1
|
Zhang J, Wei X, Xie Y, Peng S, Yang P, Chen Y, Huang X, Wu J, Hong L, Guo Z, Huang X, Lin Z, Zhi F, Liu S, Xiang L, Lin J, Li A, Wang J. Long non-coding RNA-MIR181A1HG acts as an oncogene and contributes to invasion and metastasis in gastric cancer. Oncogene 2025; 44:1517-1529. [PMID: 40044982 PMCID: PMC12075001 DOI: 10.1038/s41388-025-03323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Dysregulation of long non-coding RNAs (lncRNA) plays an essential role in cancer development and progression. However, their functions and mechanisms of action in gastric cancer (GC) remain largely unknown. Gene expression in GC was evaluated using quantitative real-time PCR, western blotting, immunofluorescence, immunohistochemistry, and RNA in situ hybridization. The impact of MIR181A1HG on GC cells was explored in vitro and in vivo using cell proliferation, migration, invasion assays and animal models. Biotinylated RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were performed to evaluate the molecular interactions. LncRNA-MIR181A1HG was upregulated in GC and associated with malignant progression. MIR181A1HG physically interacts with ELAVL1 to regulate epithelial-mesenchymal transition (EMT) in GC cells. MIR181A1HG intron-derived miR-181a-5p/miR-181b-5p triggers MIR181A1HG transcription through binding to and destabilizing SOCS3 messenger RNA. Specifically, SOCS3 interacts with NFATC2 and downregulated SOCS3 enhances the NFATC2-mediated transcriptional activation of the MIR181A1HG promoter. Collectively, MIR181A1HG, activated by miR-181a-5p/miR-181b-5p-SOCS3-NFATC2 positive feedback loop, contributes to GC progression through stabilizing ELAVL1. MIR181A1HG expression correlates positively with ELAVL1, miR-181a-5p, miR-181b-5p, and NFATC2 and negatively with SOCS3 in fresh GC samples. These data demonstrate that MIR181A1HG plays an important role in tumor progression by promoting invasion, metastasis, and EMT, indicating its potential as a prognostic biomarker in GC.
Collapse
Affiliation(s)
- Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangyang Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanci Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyang Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yidong Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodong Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieke Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518000, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
2
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Dai N, Groenendyk J, Michalak M. Interplay between myotubularins and Ca 2+ homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119739. [PMID: 38710289 DOI: 10.1016/j.bbamcr.2024.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
4
|
Mobinikhaledi M, Faridzadeh A, Farkhondeh T, Pourhanifeh MH, Samarghandian S. The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy. Curr Mol Med 2024; 24:1269-1281. [PMID: 39300715 DOI: 10.2174/0115665240263059231002093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Mahya Mobinikhaledi
- Department of Pediatrics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Ayoub SE, Shaker OG, Aboshama RA, Etman MK, Khalefa AA, khamiss Abd elguaad MM, Zaki OM, Ali DY, Hemeda NF, Amin A, Ali MA. Expression profile of LncRNA ANRIL, miR-186, miR-181a, and MTMR-3 in patients with preeclampsia. Noncoding RNA Res 2023; 8:481-486. [PMID: 37456780 PMCID: PMC10344750 DOI: 10.1016/j.ncrna.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Several studies demonstrated the role of lncRNAs and miRNAs in the pathogenesis of preeclampsia; the aim was to detect the expression profiles of serum LncRNA ANRIL, miR-186, miR-181a, and MTMR-3 in patients with preeclampsia. The study included 160 subjects divided into 80 subjects considered as a control group, 80 patients with preeclampsia. We found that there was a significant difference between the preeclampsia and control groups with up-regulation of miR-186 median (IQR) = 4, 29 (1.35-7.73) (P < 0.0001), miR-181a median (IQR) = 2.45 (0.83-6.52) (P = 0.028), and downregulation of lncRNA ANRIL median (IQR) = 0.35(0.28-0.528) (P < 0.0001), MTMR median (IQR) = 0.32(0.155-1.11), (P < 0.0001). ROC curve of lncRNA ANRIL, miR-186, miR-181a, and MTMR-3 in preeclampsia patients showing the roles of these markers in the diagnosis of preeclampsia. In conclusion, serum LncRNA ANRIL, miR-186, miR-181a, and MTMR-3 could be promising biomarkers in the diagnosis of preeclampsia.
