1
|
Yu YL, Jiang Q. Advances in Pathophysiological Mechanisms of Degenerative Aortic Valve Disease. Cardiol Res 2025; 16:86-101. [PMID: 40051666 PMCID: PMC11882237 DOI: 10.14740/cr2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Degenerative aortic valve disease (DAVD) represents the most prevalent valvular ailment among the elderly population, which significantly impacts their physical well-being and potentially poses a lethal risk. Currently, the underlying mechanisms of DAVD remain incompletely understood. While the progression of this disease has traditionally been attributed to degenerative processes associated with aging, numerous recent studies have revealed that heart valve calcification may represent a response of valve tissue to a specific initiating factor, involving the interaction of various genes and signaling pathways. This calcification process is further influenced by a range of factors, including genetic predispositions, environmental exposures, metabolic factors, and hemodynamic considerations. Based on the identification of its biomarkers, potential innovative therapeutic targets are proposed for the treatment of this complex condition. The present article primarily delves into the underlying pathophysiological mechanisms and advancements in diagnostic and therapeutic modalities pertaining to this malady.
Collapse
Affiliation(s)
- Ya Lu Yu
- School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| | - Qin Jiang
- School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, 610072 Chengdu, Sichuan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| |
Collapse
|
2
|
Opris CE, Suciu H, Flamand S, Opris CI, Hamida AH, Gurzu S. Update on the genetic profile of mitral valve development and prolapse. Pathol Res Pract 2024; 262:155535. [PMID: 39182449 DOI: 10.1016/j.prp.2024.155535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 on the PubMed database regarding the development of mitral valve disease, with detailed reference to mitral valve prolapse, from embryology to a genetic profile. Out of the 3291 publications that deal with mitral valve embryology, 215 refer to mitral valve genetics and 83 were selected for further analysis. After reviewing these data, we advocate for the importance of a gene-based therapy that should be available soon, to prevent or treat non-invasively the valvular degeneration.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, Targu Mures 540139, Romania; Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Romanian Academy of Medical Sciences, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Sanziana Flamand
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Al Hussein Hamida
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Romanian Academy of Medical Sciences, Romania; Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
3
|
Bobos D, Soufla G, Angouras DC, Lekakis I, Georgopoulos S, Melissari E. Investigation of the Role of BMP2 and -4 in ASD, VSD and Complex Congenital Heart Disease. Diagnostics (Basel) 2023; 13:2717. [PMID: 37627976 PMCID: PMC10453726 DOI: 10.3390/diagnostics13162717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital heart malformations (CHMs) make up between 2 and 3% of annual human births. Bone morphogenetic proteins (BMPs) signalling is required for chamber myocardium development. We examined for possible molecular defects in the bone morphogenetic protein 2 and 4 (BMP2, -4) genes by sequencing analysis of all coding exons, as well as possible transcription or protein expression deregulation by real-time PCR and ELISA, respectively, in 52 heart biopsies with congenital malformations (atrial septal defect (ASD), ventricular septal defect (VSD), tetralogy ofFallot (ToF) and complex cases) compared to 10 non-congenital heart disease (CHD) hearts. No loss of function mutations was found; only synonymous single nucleotide polymorphisms (SNPs) in the BMP2 and BMP4 genes were found. Deregulation of the mRNA expression and co-expression profile of the two genes (BMP2/BMP4) was observed in the affected compared to the normal hearts. BMP2 and -4 protein expression levels were similar in normal and affected hearts. This is the first study assessing the role of BMP-2 and 4 in congenital heart malformations. Our analysis did not reveal molecular defects in the BMP2 and -4 genes that could support a causal relationship with the congenital defects present in our patients. Importantly, sustained mRNA and protein expression of BMP2 and -4 in CHD cases compared to controls indicates possible temporal epigenetic, microRNA or post-transcriptional regulation mechanisms governing the initial stages of cardiac malformation.
Collapse
Affiliation(s)
- Dimitrios Bobos
- Department of Pediatric Cardiothoracic Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Giannoula Soufla
- Department of Hematology and Blood Transfusion, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Dimitrios C. Angouras
- Department of Cardiac Surgery, Faculty of Medicine, Attikon University Hospital, National Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis Lekakis
- Second Department of Cardiology, Attikon Hospital, Athens Medical School, National Kapodistrian University of Athens, 15771 Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Surgery, Laikon General Hospital, Medical School, National Kapodistrian University of Athens, 15771 Athens, Greece
| | - Euthemia Melissari
- Department of Hematology and Blood Transfusion, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
4
|
Bolunduț AC, Lazea C, Mihu CM. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects-A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050812. [PMID: 37238360 DOI: 10.3390/children10050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Congenital heart defects (CHD) are the most common congenital abnormality, with an overall global birth prevalence of 9.41 per 1000 live births. The etiology of CHDs is complex and still poorly understood. Environmental factors account for about 10% of all cases, while the rest are likely explained by a genetic component that is still under intense research. Transcription factors and signaling molecules are promising candidates for studies regarding the genetic burden of CHDs. The present narrative review provides an overview of the current knowledge regarding some of the genetic mechanisms involved in the embryological development of the cardiovascular system. In addition, we reviewed the association between the genetic variation in transcription factors and signaling molecules involved in heart development, including TBX5, GATA4, NKX2-5 and CRELD1, and congenital heart defects, providing insight into the complex pathogenesis of this heterogeneous group of diseases. Further research is needed in order to uncover their downstream targets and the complex network of interactions with non-genetic risk factors for a better molecular-phenotype correlation.
