1
|
Madrid A, Koueik J, Papale LA, Chebel R, Renteria I, Cannon E, Hogan KJ, Alisch RS, Iskandar BJ. Folate-mediated transgenerational inheritance of sperm DNA methylation patterns correlate with spinal axon regeneration. Epigenetics 2024; 19:2380930. [PMID: 39066680 PMCID: PMC11285217 DOI: 10.1080/15592294.2024.2380930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/01/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
In mammals, the molecular mechanisms underlying transgenerational inheritance of phenotypic traits in serial generations of progeny after ancestral environmental exposures, without variation in DNA sequence, remain elusive. We've recently described transmission of a beneficial trait in rats and mice, in which F0 supplementation of methyl donors, including folic acid, generates enhanced axon regeneration after sharp spinal cord injury in untreated F1 to F3 progeny linked to differential DNA methylation levels in spinal cord tissue. To test whether the transgenerational effect of folic acid is transmitted via the germline, we performed whole-genome methylation sequencing on sperm DNA from F0 mice treated with either folic acid or vehicle control, and their F1, F2, and F3 untreated progeny. Transgenerational differentially methylated regions (DMRs) are observed in each consecutive generation and distinguish folic acid from untreated lineages, predominate outside of CpG islands and in regions of the genome that regulate gene expression, including promoters, and overlap at both the differentially methylated position (DMP) and gene levels. These findings indicate that molecular changes between generations are caused by ancestral folate supplementation. In addition, 29,719 DMPs exhibit serial increases or decreases in DNA methylation levels in successive generations of untreated offspring, correlating with a serial increase in the phenotype across generations, consistent with a 'wash-in' effect. Sibship-specific DMPs annotate to genes that participate in axon- and synapse-related pathways.
Collapse
Affiliation(s)
- Andy Madrid
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Joyce Koueik
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Ligia A. Papale
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Roy Chebel
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Isabelle Renteria
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Emily Cannon
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kirk J. Hogan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Reid S. Alisch
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Bermans J. Iskandar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
2
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
3
|
Dall’Asta M, Barbato M, Rocchetti G, Rossi F, Lucini L, Marsan PA, Colli L. Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
5
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
6
|
Guan QH, Shi WJ, Zhou LS, Tao AL, Li L. Effect of epigallocatechin-3-gallate on the status of DNA methylation of E-cadherin promoter region on endometriosis mouse. J Obstet Gynaecol Res 2020; 46:2076-2083. [PMID: 32840012 DOI: 10.1111/jog.14358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/24/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023]
Abstract
AIM To evaluate whether epigallocatechin-3-gallate acts on endometriosis mouse, and changes the status of DNA methylation of E-cadherin promoter region. METHODS According to our previous research, the tracing nude mouse model of endometriosis was built up and randomly divided into three groups: control group (group A), epigallocatechin-3-gallate group (group B) and decitabine group (group C). Normal saline, epigallocatechin-3-gallate and decitabine were isometrically intraperitoneally injected into each group once in 2 days. In this period, the growth situations of lesions were monitored by living image system. After 16 days, the lesions were taken out and the distribution of E-cadherin and its methylated situation of promoter region were analyzed. RESULTS The region of interest of ectopic lesion increased from 4th to 16th day in group A (P < 0.01); in group B and C, the region of interest of ectopic lesion increased in the 0-8th day (P < 0.01), and decreased in the 8-16th day (P < 0.01). The positive expression rate of E-cadherin in group C was higher than group B, and group B was higher than group A (P < 0.01). The DNA methylation status of E-cadherin promoter region in group A was higher than group B, and group B was higher than group C (P < 0.01). CONCLUSION Epigallocatechin-3-gallate may inhibit the growth of endometrial lesion, affect the expression of E-cadherin on the cell membrane and reduce the status of DNA methylation of E-cadherin promoter region.