Collapse
Affiliation(s)
- Shymaa E. Ayoub
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Olfat G. Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohamed K. Etman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Abeer A. Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, El Zagazig, Egypt
| | | | - Othman M. Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Doaa Y. Ali
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Nada F. Hemeda
- Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Amal Amin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Marwa A. Ali
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| |
Collapse
|
6
|
Simiene J, Dabkeviciene D, Stanciute D, Prokarenkaite R, Jablonskiene V, Askinis R, Normantaite K, Cicenas S, Suziedelis K. Potential of miR-181a-5p and miR-630 as clinical biomarkers in NSCLC. BMC Cancer 2023; 23:857. [PMID: 37697308 PMCID: PMC10496384 DOI: 10.1186/s12885-023-11365-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The development of drug resistance and high mortality rates are the major problems observed in non-small cell lung cancer (NSCLC). Biomarkers indicating and predicting disease development towards these unfavorable directions are therefore on high demand. Many studies have demonstrated that changes in miRNAs expression may be associated with a response to treatment and disease prognosis, thus suggesting its potential biomarker value for a broad spectrum of clinical applications. The aim of the present study was to investigate the expression level of miR-181a-5p, miR-630, and its targets in NSCLC tumor tissue and plasma samples; and to analyze its association with NSCLC patient's response to treatment and disease prognosis. METHODS The study was performed in 89 paired tissue specimens and plasma samples obtained from NSCLC patients who underwent surgical treatment at the Department of Thoracic Surgery and Oncology of the National Cancer Institute. Analysis of miR-181a-5p and miR-630 expression was performed by qRT-PCR using TaqMan miRNA specific primers. Whereas BCL2, LMO3, PTEN, SNAI2, WIF1 expression levels were identified with KAPA SYBR FAST qPCR Kit. Each sample was examined in triplicate and calculated following the 2-ΔΔCt method. When the p-value was less than 0.05, the differences were considered statistically significant. RESULTS It was found that miR-181a-5p and miR-630 expression levels in NSCLC tissue and plasma samples were significantly decreased compared with control samples. Moreover, patients with low miR-181a-5p expression in tumor tissue and plasma had longer PFS rates than those with high miRNA expression. Decreased miR-630 expression in tumor was statistically significantly associated with better NSCLC patients' OS. In addition, the expression of miR-181a-5p, as well as miR-630 in tumor tissue, are the statistically significant variables for NSCLC patients' OS. Moreover, in NSCLC patient plasma samples circulating miR-181a-5p can be evaluated as significant independent prognostic factors for OS and PFS. CONCLUSIONS Our findings indicate the miR-181a-5p and miR-630 expression levels have the potential to prognose and predict and therefore improve the treatment individualization and the outcome of NSCLC patients. Circulating miR-181a-5p has the potential clinical value as a non-invasive biomarker for NSCLC.
Collapse
Affiliation(s)
- Julija Simiene
- National Cancer Institute, Vilnius, 08406, Lithuania.
- Vilnius University Life Sciences Center, Vilnius, 10223, Lithuania.
| | - Daiva Dabkeviciene
- National Cancer Institute, Vilnius, 08406, Lithuania
- Vilnius University Life Sciences Center, Vilnius, 10223, Lithuania
| | | | - Rimvile Prokarenkaite
- National Cancer Institute, Vilnius, 08406, Lithuania
- Vilnius University Life Sciences Center, Vilnius, 10223, Lithuania
| | - Valerija Jablonskiene
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, 01513, Lithuania
| | | | | | | | - Kestutis Suziedelis
- National Cancer Institute, Vilnius, 08406, Lithuania
- Vilnius University Life Sciences Center, Vilnius, 10223, Lithuania
| |
Collapse
|
7
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Wang Z, Liu J, Xie J, Yuan X, Wang B, Shen W, Zhang Y. Regulation of autophagy by non-coding RNAs in gastric cancer. Front Oncol 2022; 12:947332. [PMID: 36353541 PMCID: PMC9637602 DOI: 10.3389/fonc.2022.947332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2023] Open
Abstract
Autophagy is a conserved cellular self-digesting process that degrades obsoleting proteins and cellular components and plays a crucial role in the tumorigenesis, metastasis, and drug resistance of various tumors such as gastric cancer (GC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) are involved in the regulation of multiple biological processes, such as autophagy. Increasing evidence indicate that various ncRNAs exert double roles in the initiation and progression of GC, either serve as oncogenes or tumor suppressors. Recent studies have shown that some ncRNAs could modulate autophagy activity in GC cells, which would affect the malignant transformation and drug resistance. Whether the function of ncRNAs in GC is dependent on autophagy is undefined. Therefore, identifying the underlying moleculr targets of ncRNAs in autophagy pathways and the role of ncRNA-regulated autophagy in GC could develop new treatment interventions for this disease. This review summarizes the autophagy process and its role in GC, and the regulatory mechanisms of ncRNAs, as well as focuses on the dual role of ncRNAs-mediated autophagy in GC, for the development of potential therapeutic strategies in GC patients.
