1
|
Cai H, Lan Y, Liu H, Hao Q. The impact of aging on achilles tendon ossification in mice. BMC Musculoskelet Disord 2025; 26:527. [PMID: 40437419 PMCID: PMC12117786 DOI: 10.1186/s12891-025-08788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Heterotopic ossification is a frequent complication of soft tissue injuries, particularly in tendons. Although ossification in tendon tissue has been reported in a range of aging and disease models, the underlying biomarkers and mechanisms remain unknown. And the characterisation and sensitivity of previous diagnostic biomarkers for tendon ectopic ossification do not meet the demands of clinical use. The aim of this study was to characterise the effects of aging on ossification in the mouse Achilles tendon and to identify characteristic genes and therapeutic targets for tendon ossification in mice by using a machine learning approach. METHODS We retrieved the transcriptome profile of GSE126118 from the Gene Expression Omnibus (GEO) database. Following background correction and normalization using the transcripts per million (TPM) method, differentially expressed genes (DEGs) were identified with the limma R package (p < 0.05, |log2FC| > 1). Subsequently, 468 senescence genes were downloaded from the Aging Atlas database, and senescence-associated DEGs (HO senescence genes) were identified. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) network analyses were conducted on the identified DEGs. To further refine the HO aging signature, support vector machine (SVM) regression was employed. Additionally, we predicted transcription factors, miRNAs, and small molecule drugs potentially associated with the characterized genes. RESULTS Three characterised genes were identified as biomarkers associated with ectopic ossification and aging in the mouse Achilles tendon, Atp5o, Mmp2 and Mmp13. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed significant enrichment in processes related to cartilage endochondral ossification, metalloendopeptidase activity, and mitochondrial proton transport ATP synthase complex. Additionally, HIF-1 and GnRH signaling pathways were prominently represented among the differentially expressed genes. CONCLUSION Atp5o, Mmp2 and Mmp13 were identified as relevant signature genes for the effects of aging on Achilles tendon ossification in mice. Atp5o, Mmp2, and Mmp13 may influence tendon ossification by affecting mitochondrial function as well as extracellular matrix degradation to regulate senescence. This finding suggests a potential link between these processes, opening new avenues for research into diagnostic markers and therapeutic targets. These genes hold promise for the development of novel treatments for tendon ossification, a debilitating condition currently lacking effective therapeutic options.
Collapse
Affiliation(s)
- Hanhua Cai
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Yujian Lan
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Collage of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qi Hao
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Pignolo RJ, Kaplan FS, Wang H. Cell Senescence in Heterotopic Ossification. Biomolecules 2024; 14:485. [PMID: 38672501 PMCID: PMC11047966 DOI: 10.3390/biom14040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The formation of bone outside the normal skeleton, or heterotopic ossification (HO), occurs through genetic and acquired mechanisms. Fibrodysplasia ossificans progressiva (FOP), the most devastating genetic condition of HO, is due to mutations in the ACVR1/ALK2 gene and is relentlessly progressive. Acquired HO is mostly precipitated by injury or orthopedic surgical procedures but can also be associated with certain conditions related to aging. Cellular senescence is a hallmark of aging and thought to be a tumor-suppressive mechanism with characteristic features such as irreversible growth arrest, apoptosis resistance, and an inflammatory senescence-associated secretory phenotype (SASP). Here, we review possible roles for cellular senescence in HO and how targeting senescent cells may provide new therapeutic approaches to both FOP and acquired forms of HO.
Collapse
Affiliation(s)
- Robert J. Pignolo
- Department of Medicine, Section of Geriatric Medicine & Gerontology, Mayo Clinic, Rochester, MN 55905, USA
- Divisions of Endocrinology and Hospital Internal Medicine, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
| | - Frederick S. Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haitao Wang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Kamel AA, Nassar AY, Meligy FY, Omar YA, Nassar GAY, Ezzat GM. Acetylated oligopeptide and N-acetylcysteine protect against iron overload-induced dentate gyrus hippocampal degeneration through upregulation of Nestin and Nrf2/HO-1 and downregulation of MMP-9/TIMP-1 and GFAP. Cell Biochem Funct 2024; 42:e3958. [PMID: 38396357 DOI: 10.1002/cbf.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.
