1
|
Cho SK, Gwon S, Kim HA, Kim J, Cho SY, Kim DE, Chae JH, Park DH, Hwang YK. Abnormal Development of Neural Stem Cell Niche in the Dentate Gyrus of Menkes Disease. Int J Stem Cells 2022; 15:270-282. [PMID: 35220279 PMCID: PMC9396019 DOI: 10.15283/ijsc21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Menkes disease (MNK) is a rare X-linked recessive disease, caused by mutations in the copper transporting ATP7A gene that is required for copper homeostasis. MNK patients experience various clinical symptoms including neurological defects that are closely related to the prognosis of MNK patients. Neural stem cells (NSCs) in the hippocampal dentate gyrus (DG) produce new neurons throughout life, and defects in DG neurogenesis are often correlated with cognitive and behavioral problems. However, neurodevelopmental defects in the DG during postnatal period in MNK have not been understood yet. Methods and Results Mottled-brindled (MoBr/y) mice (MNK mice) and littermate controls were used in this study. In vivo microCT imaging and immunohistochemistry results demonstrate that blood vasculatures in hippocampus are abnormally decreased in MNK mice. Furthermore, postnatal establishment of NSC population and their neurogenesis are severely compromised in the DG of MNK mice. In addition, in vitro analyses using hippocampal neurosphere culture followed by immunocytochemistry and immunoblotting suggest that neurogenesis from MNK NSCs is also significantly compromised, corresponding to defective neurogenic gene expression in MNK derived neurons. Conclusions Our study is the first reports demonstrating that improper expansion of the postnatal NSC population followed by significant reduction of neurogenesis may contribute to neurodevelopmental symptoms in MNK. In conclusion, our results provide new insight into early neurodevelopmental defects in MNK and emphasize the needs for early diagnosis and new therapeutic strategies in the postnatal central nerve system damage of MNK patients.
Collapse
Affiliation(s)
- Sung-kuk Cho
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Suhyun Gwon
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Hyun Ah Kim
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Jiwon Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Sung Yoo Cho
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Dong-Eog Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | | |
Collapse
|
2
|
Huang C, Ma J, Li BX, Sun Y. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH-SY5Y cells. Exp Ther Med 2019; 18:3643-3649. [PMID: 31602242 DOI: 10.3892/etm.2019.7963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Wingless (Wnt) signaling regulates the proliferation and differentiation of midbrain dopamine (DA) neurons. Paraquat (PQ) and maneb (MB) are environmental pollutants that can be used to model Parkinson's disease (PD) in rodents. A previous study demonstrated that developmental exposure to PQ and MB affects the expression of Wnt1, Wnt5a, nuclear receptor-related factor 1 (NURR1) and tyrosine hydroxylase (TH). However, how Wnt signaling regulates these developmental factors in vitro is yet to be determined. To explore this, SH-SY5Y cells were exposed to PQ and MB. The results of the current study indicated that exposure to PQ and MB decreased Wnt1, β-catenin, NURR1 and TH levels and increased Wnt5a levels. Furthermore, Wnt1 silencing has the same effect as exposure to PQ and MB. Additionally, the neurotoxicity induced by PQ and MB is more severe in siWnt1-SH-SY5Y cells compared with normal SH-SY5Y cells. Therefore, Wnt1 may serve an important role in regulating developmental DA factors, and may be a candidate gene for PD diagnosis or gene therapy.
Collapse
Affiliation(s)
- Cui Huang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
3
|
Ma J, Huang C, Ma K, Wu YP, Li BX, Sun Y. Effect of Wnt1 and Wnt5a on the development of dopaminergic neurons, and toxicity induced by combined exposure to paraquat and maneb during gestation and lactation. Mol Med Rep 2017; 16:9721-9728. [PMID: 29152652 DOI: 10.3892/mmr.2017.7833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Paraquat (PQ) and maneb (MB) are widely used herbicides. Wingless (Wnt) proteins serve a role in the development and differentiation of dopaminergic neurons. Previous studies demonstrated that combined exposure to PQ and MB damages dopaminergic neurons in the midbrain. Effects of PQ and MB exposure on midbrain Wnt proteins have also been previously reported. In the present study, from the 5th day of gestation to weaning of the offspring, pregnant Sprague‑Dawley rats were administrated saline, or PQ and MB at two different doses: high, 15 mg/kg body weight PQ + 45 mg/kg body weight MB; or low, 10 mg/kg body weight PQ + 30 mg/kg body weight MB. Dopamine content in the striatum was examined by high performance liquid chromatography with a fluorescence detector and mRNA and protein expression of Wnt1, Wnt5a, nuclear receptor related factor 1 (Nurr1) and tyrosine hydroxylase (TH) in the midbrain was examined by reverse transcription‑quantitative polymerase chain reaction and western blotting. Combined exposure to PQ and MB during development decreased mRNA and protein expression of Wnt1, TH and Nurr1 and increased expression of Wnt5a in the offspring.
Collapse
Affiliation(s)
- Jing Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Cui Huang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Kun Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Ping Wu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
4
|
Qi L, Tang Y, He W, Pan H, Jiang W, Wang L, Deng W. Lithium chloride promotes neuronal differentiation of rat neural stem cells and enhances neural regeneration in Parkinson's disease model. Cytotechnology 2017; 69:277-287. [PMID: 28120140 DOI: 10.1007/s10616-016-0056-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/16/2016] [Indexed: 01/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neural degenerative disease, affecting millions of people globally. Great progress has been made in the PD treatment, and one of the most promising one is the stem cell-based therapy. Thus, studies on the differentiation of neural stem cells (NSCs) are important to the advancement in PD therapy. In this study, we used the rat NSCs to elucidate the role of Lithium in the proliferation and differentiation of NSCs by immunostaining against Ki67 and BrdU analysis as well as immunostaining against specific neuronal markers. We concluded that lithium chloride (LiCl) treatment could enhance the proliferation in NSCs and promote the dopaminergic neuronal differentiation of NSCs in vitro. This process was potentially mediated by Wnt signaling pathway. Using the 6-OHDA-induced PD models, we provided evidence to show that LiCl had the capacity to enhance the proliferation in NSCs and differentiation towards dopaminergic neurons in vivo. The beneficial effect of LiCl treatment was further validated by the fact that the motor function as well as learning and memory was improved in the PD models through Rotarod test and Morris water maze analysis. The learning and memory improvement was further supported by the increase in dendrite spine density in PD models receiving LiCl-treated NSCs. Through this study, we concluded that Lithium plays an important role in promoting NSCs' neuronal differentiation in vitro and improving the symptoms of PD models in vivo. It is of great significance that this work showed the potential application of Lithium in the PD therapy in the future.
Collapse
Affiliation(s)
- Li Qi
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China.
| | - Yonggang Tang
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China
| | - Wei He
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China
| | - Honghua Pan
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China
| | - Wenxian Jiang
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China
| | - Lin Wang
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China
| | - Weilin Deng
- Department of Neurology, The 181st Center Hospital of the People's Liberation Army, No. 1 Xin Qiao Yuan Rd., Guilin, 541002, Guangxi, China
| |
Collapse
|