Collapse
Affiliation(s)
- Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Cecilia Lazea
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Hospital, 400370 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Yokoyama M, Katsumata-Kato O, Fujita-Yoshigaki J. Acinar Cell Proliferation Promoted by BMP2 in Injured Mouse Parotid Gland: BMP2 Promotes Cell Proliferation in Parotid Gland. Int J Dent 2023; 2023:1765317. [PMID: 37033127 PMCID: PMC10081898 DOI: 10.1155/2023/1765317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Objective. To identify factors that affect salivary gland recovery, we investigated the expression and function of bone morphogenetic protein 2 (BMP2) in mice. Materials and Methods. Using a micro clip, mice parotid glands were removed 7 days after the ligation of the unilateral parotid excretory duct. Thereafter, they were weighed and stained with hematoxylin and eosin, and BMP2 expression was examined via real-time reverse transcription-polymerase chain reaction. Primary cultures of parotid glands were prepared, and BMP2 protein was added to the culture medium for 48 hr to examine its effect on cell proliferation. E-cadherin and vimentin expression was examined using western blotting. Finally, immunohistochemical staining using an anti-Ki67 antibody was performed. Results. Duct-ligated parotid glands weighed less than those that were collected after sham surgery and showed acinar cell atrophy. They also showed higher BMP2 expression than control glands. Primary-cultured parotid acinar cells supplemented with BMP2 showed higher proliferative potential than control cells. Furthermore, they showed E-cadherin, but not vimentin, expression, and their percentage of Ki67-positive cells were higher than that corresponding to the controls. Conclusions. Injury to salivary glands by excretory duct ligation increased BMP2 expression, which may be involved in maintaining salivary gland function by inducing acinar cell proliferation.
Collapse
Affiliation(s)
- Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | |
Collapse
|
6
|
Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res 2021; 13:336-354. [PMID: 35047139 PMCID: PMC8749364 DOI: 10.34172/jcvtr.2021.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) is the most common congenital abnormality and the main cause of infant mortality worldwide. Some of the mutations that occur in the GATA4 gene region may result in different types of CHD. Here, we report our in silico analysis of gene variants to determine the effects of the GATA4 gene on the development of CHD.
Methods: Online 1000 Genomes Project, ExAC, gnomAD, GO-ESP, TOPMed, Iranome, GME, ClinVar, and HGMD databases were drawn upon to collect information on all the reported GATA4 variations.The functional importance of the genetic variants was assessed by using SIFT, MutationTaster, CADD,PolyPhen-2, PROVEAN, and GERP prediction tools. Thereafter, network analysis of the GATA4protein via STRING, normal/mutant protein structure prediction via HOPE and I-TASSER, and phylogenetic assessment of the GATA4 sequence alignment via ClustalW were performed.
Results: The most frequent variant was c.874T>C (45.58%), which was reported in Germany.Ventricular septal defect was the most frequent type of CHD. Out of all the reported variants of GATA4,38 variants were pathogenic. A high level of pathogenicity was shown for p.Gly221Arg (CADD score=31), which was further analyzed.
Conclusion: The GATA4 gene plays a significant role in CHD; we, therefore, suggest that it be accorded priority in CHD genetic screening.