Collapse
Affiliation(s)
- Qi-Hui Guan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jing Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Long-Shu Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ai-Lin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020; 25:467. [PMID: 31979082 PMCID: PMC7037968 DOI: 10.3390/molecules25030467] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
8
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
9
|
Liu C, Li P, Qu Z, Xiong W, Liu A, Zhang S. Advances in the Antagonism of Epigallocatechin-3-gallate in the Treatment of Digestive Tract Tumors. Molecules 2019; 24:molecules24091726. [PMID: 31058847 PMCID: PMC6539113 DOI: 10.3390/molecules24091726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Due to changes in the dietary structure of individuals, the incidence of digestive tract tumors has increased significantly in recent years, causing a serious threat to the life and health of patients. This has in turn led to an increase in cancer prevention research. Many studies have shown that epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, is in direct contact with the digestive tract upon ingestion, which allows it to elicit a significant antagonizing effect on digestive tract tumors. The main results of EGCG treatment include the prevention of tumor development in the digestive tract and the induction of cell cycle arrest and apoptosis. EGCG can be orally administered, is safe, and combats other resistances. The synergistic use of cancer drugs can promote the efficacy and reduce the anti-allergic properties of drugs, and is thus, favored in medical research. EGCG, however, currently possesses several shortcomings such as poor stability and low bioavailability, and its clinical application prospects need further development. In this paper, we have systematically summarized the research progress on the ability of EGCG to antagonize the activity and mechanism of action of digestive tract tumors, to achieve prevention, alleviation, delay, and even treat human gastrointestinal tract tumors via exogenous dietary EGCG supplementation or the development of new drugs containing EGCG.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Li A, Gu K, Wang Q, Chen X, Fu X, Wang Y, Wen Y. Epigallocatechin-3-gallate affects the proliferation, apoptosis, migration and invasion of tongue squamous cell carcinoma through the hippo-TAZ signaling pathway. Int J Mol Med 2018; 42:2615-2627. [PMID: 30106116 PMCID: PMC6192764 DOI: 10.3892/ijmm.2018.3818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/07/2018] [Indexed: 01/23/2023] Open
Abstract
The purpose of the present study was to investigate the mechanism by which epigallocatechin-3-gallate (EGCG) inhibits the biological behaviors of the tongue squamous cell carcinoma (TSCC) through the Hippo-tafazzin (TAZ) signaling pathway and to provide insights into molecular targeted therapy in TSCC. CAL27 and SCC15 cells were treated with different concentrations of EGCG for 24 h. Cell proliferation was determined using Cell-Counting Kit-8 and EdU assays. Cell apoptosis was evaluated by flow cytometry. Cell migration and invasion were measured using scratch and Transwell assays, respectively. Furthermore, protein levels of associated target genes were detected using a western blot assay. It was demonstrated that EGCG affected biological behaviors of CAL27 and SCC15 cells in concentration- and time-dependent manners. In addition, EGCG decreased the protein levels of TAZ, LATS1, MOB1 and JNK. Overexpression of TAZ alleviated the effect of EGCG on CAL27 cells. Furthermore, the combination of EGCG and simvastatin inhibited the proliferation, migration and invasion, and promoted apoptosis significantly compared with single treatment in CAL27 cells. The results of the present study suggested that EGCG affects proliferation, apoptosis, migration and invasion of TSCC through the Hippo-TAZ signaling pathway.
Collapse
Affiliation(s)
- Aonan Li
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ke Gu
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qi Wang
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiyan Chen
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xucheng Fu
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yong Wen
- Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
11
|
Wu YR, Choi HJ, Kang YG, Kim JK, Shin JW. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine 2017; 12:7007-7013. [PMID: 29026297 PMCID: PMC5626413 DOI: 10.2147/ijn.s146296] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose This study aimed to develop an anti-inflammation system consisting of epigallo-catechin-3-gallate (EGCG) encapsulated in poly(lactide-co-glycolic acid) (PLGA) particles to promote wound healing. Methods Nano- and microscale PLGA particles were fabricated using a water/oil/water emulsion solvent evaporation method. The optimal particle size was determined based on drug delivery efficiency and biocompatibility. The particles were loaded with EGCG. The anti-inflammatory effects of the particles were evaluated in an in vitro cell-based inflammation model. Results Nano- and microscale PLGA particles were produced. The microscale particles showed better biocompatibility than the nanoscale particles. In addition, the microscale particles released ~60% of the loaded drug, while the nanoscale particles released ~50%, within 48 hours. Thus, microscale particles were selected as the carriers. The optimal EGCG working concentration was determined based on the effects on cell viability and inflammation. A high EGCG dose (100 μM) resulted in poor cell viability; therefore, a lower dose (≤50 μM) was used. Moreover, 50 μM EGCG had a greater anti-inflammatory effect than 10 μM concentration on lipopolysaccharide-induced inflammation. Therefore, 50 μM EGCG was selected as the working dose. EGCG-loaded microparticles inhibited inflammation in human dermal fibroblasts. Interestingly, the inhibitory effects persisted after replacement of the drug-loaded particle suspension solution with fresh medium. Conclusion The EGCG-loaded microscale particles are biocompatible and exert a sustained anti-inflammatory effect.
