De Schauwer C. Validation of multiparametric panels for bovine mesenchymal stromal cell phenotyping. Cytometry A 2023; 103:744-755. [PMID: 37173856 DOI: 10.1002/cyto.a.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Bovine mesenchymal stromal cells (MSCs) display important features that render them valuable for cell therapy and tissue engineering strategies, such as self-renewal, multi-lineage differentiation, as well as immunomodulatory properties. These cells are also promising candidates to produce cultured meat. For all these applications, it is imperative to unequivocally identify this cell population. The isolation and in vitro tri-lineage differentiation of bovine MSCs is already described, but data on their immunophenotypic characterization is not yet complete. The currently limited availability of monoclonal antibodies (mAbs) specific for bovine MSC markers strongly hampers this research. Following the minimal criteria defined for human MSCs, bovine MSCs should express CD73, CD90, and CD105 and lack expression of CD14 or CD11b, CD34, CD45, CD79α, or CD19, and MHC-II. Additional surface proteins which have been reported to be expressed include CD29, CD44, and CD106. In this study, we aimed to immunophenotype bovine adipose tissue (AT)-derived MSCs using multi-color flow cytometry. To this end, 13 commercial Abs were screened for recognizing bovine epitopes using the appropriate positive controls. Using flow cytometry and immunofluorescence microscopy, cross-reactivity was confirmed for CD34, CD73, CD79α, and CD90. Unfortunately, none of the evaluated CD105 and CD106 Abs cross-reacted with bovine cells. Subsequently, AT-derived bovine MSCs were characterized using multi-color flow cytometry based on their expression of nine markers. Bovine MSCs clearly expressed CD29 and CD44, and lacked expression of CD14, CD45, CD73, CD79α, and MHCII, while a variable expression was observed for CD34 and CD90. In addition, the mRNA transcription level of different markers was analyzed using reverse transcription quantitative polymerase chain reaction. Using these panels, bovine MSCs can be properly immunophenotyped which allows a better characterization of this heterogenous cell population.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Meeremans
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
[Biological characteristics of sheep peripheral blood mesenchymal stem cell]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 36533347 PMCID: PMC9761825 DOI: 10.19723/j.issn.1671-167x.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To obtain eripheral blood mesenchymal stem cells (PBMSCs) from sheep and rabbits by continuous mobilization of granulocyte colony-stimulating factor (G-CSF), and by comparing the success rates, cell yields and biological characteristics of the two sources of PBMSCs, and to provide the experimental basis for the preclinical study of PBMSCs transplantation to repair articular cartilage injury and cartilage tissue engineering. METHODS Through morphological characteristics, flow cytometry analysis of its surface markers, and induction of trilineage differentiation of the two cells in vitro (ie: adipogenic differentiation, osteogenic differentiation, chondrogenic differentiation), the obtained cells were finally confirmed to be PBMSCs. The colony-forming units (CFUs) and the acquisition success rates of the two PBMSCs were counted and compared, and the production of the second generation of the two PBMSCs was counted and compared by hemocytometer, and the cell counting kit-8 was used to detect the doubling time of the two PBMSCs, and the results of trilineage differentiation were quantitatively analyzed by image processing. RESULTS Microscopically, the PBMSCs of fusiform sheep and rabbits were arranged in fish group, and the second generation of sheep and rabbit PBMSCs expressed CD44 and CD90, but not CD34 and CD45. The induction of trilineage differentiation of the two cells in vitro were successful. The CFUs of primary sheep and rabbits PBMSCs were: 7.27±1.56, 5.73±1.62, and the success rate of acquisition of sheep and rabbits PBMSCs were 78.57% and 36.67%. The number of the second-generation sheep and rabbits PBMSCs that obtained per milliliter of peripheral blood were: 29 582±2 138, 26 732±2 286, and the cell doubling times (h) of the third-generation sheep and rabbits PBMSCs were: 22.32±0.28, 33.21±0.64, the cell doubling time (h) of the fourth generation sheep and rabbits PBMSCs were: 23.62±0.56, 35.30±0.38, and the quantitative lipid ratio of sheep and rabbit PBMSCs were: 7.77%±3.81%, 17.05%±1.52%, sheep and rabbit PBMSCs chondroglobus acid mucopolysaccharide positive ratios were: 11.67%±0.53%, 8.14%±0.57%. There were statistical differences among the above groups (P < 0.05). CONCLUSION The continuous mobilization of G-CSF to obtain sheep PBMSCs is more efficient. Sheep PBMSCs have more abundant yield and stronger proliferation ability.Sheep PBMSCs can produce more acidic mucopolysaccharides and have lower adipogenic abi-lity under appropriate conditions. Sheep PBMSCs have good research prospects in repair of articular cartilage injury with autologous stem cell transplantation and preclinical animal in vivo experiment of cartilage tissue engineering.This experiment provides further experimental basis for this kind of research.