Collapse
Affiliation(s)
- Shiva Abbasi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lv N, Zhao M, Han Y, Cui L, Zhong W, Wang C, Jiang Q. The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol 2018; 352:68-76. [DOI: 10.1016/j.taap.2018.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
|
8
|
Lu CX, Wang W, Wang Q, Liu XY, Yang YQ. A Novel MEF2C Loss-of-Function Mutation Associated with Congenital Double Outlet Right Ventricle. Pediatr Cardiol 2018; 39:794-804. [PMID: 29468350 DOI: 10.1007/s00246-018-1822-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/20/2018] [Indexed: 02/07/2023]
Abstract
Congenital heart defect (CHD) represents the most prevalent birth defect, and accounts for substantial morbidity and mortality in humans. Aggregating evidence demonstrates the genetic basis for CHD. However, CHD is a heterogeneous disease, and the genetic determinants underlying CHD in most patients remain unknown. In the present study, a cohort of 186 unrelated cases with CHD and 300 unrelated control individuals were recruited. The coding exons and flanking introns of the MEF2C gene, which encodes a transcription factor crucial for proper cardiovascular development, were sequenced in all study participants. The functional effect of an identified MEF2C mutation was characterized using a dual-luciferase reporter assay system. As a result, a novel heterozygous MEF2C mutation, p.R15C, was detected in an index patient with congenital double outlet right ventricle (DORV) as well as ventricular septal defect. Analysis of the proband's pedigree showed that the mutation co-segregated with CHD with complete penetrance. The missense mutation, which changed the evolutionarily conserved amino acid, was absent in 300 control individuals. Functional deciphers revealed that the mutant MEF2C protein had a significantly decreased transcriptional activity. Furthermore, the mutation significantly reduced the synergistic activation between MEF2C and GATA4, another transcription factor linked to CHD. This study firstly associates MEF2C loss-of-function mutation with DORV in humans, which provides novel insight into the molecular pathogenesis of CHD, suggesting potential implications for genetic counseling and personalized treatment of CHD patients.
Collapse
Affiliation(s)
- Cai-Xia Lu
- Department of Pediatrics, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Wei Wang
- Department of Parasitology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qian Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
9
|
Sun CY, Sun C, Cheng R, Shi S, Han Y, Li XQ, Zhi JX, Li FF, Liu SL. Rs2459976 in ZW10 gene associated with congenital heart diseases in Chinese Han population. Oncotarget 2017; 9:3867-3874. [PMID: 29423089 PMCID: PMC5790506 DOI: 10.18632/oncotarget.23240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
Congenital heart diseases (CHD) are a large group of prevalent and complex anatomic malformations of the heart, with the genetic basis remaining largely unknown. Since genes or factors associated with the differentiation of human embryonic stem (HES) cells would affect the development of all embryonic tissues, including cardiac progenitor cells, we postulated their potential roles in CHD. In this study, we focused on ZW10, a kinetochore protein involved in the process of proper chromosome segregation, and conducted comparative studies between CHD patients and normal controls matched in gender and age in Chinese Han populations. We identified three variations in the ZW10 gene, including rs2885987, rs2271261 and rs2459976, which all had high genetic heterozygosity. Association analysis of these genetic variations with CHD showed correlation between rs2459976 and the risk of CHD. We conclude that rs2459976 in the ZW10 gene is associated with CHD in Chinese Han populations.
Collapse
Affiliation(s)
- Chao-Yu Sun
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chi Sun
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Cheng
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Han
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xue-Qi Li
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ji-Xin Zhi
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fei-Feng Li
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Tan TY, Gonzaga-Jauregui C, Bhoj EJ, Strauss KA, Brigatti K, Puffenberger E, Li D, Xie L, Das N, Skubas I, Deckelbaum RA, Hughes V, Brydges S, Hatsell S, Siao CJ, Dominguez MG, Economides A, Overton JD, Mayne V, Simm PJ, Jones BO, Eggers S, Le Guyader G, Pelluard F, Haack TB, Sturm M, Riess A, Waldmueller S, Hofbeck M, Steindl K, Joset P, Rauch A, Hakonarson H, Baker NL, Farlie PG. Monoallelic BMP2 Variants Predicted to Result in Haploinsufficiency Cause Craniofacial, Skeletal, and Cardiac Features Overlapping Those of 20p12 Deletions. Am J Hum Genet 2017; 101:985-994. [PMID: 29198724 DOI: 10.1016/j.ajhg.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) in chromosomal region 20p12 belongs to a gene superfamily encoding TGF-β-signaling proteins involved in bone and cartilage biology. Monoallelic deletions of 20p12 are variably associated with cleft palate, short stature, and developmental delay. Here, we report a cranioskeletal phenotype due to monoallelic truncating and frameshift BMP2 variants and deletions in 12 individuals from eight unrelated families that share features of short stature, a recognizable craniofacial gestalt, skeletal anomalies, and congenital heart disease. De novo occurrence and autosomal-dominant inheritance of variants, including paternal mosaicism in two affected sisters who inherited a BMP2 splice-altering variant, were observed across all reported families. Additionally, we observed similarity to the human phenotype of short stature and skeletal anomalies in a heterozygous Bmp2-knockout mouse model, suggesting that haploinsufficiency of BMP2 could be the primary phenotypic determinant in individuals with predicted truncating variants and deletions encompassing BMP2. These findings demonstrate the important role of BMP2 in human craniofacial, skeletal, and cardiac development and confirm that individuals heterozygous for BMP2 truncating sequence variants or deletions display a consistent distinct phenotype characterized by short stature and skeletal and cardiac anomalies without neurological deficits.