Collapse
Affiliation(s)
- Yan Ru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Hong Jin Choi
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Jeong Koo Kim
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam, Republic of Korea.,Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam, Republic of Korea.,Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea.,Cardiovascular and Metabolic Disease Center, Institute of Aged Life Redesign, UHARC, Inje University, Gimhae, Gyeongnam, Republic of Korea
| |
Collapse
|
12
|
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules 2017; 7:biom7010003. [PMID: 28067760 PMCID: PMC5372715 DOI: 10.3390/biom7010003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chromatin can adopt a decondensed state linked to gene transcription (euchromatin) and a condensed state linked to transcriptional repression (heterochromatin). These states are controlled by epigenetic modulators that are active on either the DNA or the histones and are tightly associated to each other. Methylation of both DNA and histones is involved in either the activation or silencing of genes and their crosstalk. Since DNA/histone methylation patterns are altered in cancers, molecules that target these modifications are interesting therapeutic tools. We present herein a vast panel of DNA methyltransferase inhibitors classified according to their mechanism, as well as selected histone methyltransferase inhibitors sharing a common mode of action.
Collapse
Affiliation(s)
- Omar Castillo-Aguilera
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Patrick Depreux
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Ludovic Halby
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
| | - Paola B Arimondo
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
- Churchill College, Cambridge CB3 0DS, UK.
| | - Laurence Goossens
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| |
Collapse
|
13
|
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z, Lu L. Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res 2016; 114:1-12. [PMID: 27697644 DOI: 10.1016/j.phrs.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications include DNA methylation, histone modification, and other patterns. These processes are associated with carcinogenesis and cancer progression. Thus, epigenetic modification-related enzymes, such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone demethylases (HDMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), as well as some related proteins, including methyl-CpG binding proteins (MBPs) and DNMT1-associated protein (DMAP 1), are considered as potential targets for cancer prevention and therapy. Numerous natural compounds, mainly derived from Chinese herbs and chemically ranging from polyphenols and flavonoids to mineral salts, inhibit the growth and development of various cancers by targeting multiple genetic and epigenetic alterations. This review summarizes the epigenetic mechanisms by which active compounds from Chinese herbs exert their anti-cancer effect. A subset of these compounds, such as curcumin and resveratrol, affect multiple epigenetic processes, including DNMT inhibition, HDAC inactivation, MBP suppression, HAT activation, and microRNA modulation. Other compounds also regulate epigenetic modification processes, but the underlying mechanisms and clear targets remain unknown. Accordingly, further studies are required.
Collapse
Affiliation(s)
- Zhiying Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qiuju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
14
|
Shankar E, Kanwal R, Candamo M, Gupta S. Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Semin Cancer Biol 2016; 40-41:82-99. [PMID: 27117759 DOI: 10.1016/j.semcancer.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
The influence of diet and environment on human health has been known since ages. Plant-derived natural bioactive compounds (phytochemicals) have acquired an important role in human diet as potent antioxidants and cancer chemopreventive agents. In past few decades, the role of epigenetic alterations such as DNA methylation, histone modifications and non-coding RNAs in the regulation of mammalian genome have been comprehensively addressed. Although the effects of dietary phytochemicals on gene expression and signaling pathways have been widely studied in cancer, the impact of these dietary compounds on mammalian epigenome is rapidly emerging. The present review outlines the role of different epigenetic mechanisms in the regulation and maintenance of mammalian genome and focuses on the role of dietary phytochemicals as epigenetic modifiers in cancer. Above all, the review focuses on summarizing the progress made thus far in cancer chemoprevention with dietary phytochemicals, the heightened interest and challenges in the future.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Rajnee Kanwal
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Mario Candamo
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| |
Collapse
|