Collapse
Affiliation(s)
- Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yomna A Omar
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Y Nassar
- Metabolic and Genetic Disorders Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Zhang Y, Huang H, Chen H, Zhang P, Liu Y, Gan Y, Yan X, Xie B, Liu H, He B, Tang J, Shen G, Jiang X. Unearths IFNB1 immune infiltrates in SOP-related ossification of ligamentum flavum pathogenesis. Heliyon 2023; 9:e16722. [PMID: 37303521 PMCID: PMC10248278 DOI: 10.1016/j.heliyon.2023.e16722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ossification of ligamentum flavum (OLF) is a hidden, indolent disease condition with variable unexplained etiology and pathology. Growing evidences show a correlation between senile osteoporosis (SOP) and OLF, but the fundamental relationship between SOP and OLF remains unclear. Therefore, the purpose of this work is to investigate unique SOP-related genes and their potential functions in OLF. Methods Gene Expression Omnibus (GEO) database was utilized to gather the mRNA expression data (GSE106253) and then analyzed by R software. A variety of methods, including ssGSEA, machine learning (LASSO and SVM-RFE), GO and KEGG enrichment, PPI network, transcription factor enrichment analysis (TFEA), GSEA and xCells were employed to verified the critical genes and signaling pathways. Furthermore, ligamentum flavum cells were cultured and used in vitro to identify the expression of the core genes. Results The preliminary identification of 236 SODEGs revealed their involvement in BP pathways associated with ossification, inflammation, and immune response, including the TNF signaling pathway, PI3K/AKT signaling pathway and osteoclast differentiation. Four down-regulated genes (SERPINE1, SOCS3, AKT1, CCL2) and one up-regulated gene (IFNB1) were among the five hub SODEGs that were validated. Additionally, they were performed by ssGSEA and xCell to show the relationship of immune cells infiltrating in OLF. The most fundamental gene, IFNB1, which was only found in the classical ossification- and inflammation-related pathways, suggested that it may affect OLF via regulating the inflammatory response. In vitro experiment, we found that IFNB1 expression was dramatically higher in cells cocultured with osteogenic induction than in controls. Conclusion As far as we are concerned, this is the first observation using transcriptome data mining to reveal distinct SOP-related gene profiles between OLF and normal controls. Five hub SODEGs were ultimately found using bioinformatics algorithms and experimental verification. These genes may mediate intricate inflammatory/immune responses or signaling pathways in the pathogenesis of OLF, according to the thorough functional annotations. Since IFNB1 was discovered to be a key gene and was connected to numerous immune infiltrates in OLF, it is possible that IFNB1 expression has a substantial impact on the pathogenesis of OLF. Our research will give rise to new possibilities for potential therapeutics that target SOP reverent genes and immune-associated pathways in OLF.
Collapse
Affiliation(s)
- You Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hongwei Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- People's Hospital of Yang Jiang, Yang Jiang 529500, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xianwei Yan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin Xie
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bowen He
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
5
|
Rizvi SMHA, Sharaf J, Williams KAD, Tariq M, Acharekar MV, Guerrero Saldivia SE, Unnikrishnan S, Chavarria YY, Akindele AO, Jalkh AP, Eastmond AK, Shetty C, Mohammed L. Effectiveness of Prophylactic Interventions in Neurogenic Heterotopic Ossification (NHO): A Systematic Review. Cureus 2022; 14:e27683. [PMID: 36072216 PMCID: PMC9440349 DOI: 10.7759/cureus.27683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Neurogenic heterotopic ossification (NHO) is the formation of mature lamellar bone in peri-articular tissues following a neurological insult, most commonly traumatic brain injury (TBI) or spinal cord injury (SCI). NHO is a debilitating condition associated with significant morbidity and reduced quality of life. However, its pathophysiology remains poorly understood. While surgery is the mainstay of treatment once NHO has been diagnosed, prophylactic options are limited and not well studied. This review aimed to determine the efficacy of various interventions used in the primary prevention of NHO. We conducted an electronic literature search using five databases (PubMed, Embase, ScienceDirect, Cochrane Library, and Cumulative Index to Nursing and Allied Health Literature (CINAHL)) for records published until April 10, 2022. We identified 2,610 potentially eligible records across all databases. Nine reports met our eligibility criteria and were included in this review. Four were clinical trials (three randomized control trials, one nonrandomized trial), four were observational studies, and one was a systematic review/meta-analysis. The medications/interventions used included: warfarin, pulse low-intensity electromagnetic field therapy (PLIMF), bisphosphonates, and nonsteroidal anti-inflammatory drugs (NSAIDs). We did not find conclusive evidence to recommend the use of bisphosphonates and warfarin in the prevention of NHO. On the contrary, we found NSAIDs and PLIMF as effective prophylactic options based on the results of high-quality randomized control trials. Further prospective randomized studies with prolonged follow-ups are needed to confirm the long-term efficacy of these preventive interventions.