Collapse
Affiliation(s)
- Tiong Yang Tan
- Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.
| | | | - Elizabeth J Bhoj
- Center for Applied Genomics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4399, USA
| | | | | | | | - Dong Li
- Center for Applied Genomics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4399, USA
| | - LiQin Xie
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Nanditha Das
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Ioanna Skubas
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Sarah Hatsell
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Chia-Jen Siao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | - John D Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Valerie Mayne
- Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia
| | - Peter J Simm
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia
| | - Bryn O Jones
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia
| | - Stefanie Eggers
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Gwenaël Le Guyader
- Department of Medical Genetics, Poitiers University Hospital, Poitiers 86021, France
| | - Fanny Pelluard
- Department of Pathology, Bordeaux University Hospital, Bordeaux 33076, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Stephan Waldmueller
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany; Universitätsklinik für Kinder- und Jugendmedizin, Kinderheilkunde II Kardiologie Intensivmedizin Pulmologie, 72076 Tuebingen, Germany
| | - Michael Hofbeck
- Universitätsklinik für Kinder- und Jugendmedizin, Kinderheilkunde II Kardiologie Intensivmedizin Pulmologie, 72076 Tuebingen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Hakon Hakonarson
- Center for Applied Genomics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4399, USA
| | - Naomi L Baker
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter G Farlie
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
11
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
12
|
A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells. PLoS One 2017; 12:e0179613. [PMID: 28654683 PMCID: PMC5487013 DOI: 10.1371/journal.pone.0179613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
The development of high-throughput biomolecular technologies has resulted in generation of vast omics data at an unprecedented rate. This is transforming biomedical research into a big data discipline, where the main challenges relate to the analysis and interpretation of data into new biological knowledge. The aim of this study was to develop a framework for biomedical big data analytics, and apply it for analyzing transcriptomics time series data from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. To this end, transcriptome profiling by microarray was performed on differentiating human pluripotent stem cells sampled at eleven consecutive days. The gene expression data was analyzed using the five-stage analysis framework proposed in this study, including data preparation, exploratory data analysis, confirmatory analysis, biological knowledge discovery, and visualization of the results. Clustering analysis revealed several distinct expression profiles during differentiation. Genes with an early transient response were strongly related to embryonic- and mesendoderm development, for example CER1 and NODAL. Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation shortly after onset of differentiation. Rapid induction of genes related to metal ion response, cardiac tissue development, and muscle contraction were observed around day five and six. Several transcription factors were identified as potential regulators of these processes, e.g. POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed temporal activity of several signaling pathways, for example the inhibition of WNT signaling on day 2 and its reactivation on day 4. This study provides a comprehensive characterization of biological events and key regulators of the early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. The proposed analysis framework can be used to structure data analysis in future research, both in stem cell differentiation, and more generally, in biomedical big data analytics.
Collapse
|
13
|
Abstract
As the most prevalent form of birth defect in humans worldwide, congenital heart disease (CHD) is responsible for substantial morbidity and is still the leading cause of birth defect-related demises. Increasing evidence demonstrates that genetic defects play an important role in the pathogenesis of CHD, and mutations in multiple genes, especially in those coding for cardiac core transcription factors, have been causally linked to various CHDs. Nevertheless, CHD is a genetically heterogeneous disease and the genetic determinants underpinning CHD in an overwhelming majority of patients remain elusive. In the current study, genomic DNA was extracted from venous blood samples of 165 unrelated patients with CHD, and the coding exons and splicing junction sites of the HAND1 gene, which encodes a basic helix-loop-helix transcription factor essential for cardiovascular development, were sequenced. As a result, a novel heterozygous mutation, p.R118C, was identified in a patient with tetralogy of Fallot (TOF). The missense mutation, which was absent in 600 referential chromosomes, altered the amino acid that was completely conserved evolutionarily. Biological assays with a dual-luciferase reporter assay system revealed that the R118C-mutant HAND1 protein had significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation of a downstream target gene between HAND1 and GATA4, another cardiac core transcription factor associated with TOF. To our knowledge, this is the first report on the association of a HAND1 loss-of-function mutation with enhanced susceptibility to TOF in humans. The findings provide novel insight into the molecular etiology underlying TOF, suggesting potential implications for the improved prophylactic and therapeutic strategies for TOF.
Collapse
|
14
|
Li L, Wang J, Liu XY, Liu H, Shi HY, Yang XX, Li N, Li YJ, Huang RT, Xue S, Qiu XB, Yang YQ. HAND1 loss-of-function mutation contributes to congenital double outlet right ventricle. Int J Mol Med 2017; 39:711-718. [DOI: 10.3892/ijmm.2017.2865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022] Open
|