Collapse
|
3
|
An Update on Applications of Cattle Mesenchymal Stromal Cells. Animals (Basel) 2022; 12:ani12151956. [PMID: 35953945 PMCID: PMC9367612 DOI: 10.3390/ani12151956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Among livestock species, cattle are crucially important for the meat and milk production industry. Cows can be affected by different pathologies, such as mastitis, endometritis and lameness, which can negatively affect either food production or reproductive efficiency. The use of mesenchymal stromal cells (MSCs) is a valuable tool both in the treatment of various medical conditions and in the application of reproductive biotechnologies. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies. Abstract Attention on mesenchymal stromal cells (MSCs) research has increased in the last decade mainly due to the promising results about their plasticity, self-renewal, differentiation potential, immune modulatory and anti-inflammatory properties that have made stem cell therapy more clinically attractive. Furthermore, MSCs can be easily isolated and expanded to be used for autologous or allogenic therapy following the administration of either freshly isolated or previously cryopreserved cells. The scientific literature on the use of stromal cells in the treatment of several animal health conditions is currently available. Although MSCs are not as widely used for clinical treatments in cows as for companion and sport animals, they have the potential to be employed to improve productivity in the cattle industry. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies.
Collapse
|
4
|
Song YT, Li YQ, Tian MX, Hu JG, Zhang XR, Liu PC, Zhang XZ, Zhang QY, Zhou L, Zhao LM, Li-Ling J, Xie HQ. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater 2022; 14:443-455. [PMID: 35415280 PMCID: PMC8978277 DOI: 10.1016/j.bioactmat.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes. Biomaterials such as submucosa of small intestine (SIS) have been widely used as patches for bladder repair, but the outcomes are not fully satisfactory. To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization. In this study, we have developed an anti-CD29 antibody-conjugated SIS scaffold (AC-SIS) which is capable of specifically capturing urine-derived stem cells (USCs) in situ for tissue repair and regeneration. The scaffold has exhibited effective capture capacity and sound biocompatibility. In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration. The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches. We developed an anti-CD29 antibody-crosslinked submucosa of small intestine scaffold (AC-SIS). AC-SIS is capable of specifically capturing urine-derived stem cells (USCs) as well as possesses a sound biocompatibility. AC-SIS promotes in situ tissue regeneration by facilitating the repair of bladder epithelium, smooth muscle and angiogenesis. Design and application of endogenous stem cell capturing scaffolds provides a new strategy for bladder repair.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Qing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mao-Xuan Tian
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Aesthetic Surgery, The People's Hospital of Pengzhou, Chengdu, Sichuan, 611930, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Ru Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Medical Genetics and Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Nestin-Expressing Cells in the Lung: The Bad and the Good Parts. Cells 2021; 10:cells10123413. [PMID: 34943921 PMCID: PMC8700449 DOI: 10.3390/cells10123413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Nestin is a member of the intermediate filament family, which is expressed in a variety of stem or progenitor cells as well as in several types of malignancies. Nestin might be involved in tissue homeostasis or repair, but its expression has also been associated with processes that lead to a poor prognosis in various types of cancer. In this article, we review the literature related to the effect of nestin expression in the lung. According to most of the reports in the literature, nestin expression in lung cancer leads to an aggressive phenotype and resistance to chemotherapy as well as radiation treatments due to the upregulation of phenomena such as cell proliferation, angiogenesis, and metastasis. Furthermore, nestin may be involved in the pathogenesis of some non-cancer-related lung diseases. On the other hand, evidence also indicates that nestin-positive cells may have a role in lung homeostasis and be capable of generating various types of lung tissues. More research is necessary to establish the true value of nestin expression as a prognostic factor and therapeutic target in lung cancer in addition to its usefulness in therapeutic approaches for pulmonary diseases.