Collapse
Affiliation(s)
- Zijian Wang
- Graduate College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiarui Liu
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jingri Xie
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Graduate College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Bingyu Wang
- Graduate College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wenjuan Shen
- Department of Gynaecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
miR-100-5p Promotes Epidermal Stem Cell Proliferation through Targeting MTMR3 to Activate PIP3/AKT and ERK Signaling Pathways. Stem Cells Int 2022; 2022:1474273. [PMID: 36045954 PMCID: PMC9421352 DOI: 10.1155/2022/1474273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Skin epidermal stem cells (EpSCs) play a critical role in wound healing and are ideal seed cells for skin tissue engineering. Exosomes from human adipose-derived stem cells (ADSC-Exos) promote human EpSC proliferation, but the underlying mechanism remains unclear. Here, we investigated the effect of miR-100-5p, one of the most abundant miRNAs in ADSC-Exos, on the proliferation of human EpSCs and explored the mechanisms involved. MTT and BrdU incorporation assays showed that miR-100-5p mimic transfection promoted EpSC proliferation in a time-dependent manner. Cell cycle analysis showed that miR-100-5p mimic transfection significantly decreased the percentage of cells in the G1 phase and increased the percentage of cells in the G2/M phase. Myotubularin-related protein 3 (MTMR3), a lipid phosphatase, was identified as a direct target of miR-100-5p. Knockdown of MTMR3 in EpSCs by RNA interference significantly enhanced cell proliferation, decreased the percentage of cells in the G1 phase and increased the percentage of cells in the S phase. Overexpression of MTMR3 reversed the proproliferative effect of miR-100-5p on EpSCs, indicating that miR-100-5p promoted EpSC proliferation by downregulating MTMR3. Mechanistic studies showed that transfection of EpSCs with miR-100-5p mimics elevated the intracellular PIP3 level, induced AKT and ERK phosphorylation, and upregulated cyclin D1, E1, and A2 expression, which could be attenuated by MTMR3 overexpression. Consistently, intradermal injection of ADSC-Exos or miR-100-5p-enriched ADSC-Exos into cultured human skin tissues significantly reduced MTMR3 expression and increased the thickness of the epidermis and the number of EpSCs in the basal layer of the epidermis. The aforementioned effect of miR-100-5p-enriched ADSC-Exos was stronger than that of ADSC-Exos and was reversed by MTMR3 overexpression. Collectively, our findings indicate that miR-100-5p promotes EpSC proliferation through MTMR3-mediated elevation of PIP3 and activation of AKT and ERK. miR-100-5p-enriched ADSC-Exos can be used to treat skin wound and expand EpSCs for generating epidermal autografts and engineered skin equivalents.
