1
|
Liu C, Zhao X, Wang Z, Zhang C, Zheng W, Zhu X, Zhang D, Gong T, Zhao H, Li F, Guan T, Guo X, Zhang H, Yu B. LncRNA CHROMR/miR-27b-3p/MET axis promotes the proliferation, invasion, and contributes to rituximab resistance in diffuse large B-cell lymphoma. J Biol Chem 2024; 300:105762. [PMID: 38367665 PMCID: PMC10940993 DOI: 10.1016/j.jbc.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.
Collapse
MESH Headings
- Humans
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression Regulation, Neoplastic
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Neoplasm Invasiveness
- Proto-Oncogene Proteins c-met/metabolism
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi, Shanxi, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinan Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zifeng Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Chan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China; Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenbin Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiaoxia Zhu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Dong Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Feng Li
- Central Laboratory, Shanxi Cancer Hospital, Taiyuan, China; Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Tao Guan
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China; Department of Hematology, Shanxi Cancer Hospital, Taiyuan, China
| | - Xiangyang Guo
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China; Department of Breast Surgery, Shanxi Province Cancer Hospital, Taiyuan, China.
| | - Hongwei Zhang
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China; Department of Hematology, Shanxi Cancer Hospital, Taiyuan, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
2
|
Zhuo L, Zhan L, Chen H, Zhang W, Huang A. Expression and effect of miR‑27b in primary liver cancer. Oncol Lett 2024; 27:65. [PMID: 38192658 PMCID: PMC10773217 DOI: 10.3892/ol.2023.14198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
The occurrence and development of primary liver cancer is associated with microRNA. Specifically, the expression of microRNA-27b (miR-27b) is upregulated in four liver cancer drug-resistance cell lines. Despite that, the function of miR-27b in liver cancer is not clear yet. The aim of the present study was to investigate the effect of miR-27b expression during oncogenesis, cell proliferation, apoptosis and chemotherapy resistance development in a model of liver cancer. Expression of miR-27b was detected with reverse transcription-quantitative PCR. To establish stable overexpression of miR-27b and negative control liver cancer cell lines, a lentiviral pre-miR-27b overexpression vector and negative control vector were transfected into each cell line. Cell Counting Kit-8 assay, clone formation assay and immunohistochemical assay were used to detect cell proliferation. Apoptosis and drug sensitivity were detected by flow cytometry and MTT assay, respectively. The expression level of miR-27b in liver cancer tissues was also lower than in liver tissues adjacent to the tumor. Two stable miR-27b overexpression liver cancer cell lines (Huh-7/miR-27b and HepG2/miR-27b) and their control cell lines (Huh-7/NC and HepG2/NC) were successfully constructed. It was revealed that upregulation of miR-27b can suppress cell proliferation, promote cell apoptosis and chemotherapy resistance. In addition, the findings of the present study demonstrated that patients with cirrhosis expressed lower miR-27b compared with patients without cirrhosis. The expression level of miR-27b was significantly associated with the age, serum alpha-fetoprotein and alanine aminotransferase level of patients with liver cancer. Meanwhile, it was indicated that the disease survival time of the low miR-27b expression group was longer than that of the high miR-27b expression group. The present study suggested that miR-27b functions as a liver cancer suppressor. Moreover, miR-27b can act as a biomarker to estimate drug sensitivity to chemotherapy in patients with liver cancer.