Collapse
|
6
|
Ma C, Liu Y, Ma Y, Jiang L, Huang Q, Liu G, Guo Y, Wang C, Liu C. Identification and characterization of pulmonary mesenchymal stem cells derived from rat fetal lung tissue. Tissue Cell 2021; 73:101628. [PMID: 34479072 DOI: 10.1016/j.tice.2021.101628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
Pulmonary mesenchymal stem cells (PMSCs) have great potential in lung tissue repair and regeneration, which have been isolated from some mammalian species, including mice, bovine and pig. However, the isolation, characteristics and differentiation potential of rat PMSCs have not been reported. In this study, we successfully isolated PMSCs from Sprague-Dawley rat fetal lung tissue in vitro for the first time and attempted to evaluate its multilineage differentiation potentials. The cultured PMSCs showed typical spindle-shaped morphology and high proliferative potential, and could be passaged for at least 13 passages and maintained high hereditary stability with more than 93.6 % of cells were diploid (2n = 42) by G-banding analysis. Furthermore, the PMSCs could express mesenchymal markers Sca-1, CD29, CD44, CD73 and CD90, but not hematopoietic markers CD34 and CD45. Besides, the expression of cell markers of AT2 (SFTPC), AT1 (PDPN) and macrophage (CD11b) were also negative. Cell cycle examination revealed majority of the PMSCs were in G0/G1 phase, which are similar with previously reported pig PMSCs. In addition, the PMSCs were multipotent and could differentiated into osteocytes, adipocytes, hepatocytes and neurons in vitro. Together, the present study demonstrated the stemness and multi-differentiation potentials of rat PMSCs, which conferred a potential regenerative cell resource for cell regenerative therapy of lung injury.
Collapse
Affiliation(s)
- Caiyun Ma
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Yang Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Yingchun Ma
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Lijie Jiang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Qianyi Huang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Gaofeng Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Yu Guo
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Chunjing Wang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| | - Changqing Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
7
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
8
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
9
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
10
|
Abstract
Rationale Stem cells have been identified in the human lung; however, their role in lung disease is not clear. We aimed to isolate mesenchymal stem cells (MSC) from human lung tissue and to study their in vitro properties. Methods MSC were cultured from lung tissue obtained from patients with fibrotic lung diseases (n = 17), from emphysema (n = 12), and normal lungs (n = 3). Immunofluorescence stainings were used to characterize MSC. The effect of MSC-conditioned media (MSC-CM) on fibroblast proliferation and on lung epithelial wound repair was studied. Results Expression of CD44, CD90, and CD105 characterized the cells as MSC. Moreover, the cells stained positive for the pluripotency markers Oct3/4 and Nanog. Positive co-stainings of chemokine receptor type 4 (CXCR4) with CD44, CD90 or CD105 indicated the cells are of bone marrow origin. MSC-CM significantly inhibited the proliferation of lung fibroblasts by 29% (p = 0.0001). Lung epithelial repair was markedly increased in the presence of MSC-CM (+ 32%). Significantly more MSC were obtained from fibrotic lungs than from emphysema or control lungs. Conclusions Our study demonstrates enhanced numbers of MSC in fibrotic lung tissue as compared to emphysema and normal lung. The cells inhibit the proliferation of fibroblasts and enhance epithelial repair in vitro. Further in vivo studies are needed to elucidate their potential role in the treatment of lung fibrosis.
Collapse
|
11
|
Peng SY, Chou CW, Kuo YH, Shen PC, Shaw SWS. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells. Taiwan J Obstet Gynecol 2017; 56:306-311. [PMID: 28600038 DOI: 10.1016/j.tjog.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. MATERIALS AND METHODS The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. RESULTS Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. CONCLUSION Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chien-Wen Chou
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hsuan Kuo
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - S W Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Acute respiratory distress syndrome (ARDS) is a devastating disease process with a 40% mortality rate, and for which there is no therapy. Stem cells are an exciting potential therapy for ARDS, and are currently the subject of intensive ongoing research efforts. We review data concerning the therapeutic promise of cell-based therapies for ARDS. RECENT FINDINGS Recent experimental studies suggest that cell-based therapies, particularly mesenchymal stem/stromal cells (MSCs), endothelial progenitor cells, and embryonic or induced pluripotent stem cells all offer considerable promise for ARDS. Of these cell types, mesenchymal stromal cells offer the greatest potential for allogeneic therapy, given the large body of preclinical data supporting their use, and the advanced state of our understanding of their diverse mechanisms of action. Although other stem cells such as EPCs also have therapeutic potential, greater barriers exist, particularly the requirement for autologous EPC therapy. Other stem cells, such as ESCs and iPSCs, are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. Ultimately, lung-derived stem cells may offer the greatest hope for lung diseases, given their homeostatic role in replacing and repairing damaged native lung tissues.MSCs are currently in early phase clinical trials, the results of which will be of critical importance to subsequent translational efforts for MSCs in ARDS. A number of translational challenges exist, including minimizing variability in cell batches, developing standard tests for cell potency, and producing large amounts of clinical-grade cells for use in patients. SUMMARY Cell-based therapies, particularly MSCs, offer considerable promise for the treatment of ARDS. Overcoming translational challenges will be important to fully realizing their therapeutic potential for ARDS.
Collapse
|