Collapse
|
10
|
Hsa-miR-181a-5p, hsa-miR-182-5p, and hsa-miR-26a-5p as potential biomarkers for BCR-ABL1 among adult chronic myeloid leukemia treated with tyrosine kinase inhibitors at the molecular response. BMC Cancer 2022; 22:332. [PMID: 35346116 PMCID: PMC8962036 DOI: 10.1186/s12885-022-09396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) as first-line therapy for Chronic Myeloid Leukemia (CML) show a high success rate. However, a low number of patients with long-term treatment-free remission (TFR) were observed. Molecular relapse after imatinib discontinuation occurred at 50% at 24 months, with 80% occurrence within the first 6 months. One of the reasons for relapse is untimely TKIs discontinuation caused by large errors from estimates at very low-level or undetectable disease, thus warranting new biomarkers for CML. METHODS Next Generation Sequencing (NGS) was used to identify microRNAs (miRNAs) at the molecular response in CML adult patients receiving TKIs treatment. A total of 86 samples were collected, 30 from CML patients responsive and 28 from non-responsive to imatinib therapy, and 28 from blood donors. NGS was conducted whereby 18 miRNAs were selected and validated by real-time RT-qPCR in triplicate. RESULTS Hsa-miR-181a-5p was expressed significantly (p-value< 0.05) with 2.14 and 2.33-fold down-regulation in both patient groups, respectively meanwhile hsa-miR-182-5p and hsa-miR-26a-5p were significant only in the non-responsive group with 2.08 and 2.39 fold up-regulation. The down-regulation was consistent with decreased amounts of BCR-ABL1 in patients taking TKIs regardless of molecular responses. The up-regulation was consistent with the substantial presence of BCR-ABL1 in CML patients treated with TKIs at the molecular response. CONCLUSIONS Therefore, these miRNAs have potential as new therapeutic biomarkers for BCR-ABL1 status in adult CML patients treated with TKIs at molecular responses. These could improve current approaches and require further analysis to look for targets of these miRNAs in CML.
Collapse
|
11
|
Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko JY, Park JH. Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol Oncol 2022; 16:1857-1875. [PMID: 35029026 PMCID: PMC9067148 DOI: 10.1002/1878-0261.13180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy has a dual role in the maintenance of cancer stem cells (CSCs), but the precise relationship between autophagy and cancer stemness requires further investigation. In this study, it was found that luminal and triple‐negative breast cancers require distinct therapeutic approaches because of their different amounts of autophagy flux. We identified that autophagy flux was inhibited in triple‐negative breast cancer (TNBC) CSCs. Moreover, miRNA‐181a (miR‐181a) expression is upregulated in both TNBC CSCs and patient tissues. Autophagy‐related 5 (ATG5) and autophagy‐related 2B (ATG2B) participate in the early formation of autophagosomes and were revealed as targets of miR‐181a. Inhibition of miR‐181a expression led to attenuation of TNBC stemness and an increase in autophagy flux. Furthermore, treatment with curcumin led to attenuation of cancer stemness in TNBC CSCs; the expression of ATG5 and ATG2B was enhanced and there was an increase of autophagy flux. These results indicated that ATG5 and ATG2B are involved in the suppression of cancer stemness in TNBC. In summary, autophagy inhibits cancer stemness through the miR‐181a‐regulated mechanism in TNBC. Promoting tumor‐suppressive autophagy using curcumin may be a potential method for the treatment of TNBC.
Collapse
Affiliation(s)
- Jee Won Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yesol Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Chae Won Oh
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
12
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Han J, Jing Y, Han F, Sun P. Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma. BMC Neurol 2021; 21:447. [PMID: 34781885 PMCID: PMC8591954 DOI: 10.1186/s12883-021-02477-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tissue inhibitors of metalloproteinase (TIMP) family proteins are peptidases involved in extracellular matrix (ECM) degradation. Various diseases are related to TIMPs, and the primary reason is that TIMPs can indirectly regulate remodelling of the ECM and cell signalling by regulating matrix metalloproteinase (MMP) activity. However, the link between TIMPs and glioblastoma (GBM) is unclear. Objective This study aimed to explore the role of TIMP expression and immune infiltration in GBM. Methods Oncomine, GEPIA, OSgbm, LinkedOmics, STRING, GeneMANIA, Enrichr, and TIMER were used to conduct differential expression, prognosis, and immune infiltration analyses of TIMPs in GBM. Results All members of the TIMP family had significantly higher expression levels in GBM. High TIMP3 expression correlated with better overall survival (OS) and disease-specific survival (DSS) in GBM patients. TIMP4 was associated with a long OS in GBM patients. We found a positive relationship between TIMP3 and TIMP4, identifying gene sets with similar or opposite expression directions to those in GBM patients. TIMPs and associated genes are mainly associated with extracellular matrix organization and involve proteoglycan pathways in cancer. The expression levels of TIMPs in GBM correlate with the infiltration of various immune cells, including CD4+ T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. Conclusions Our study inspires new ideas for the role of TIMPs in GBM and provides new directions for multiple treatment modalities, including immunotherapy, in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02477-1.