Collapse
Affiliation(s)
| | - Joudi Sharaf
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kerry-Ann D Williams
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maha Tariq
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maitri V Acharekar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sumedha Unnikrishnan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yeny Y Chavarria
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adebisi O Akindele
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana P Jalkh
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aziza K Eastmond
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chaitra Shetty
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
6
|
MMP2 promotes osteoblast differentiation and calcification of muscle-derived mesenchymal stem cells by interaction with miR-29b-3p. Tissue Cell 2022; 76:101807. [DOI: 10.1016/j.tice.2022.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022]
|
7
|
Lin J, Huang J, Wu J, Tang B, Li C, Xiao H. Poly(lactic acid-co-glycolic acid)-based celecoxib extended-release microspheres for the local treatment of traumatic heterotopic ossification. J Biomater Appl 2022; 36:1458-1468. [PMID: 35043696 DOI: 10.1177/08853282211056937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic heterotopic ossification (THO) is a serious and common clinical post-traumatic complication for which there is no effective and safe drug treatment. Routine administration of nonsteroidal anti-inflammatory drugs (NSAIDs) after injury is extensively used approach for THO. However, serious adverse events can occur in the event of an overdose of NSAIDs. In our study, we have developed a poly(lactic acid-co-glycolic acid) (PLGA) microsphere by emulsifying solvent volatilization for the prolonged slow delivery of celecoxib (CLX). Three groups of celecoxib-poly(lactic acid-co-glycolic acid) microspheres (CLX-PLGA MPs) were prepared with particle sizes of 3.75±1.28 μm, 49.56±17.15 μm, and 94.98±42.53 μm. Meanwhile, related parameters of microspheres in each group were studied: drug loading (DL), encapsulation rate (EE), and slow-release behavior. The DL and EE of the 3 CLX-PLGA MPs did not vary significantly, and subsequently, we selected the second drug loading microspheres with a retardation period of about 70 days for subsequent experiments. Moreover, cellular and animal experiments suggest that the microspheres are biocompatible and can be safely applied to localized trauma tissue. Finally, it is demonstrated that CLX-PLGA MPs have an effect on inhibiting the osteogenic differentiation of bone marrow mesenchymal stem cells and have the potential to inhibit ectopic bone formation of the THO model in Sprague-Dawley rat. Therefore, this study suggests that CLX-PLGA MPs are expected to be applied topically in the early post-traumatic period to prevent the development of THO.
Collapse
Affiliation(s)
- Jialiang Lin
- The Third Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Junchao Huang
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Jiang Wu
- Tinglin Hospital of Jinshan District, Shanghai, China
| | - Bo Tang
- The Third Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Congbin Li
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Haijun Xiao
- Affiliated Fengxian Hospital to Southern Medical University, Shanghai, China
| |
Collapse
|
8
|
Yuan M, Wu H. Astrocytes in the Traumatic Brain Injury: the Good and the Bad. Exp Neurol 2021; 348:113943. [PMID: 34863998 DOI: 10.1016/j.expneurol.2021.113943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes control many processes of the nervous system in health and disease, and respond to injury quickly. Astrocytes produce neuroprotective factors in the injured brain to clear cellular debris and to orchestrate neurorestorative processes that are beneficial for neurological recovery after traumatic brain injury (TBI). However, astrocytes also become dysregulated and produce cytotoxic mediators that hinder CNS repair by induction of neuronal dysfunction and cell death. Hence, we discuss the potential role of astrocytes in neuropathological processes such as neuroinflammation, neurogenesis, synaptogenesis and blood-brain barrier repair after TBI. Thus, an improved understanding of the dual role of astrocytes may advance our knowledge of post-brain injury recovery, and provide opportunities for the development of novel therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Mengqi Yuan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu, China; Chinese Institute for Brain Research (CIBR), 102206 Beijing, China.