Collapse
Affiliation(s)
- Lijuan Zhuo
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Lingling Zhan
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Department of Pathology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wenmin Zhang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
3
|
Wen J, Huang Z, Wei Y, Xue L, Wang Y, Liao J, Liang J, Chen X, Chu L, Zhang B. Hsa-microRNA-27b-3p inhibits hepatocellular carcinoma progression by inactivating transforming growth factor-activated kinase-binding protein 3/nuclear factor kappa B signalling. Cell Mol Biol Lett 2022; 27:79. [PMID: 36138344 PMCID: PMC9502615 DOI: 10.1186/s11658-022-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in the development of hepatocellular carcinoma (HCC). Hsa-microRNA-27b-3p (hsa-miR-27b) is involved in the formation and progression of various cancers, but its role and clinical value in HCC remain unclear. Methods The expression of hsa-miR-27b in HCC was examined by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) assays of clinical samples. Cell Counting Kit-8 assays (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays, Transwell assays, filamentous actin (F-actin) staining and western blot analyses were used to determine the effects of hsa-miR-27b on HCC cells in vitro. Subcutaneous xenograft and lung metastatic animal experiments were conducted to verify the role of hsa-miR-27b in HCC in vivo. In silico prediction, qRT-PCR, western blot, anti-Argonaute 2 (AGO2) RNA immunoprecipitation (RIP) and dual luciferase reporter assays were applied to identify the target genes of hsa-miR-27b. To detect the impacts of hsa-miR-27b on nuclear factor kappa B (NF-кB) signalling cascades mediated by transforming growth factor-activated kinase-binding protein 3 (TAB3), we performed qRT-PCR, western blot assays, immunofluorescence staining, immunohistochemistry (IHC) and dual-luciferase reporter assays. Recombinant oncolytic adenovirus (OncoAd) overexpressing hsa-miR-27b was constructed to detect their therapeutic value in HCC. Results The expression of hsa-miR-27b was lower in HCC than in adjacent non-tumourous tissues (ANTs), and the reduced expression of hsa-miR-27b was associated with worse outcomes in patients with HCC. Hsa-miR-27b significantly inhibited the proliferation, migration, invasion, subcutaneous tumour growth and lung metastasis of HCC cells. The suppression of hsa-miR-27b promoted the nuclear translocation of NF-κB by upregulating TAB3 expression. TAB3 was highly expressed in HCC compared with ANTs and was negatively correlated with the expression of hsa-miR-27b. The impaired cell proliferation, migration and invasion by hsa-miR-27b overexpression were recovered by ectopic expression of TAB3. Recombinant OncoAd with overexpression of hsa-miR-27b induced anti-tumour activity compared with that induced by negative control (NC) OncoAd in vivo and in vitro. Conclusions By targeting TAB3, hsa-miR-27b acted as a tumour suppressor by inactivating the NF-кB pathway in HCC in vitro and in vivo, indicating its therapeutic value against HCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00370-4.
Collapse
Affiliation(s)
- Jingyuan Wen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yi Wei
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Lin Xue
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China.
| |
Collapse
|
4
|
Desrochers GF, Filip R, Bastianelli M, Stern T, Pezacki JP. microRNA-27b regulates hepatic lipase enzyme LIPC and reduces triglyceride degradation during hepatitis C virus infection. J Biol Chem 2022; 298:101983. [PMID: 35483451 PMCID: PMC9163519 DOI: 10.1016/j.jbc.2022.101983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022] Open
Abstract
miRNAs are short, noncoding RNAs that negatively and specifically regulate protein expression, the cumulative effects of which can result in broad changes to cell systems and architecture. The miRNA miR-27b is known to regulate lipid regulatory pathways in the human liver and is also induced by the hepatitis C virus (HCV). However, the functional targets of miR-27b are not well established. Herein, an activity-based protein profiling method using a serine hydrolase probe, coupled with stable isotope labeling and mass spectrometry identified direct and indirect targets of miR-27b. The hepatic lipase C (LIPC) stood out as both highly dependent on miR-27b and as a major modulator of lipid pathway misregulation. Modulation of miR-27b using both exogenous miRNA mimics and inhibitors demonstrated that transcription factors Jun, PPARα, and HNF4α, all of which also influence LIPC levels and activity, are regulated by miR-27b. LIPC was furthermore shown to affect the progress of the life cycle of HCV and to decrease levels of intracellular triglycerides, upon which HCV is known to depend. In summary, this work has demonstrated that miR-27b mediates HCV infection by downregulating LIPC, thereby reducing triglyceride degradation, which in turn increases cellular lipid levels.
Collapse
Affiliation(s)
| | - Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Micheal Bastianelli
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Tiffany Stern
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
5
|
Hsa-miR-330-5p Aggravates Thyroid Carcinoma via Targeting FOXE1. JOURNAL OF ONCOLOGY 2021; 2021:1070365. [PMID: 34306074 PMCID: PMC8272668 DOI: 10.1155/2021/1070365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Background Thyroid carcinoma (TC) is one of the frequent endocrine malignancies, and growing evidence suggests that aberrant microRNA (miRNA) expression contributes to TC development and progression. Nevertheless, the function of miR-330-5p in the progression of TC remains unknown. Methods The expression levels of miR-330-5 in patients with thyroid carcinoma and healthy controls were detected, and their potential diagnostic and prognostic values were analyzed. Results In this study, we firstly found that miR-330-5p expression was markedly upregulated in TC tissue and cell lines. Functionally, the downregulation of miR-330-5p suppressed TC cell proliferation, migration, and invasion. Further studies revealed that miR-330-5p negatively regulated the expression of forkhead box E1 (FOXE1). More importantly, the results of rescue experiments suggested that FOXE1 overexpression reduced the positive effects of miR-330-5p overexpression in TPC-1 and K-1 cells. Conclusions This work revealed that miR-330-5p facilitated the TC progression through targeting FOXE1, which may offer novel therapeutic options for TC.