| |
Collapse
|
9
|
Inui T, Hoffer M, Balaban CD. Mild blast wave exposure produces intensity-dependent changes in MMP2 expression patches in rat brains - Findings from different blast severities. Brain Res 2021; 1767:147541. [PMID: 34077763 DOI: 10.1016/j.brainres.2021.147541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) is a gelatinase with multiple functions at the neurovascular interface, including local modification of the glia limitans to facilitate access of immune cells into the brain and amyloid-beta degradation during responses to injury or disease. This study examines regional changes in immunoreactive MMP2 in the rat brain after a single mild (2.7-7.9 psi peak) or moderate (13-17.5 psi peak) blast overpressure (BOP) exposure. Immunopositive MMP2 expression was examined quantitatively in histological sections of decalcified rat heads as a marker at 2, 24, and 72 h after BOP. The MMP2 immunoreactivity was isolated to patchy deposits in brain parenchyma surrounding blood vessels. Separate analyses were conducted for the cerebellum, brain stem caudal to the thalamo-mesencephalic junction, and the cerebrum (including diencephalon). The deposits varied in number, size, staining homogeneity (standard deviation of immunopositive region), and a cumulative measure, the product of size, average intensity and number, as a function of blast intensity and time. The sequences of changes in MMP2 spots from sham control animals suggested that the mild BOP exposure differences normalized within 72 h. However, the responses to moderate exposure revealed a delayed response at 72 h in the subtentorial brain stem and the cerebrum, but not the cerebellum. Hence, local MMP2 responses may be a contextual biomarker for locally regulated responses to widely distributed brain injury foci.
Collapse
Affiliation(s)
- Takaki Inui
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Osaka Mdical College, Osaka, Japan.
| | - Michael Hoffer
- Naval Medical Center San Diego, Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, CA, USA; University of Miami, Miller School of Medicine, Department of Otolaryngology, University of Miami, FL, USA.
| | - Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
11
|
Alexander KA, Tseng HW, Salga M, Genêt F, Levesque JP. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Curr Osteoporos Rep 2020; 18:666-676. [PMID: 33085000 DOI: 10.1007/s11914-020-00636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke, or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophysiology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS injury, tissue inflammation, and upcoming NHO therapeutics are discussed. RECENT FINDINGS Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways. This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury. Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development in patients.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marjorie Salga
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
12
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
13
|
Integrated Bioinformatics Analysis for the Identification of Key Molecules and Pathways in the Hippocampus of Rats After Traumatic Brain Injury. Neurochem Res 2020; 45:928-939. [PMID: 31997105 DOI: 10.1007/s11064-020-02973-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
Abstract
High-throughput and bioinformatics technology have been broadly applied to demonstrate the key molecules involved in traumatic brain injury (TBI), while no study has integrated the available TBI-related datasets for analysis. In this study, four available expression datasets of fluid percussion injury (FPI) and sham samples from the hippocampus of rats were analysed. A total of 248 differentially expressed genes (DEGs) and 10 differentially expressed microRNAs (DEMIs) were identified. Then, functional annotation was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most of the DEGs were enriched for the term inflammatory immune response. The MCODE plug-in in the Cytoscape software was applied to build a protein-protein interaction (PPI) network, and 18 hub genes were demonstrated to be enriched in the cell cycle pathway. Besides, time sequence (3 h, 6 h, 12 h, 24 h, and 48 h) profile analysis was performed using short time-series expression miner (STEM). The significantly expressed genes were assigned into 24 pattern clusters with four significant uptrend clusters. Four DEGs, Fcgr2a, Bcl2a1, Cxcl16, and Gbp2, were found to be differentially expressed at all time-points. Fifty-three DEGs and eight DEMIs were identified to form a miRNA-mRNA negative regulatory network using miRWalk3.0 and Cytoscape. Moreover, the mRNA levels of eight hub genes were validated by qRT-PCR. These DEGs, DEMIs, and time-dependent expression patterns facilitate our knowledge of the molecular mechanisms underlying the process of TBI in the hippocampus of rats and have the potential to improve the diagnosis and treatment of TBI.
Collapse
|
14
|
Pan H, Fleming N, Hong CC, Mishina Y, Perrien DS. Methods for the reliable induction of heterotopic ossification in the conditional Alk2Q207D mouse. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:149-159. [PMID: 32131380 PMCID: PMC7104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Conditional Alk2Q207D-floxed (caALK2fl) mice have previously been used as a model of heterotopic ossification (HO). However, HO formation in this model can be highly variable, and it is unclear which methods reliably induce HO. Hence, these studies report validated methods for reproducibly inducing HO in caALK2fl mice. METHODS Varying doses of Adex-cre and cardiotoxin (CTX) were injected into the calf muscles of 9, 14, or 28-day-old caALK2fl/- or caALK2fl/fl mice. HO was measured by planar radiography or microCT at 14-28 days post-injury. RESULTS In 9-day-old caALK2fl/- or caALK2fl/fl mice, single injections of 109 PFU Adex-cre and 0.3 μg of CTX were sufficient to induce extensive HO within 14 days post-injury. In 28-day-old mice, the doses were increased to 5 x 109 PFU Adex-cre and 3.0 μg of CTX to achieve similar consistency, but at a slower rate versus younger mice. Using a crush injury, instead of CTX, also provided consistent induction of HO. Finally, the Type 1 BMPR inhibitor, DMH1, significantly reduced HO formation in 28-day-old caALK2fl/fl mice. CONCLUSIONS These data illustrate multiple methods for reliable induction of localized HO in the caALK2flmouse that can serve as a starting point for new laboratories utilizing this model.
Collapse
Affiliation(s)
- Haichun Pan
- University of Michigan School of Dentistry, Ann Arbor, MI
| | - Nicole Fleming
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Charles C Hong
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN,Department of Pharmacology, and Vanderbilt University Medical Center, Nashville, TN,Division of Cardiology in the Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN
| | - Yuji Mishina
- University of Michigan School of Dentistry, Ann Arbor, MI
| | - Daniel S. Perrien
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN,Division of Clinical Pharmacology in the Department of Medicine and Vanderbilt University Medical Center, Nashville, TN,Center for Small Animal Imaging, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN,Corresponding author: Daniel S. Perrien, Ph.D., 101 Woodruff Circle, 1027 WMRB, Atlanta, GA 30322 E-mail: •
| |
Collapse
|
15
|
Reyes R, Rodríguez JA, Orbe J, Arnau MR, Évora C, Delgado A. Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice. Drug Deliv 2018. [PMID: 29516759 PMCID: PMC6058487 DOI: 10.1080/10717544.2018.1446473] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of dual delivery of bone morphogenetic protein-2 (BMP-2) and matrix metalloproteinase 10 (MMP10) on bone regeneration was investigated in a murine model of calvarial critical-size defect, hypothesizing that it would result in an enhanced bone formation. Critical-size calvarial defects (4 mm diameter) were created in mice and PLGA microspheres preloaded with either BMP-2, MMP10 or a microsphere combination of both were transplanted into defect sites at different doses. Empty microspheres were used as the negative control. Encapsulation efficiency was assessed and in vivo release kinetics of BMP-2 and MMP10 were examined over 14 days. Histological analyses were used to analyze bone formation after four and eight weeks. Combination with MMP10 (30 ng) significantly enhanced BMP-2 (600 ng)-mediated osteogenesis, as confirmed by the increase in percentage of bone fill (p < .05) at four weeks. Moreover, it also increased mineral apposition rate (p < .05), measured by double labeling with tetracycline and calceine. MMP10 accelerates bone repair by enhancing BMP-2-promoted bone healing and improving the mineralization rate. In conclusion combination of MMP10 and BMP-2 may become a promising strategy for repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ricardo Reyes