Collapse
|
6
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
7
|
Wei F, Yang L, Jiang D, Pan M, Tang G, Huang M, Zhang J. Long noncoding RNA DUXAP8 contributes to the progression of hepatocellular carcinoma via regulating miR-422a/PDK2 axis. Cancer Med 2020; 9:2480-2490. [PMID: 32022476 PMCID: PMC7131864 DOI: 10.1002/cam4.2861] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most deadly cancer worldwide. Multiple long noncoding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumor suppressors. In this study, we explored the functon and mechanism of lncRNA double homeobox A pseudogene 8 (DUXAP8) in the progression of HCC. Methods Expression levels of DUXAP8 in HCC tissue samples were measured using qRT‐PCR. The association between pathological indexes and the expression of DUXAP8 was also analyzed. Human HCC cell lines SMMC‐7721 and QSG‐7701 were used in in vitro studies. CCK‐8 assay was used to assess the effect of DUXAP8 on HCC cell line proliferation. Scratch healing assay and Transwell assay were conducted to detect the effect of DUXAP8 on migration and invasion. Furthermore, dual‐luciferase reporter assay was used to confirm targeting relationship between miR‐422a and DUXAP8. Additionally, Western blot was used to detect the regulatory function of DUXAP8 on pyruvate dehydrogenase kinase 2 (PDK2). Results DUXAP8 expression HCC clinical samples was significantly increased and this was correlated with unfavorable pathological indexes. High expression of DUXAP8 was associated with shorter overall survival time of patients. Its overexpression remarkably facilitated the proliferation, metastasis, and epithelial‐mesenchymal transition of HCC cells. Accordingly, knockdown of it suppressed the malignant phenotypes of HCC cells. Overexpression of DUXAP8 significantly reduced the expression of miR‐422a by sponging it, but enhanced the expression of PDK2. Conclusions DUXAP8 was a sponge of tumor suppressor miR‐422a in HCC, enhanced the expression of PDK2 indirectly, and functioned as an oncogenic lncRNA.
Collapse
Affiliation(s)
- Feifei Wei
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Liang Yang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Dandan Jiang
- Department of Oncology, Jining NO.1 People's Hospital; Affiliated Jining NO.1 People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Min Pan
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Guiyan Tang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Mingyue Huang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Jing Zhang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
8
|
miR-665 promotes hepatocellular carcinoma cell migration, invasion, and proliferation by decreasing Hippo signaling through targeting PTPRB. Cell Death Dis 2018; 9:954. [PMID: 30237408 PMCID: PMC6148030 DOI: 10.1038/s41419-018-0978-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests that aberrant microRNA (miRNA) expression contributes to hepatocellular carcinoma (HCC) development and progression. However, the potential role and mechanism of miR-665 in the progression of liver cancer remains largely unknown. Our current study showed that miR-665 expression was upregulated in HCC cells and tissues. High expression of miR-665 exhibited more severe tumor size, vascular invasion and Edmondson grading in HCC patients. Gain- or loss-of-function assays demonstrated that miR-665 promoted cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Tyrosine phosphatase receptor type B (PTPRB) was downregulated in HCC tissues, and was negatively correlated with miR-665 expression. Through western blotting and luciferase reporter assay, PTPRB was identified as a direct downstream target of miR-665. Restoration of PTPRB reverses the effects of miR-665 on HCC migration, invasion, and cell proliferation. A mechanistic study showed that PTPTRB mediated the functional role of miR-665 through regulation of the Hippo signaling pathway. In conclusion, our results suggested that miR-665 was a negative regulator of the PTPRB and could promote tumor proliferation and metastasis in HCC through decreasing Hippo signaling pathway activity, which can be a potential target for HCC treatment.