- a Department of Biochemistry, Microbiology, Cell Biology and Genetics , Universidad de La Laguna , La Laguna , Spain.,b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain
| | - Jose Antonio Rodríguez
- c Laboratorio de Aterotrombosis, Área de Ciencias Cardiovasculares, CIMA-Universidad de Navarra , Pamplona , Spain.,d CIBER de Enfermedades Cardiovasculares (CIBER-CV) , Madrid , Spain.,e IdiSNA-Health Research Institute of Navarra , Pamplona , Spain
| | - Josune Orbe
- c Laboratorio de Aterotrombosis, Área de Ciencias Cardiovasculares, CIMA-Universidad de Navarra , Pamplona , Spain.,d CIBER de Enfermedades Cardiovasculares (CIBER-CV) , Madrid , Spain.,e IdiSNA-Health Research Institute of Navarra , Pamplona , Spain
| | - María Rosa Arnau
- f Servicio de Estabulario, Universidad de La Laguna , La Laguna , Spain
| | - Carmen Évora
- b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain.,g Department of Chemical Engineering and Pharmaceutical Technology , Universidad de La Laguna , La Laguna , Spain
| | - Araceli Delgado
- b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain.,g Department of Chemical Engineering and Pharmaceutical Technology , Universidad de La Laguna , La Laguna , Spain
| |
Collapse
|
16
|
Cell death after traumatic brain injury: Detrimental role of anoikis in healing. Clin Chim Acta 2018; 482:149-154. [DOI: 10.1016/j.cca.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
|
17
|
Simões LR, Sangiogo G, Tashiro MH, Generoso JS, Faller CJ, Dominguini D, Mastella GA, Scaini G, Giridharan VV, Michels M, Florentino D, Petronilho F, Réus GZ, Dal-Pizzol F, Zugno AI, Barichello T. Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. J Psychiatr Res 2018; 100:71-83. [PMID: 29494891 DOI: 10.1016/j.jpsychires.2018.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022]
Abstract
Evidence suggest that prenatal immune system disturbance contributes largely to the pathophysiology of neuropsychiatric disorders. We investigated if maternal immune activation (MIA) could induce inflammatory alterations in fetal brain and pregnant rats. Adult rats subjected to MIA also were investigated to evaluate if ketamine potentiates the effects of infection. On gestational day 15, Wistar pregnant rats received lipopolysaccharide (LPS) to induce MIA. After 6, 12 and 24 h, fetus brain, placenta, and amniotic fluid were collected to evaluate early effects of LPS. MIA increased oxidative stress and expression of metalloproteinase in the amniotic fluid and fetal brain. The blood brain barrier (BBB) integrity in the hippocampus and cortex as well integrity of placental barrier (PB) in the placenta and fetus brain were dysregulated after LPS induction. We observed elevated pro- and anti-inflammatory cytokines after LPS in fetal brain. Other group of rats from postnatal day (PND) 54 after LPS received injection of ketamine at the doses of 5, 15, and 25 mg/kg. On PND 60 rats were subjected to the memories tests, spontaneous locomotor activity, and pre-pulse inhibition test (PPI). Rats that receive MIA plus ketamine had memory impairment and a deficit in the PPI. Neurotrophins were increased in the hippocampus and reduced in the prefrontal cortex in the LPS plus ketamine group. MIA induced oxidative stress and inflammatory changes that could be, at least in part, related to the dysfunction in the BBB and PB permeability of pregnant rats and offspring. Besides, this also generates behavioral deficits in the rat adulthood's that are potentiated by ketamine.
Collapse
Affiliation(s)
- Lutiana Roque Simões
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Sangiogo
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Michael Hikaru Tashiro
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Antunes Mastella
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Gislaine Zilli Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
| |
Collapse
|