Collapse
|
9
|
Cheng L, Wang H, Han S. MiR-3910 Promotes the Growth and Migration of Cancer Cells in the Progression of Hepatocellular Carcinoma. Dig Dis Sci 2017; 62:2812-2820. [PMID: 28823082 DOI: 10.1007/s10620-017-4670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Previous studies have reported that specific depletion of mammalian sterile-like kinase (MST1) in the mouse liver driven Hepatocellular carcinoma (HCC). However, how the expression of MST1 was regulated in the progression of HCC remains largely unknown. MATERIALS AND METHODS The expression of miR-3910 in the HCC tissues and cell lines were examined using q-PCR. The functions of miR-3910 in HCC were examined using MTT assay, Boyden chamber assay and soft agar assay. The effects of miR-3910 on the metastasis of HCC cells were evaluated using the mouse model. RESULTS Here, we have shown that miR-3910 regulated the expression of MST1. MiR-3910 was up-regulated in HCC samples and cell lines, and the expression of miR-3910 was induced by the oncogenic RasV12. In the functional study, miR-3910 was found to promote the growth and migration of HCC cells, and knocking down miR-3910 inhibited the metastasis of HCC cells. Mechanically, it was found that miR-3910 activated YAP signaling by targeting MST1. CONCLUSION Taken together, this study demonstrated that miR-3910 exerted oncogenic effects on the progression of HCC and suggested that miR-3910 might be a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Lina Cheng
- Department of Gastroenterology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), 7th Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Hongwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuangyin Han
- Department of Gastroenterology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), 7th Weiwu Road, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
10
|
Jia YJ, Liu ZB, Wang WG, Sun CB, Wei P, Yang YL, You MJ, Yu BH, Li XQ, Zhou XY. HDAC6 regulates microRNA-27b that suppresses proliferation, promotes apoptosis and target MET in diffuse large B-cell lymphoma. Leukemia 2017; 32:703-711. [PMID: 29135973 DOI: 10.1038/leu.2017.299] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Histone deacetylase 6 (HDAC6) is frequently altered in DLBCL and inhibition of HDAC6 has potent anti-tumor effects in vitro and in vivo. We profiled miRNAs that altered in the HDAC6 knockdown DLBCL cells with NanoString nCounter assay and identified microRNA-27b (miR-27b) as the most significantly increased miRNA. We validated decreased expression of miR-27b in DLBCL tissues, and we found that low expression of miR-27b was associated with poor overall survival of patients with DLBCL. In addition, forced expression of miR-27b suppressed DLBCL cell viability and proliferation in vitro, and inhibited tumor growth in vivo. Mechanistically, Rel A/p65 is found to negatively regulate miR-27b expression, and its acetylation and block of nuclear translocalization caused by HDAC6 inhibition significantly elevates miR-27b expression. Furthermore, miR-27b targets MET and thus represses the MET/PI3K/AKT pathway. These findings highlight an important role of miR-27b in the development of DLBCL and uncover a HDAC6-Rel A/p65-miR-27b-MET signaling pathway. Elevating miR-27b through HDAC6 inhibition would be a promising strategy for DLBCL treatment.
Collapse
Affiliation(s)
- Y J Jia
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Z B Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - W G Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - C B Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - P Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Y L Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M J You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - B H Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - X Q Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - X Y Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ding L, Ni J, Yang F, Huang L, Deng H, Wu Y, Ding X, Tang J. Promising therapeutic role of miR-27b in tumor. Tumour Biol 2017; 39:1010428317691657. [PMID: 28351320 DOI: 10.1177/1010428317691657] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small nonprotein-encoding RNAs ranging from 18 to 25 nucleotides in size and regulate multiple biological pathways via directly targeting a variety of associated genes in cancers. MicroRNA-27b is a highly conserved MicroRNA throughout vertebrates and there are two homologs (hsa-miR-27a and hsa-miR-27b) in humans. MicroRNA-27b is an intragenic microRNA located on chromosome 9q22.1 within the C9orf3 gene, clustering with miR-23b and miR-24-1 in human. As a frequently dysregulated microRNA in human cancers, microRNA-27b could function as a tumor suppressor or an oncogenic microRNA. More and more studies indicate that microRNA-27b is involved in affecting various biological processes, such as angiogenesis, proliferation, metastasis, and drug resistance, and thus may act as a promising therapeutic target in human cancers. In this review, we discuss the role of microRNA-27b in detail and offer novel insights into molecular targeting therapy for cancers.
Collapse
Affiliation(s)
- Li Ding
- 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Jie Ni
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,3 The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Fan Yang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Lingli Huang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Heng Deng
- 4 The Graduate School, AnHui University of Traditional Chinese Medicine, Hefei, P.R. China
| | - Yang Wu
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xuansheng Ding
- 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jinhai Tang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,5 Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|