Collapse
Affiliation(s)
- Jinkun Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajun Jing
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fubing Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Xu J, Li G, Chen M, Li W, Wu Y, Zhang X, Cui Y, Zhang B. rs12537 Is a Novel Susceptibility SNP Associated With Estrogen Receptor Positive Breast Cancer in Chinese Han Population. Front Med (Lausanne) 2021; 8:708644. [PMID: 34395483 PMCID: PMC8355624 DOI: 10.3389/fmed.2021.708644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Genetic testing is widely used in breast cancer and has identified a lot of susceptibility genes and single nucleotide polymorphisms (SNPs). However, for many SNPs, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are not in place. A recent genome-wide long non-coding RNA (lncRNA) association study in Chinese Han has verified a genetic association between rs12537 and breast cancer. This study is aimed at investigating the association between rs12537 and the phenotype. We collected the clinical information of 5,634 breast cancer patients and 6,308 healthy controls in the early study. And χ2 test was used for the comparison between different groups in genotype. The frequency of genotypic distribution among SNP rs12537 has no statistically significant correlation with family history (p = 0.8945), menopausal status (p = 0.3245) or HER-2 (p = 0.2987), but it is statistically and significantly correlated with ER (p = 0.004006) and PR (p = 0.01379). Most importantly, compared to the healthy control, rs12537 variant is significantly correlated with ER positive patients and the p-value has reached the level of the whole genome (p = 1.66E-08 <5.00E-08). Furthermore, we found rs12537 associated gene MTMR3 was lower expressed in breast cancer tissues but highly methylated. In conclusion, our findings indicate that rs12537 is a novel susceptibility gene in ER positive breast cancer in Chinese Han population and it may influence the methylation of MTMR3.
Collapse
Affiliation(s)
- Jingkai Xu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guozheng Li
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Mengyun Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjing Li
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Yaxing Wu
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Identification of miRNAs as diagnostic and prognostic markers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:6115-6133. [PMID: 33617479 PMCID: PMC7950227 DOI: 10.18632/aging.202606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
The development of high-throughput technologies has yielded a large amount of data from molecular and epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene Expression Omnibus (GEO) DataSet micro–ribonucleic acid (miRNA) profiling datasets to identify miRNAs that could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the results of receiver operating characteristic (ROC) analyses and Kaplan–Meier Plotter (KM) survival analyses, we identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis and prognosis and might be a new treatment target.
Collapse
|
16
|
Xu JL, Yuan L, Tang YC, Xu ZY, Xu HD, Cheng XD, Qin JJ. The Role of Autophagy in Gastric Cancer Chemoresistance: Friend or Foe? Front Cell Dev Biol 2020; 8:621428. [PMID: 33344463 PMCID: PMC7744622 DOI: 10.3389/fcell.2020.621428] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the third most common cause of cancer-related death worldwide. Drug resistance is the main inevitable and vital factor leading to a low 5-year survival rate for patients with gastric cancer. Autophagy, as a highly conserved homeostatic pathway, is mainly regulated by different proteins and non-coding RNAs (ncRNAs) and plays dual roles in drug resistance of gastric cancer. Thus, targeting key regulatory nodes in the process of autophagy by small molecule inhibitors or activators has become one of the most promising strategies for the treatment of gastric cancer in recent years. In this review, we provide a systematic summary focusing on the relationship between autophagy and chemotherapy resistance in gastric cancer. We comprehensively discuss the roles and molecular mechanisms of multiple proteins and the emerging ncRNAs including miRNAs and lncRNAs in the regulation of autophagy pathways and gastric cancer chemoresistance. We also summarize the regulatory effects of autophagy inhibitor and activators on gastric cancer chemoresistance. Understanding the vital roles of autophagy in gastric cancer chemoresistance will provide novel opportunities to develop promising therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Jing-Li Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Cheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Han-Dong Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
17
|
Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Sci Rep 2020; 10:20065. [PMID: 33208781 PMCID: PMC7676265 DOI: 10.1038/s41598-020-77119-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
miRNAs are expected to become potential biomarkers in the diagnosis and prognosis of Esophageal cancer (EC). Through a series of screening, miR-34a-5p, miR-148a-3p and miR-181a-5p were selected as EC-associated miRNAs. Based on AllGlo probe, a novel absolute quantitative RT-qPCR method with high sensitivity, specificity and accuracy was established for detecting miRNAs. Then the clinical significance of these 3 miRNAs was explored with 213 patients (166 cases with EC and 47 cases with benign diseases) and 170 normal controls. Compared with normal controls, the level of miR-34a-5p increased while miR-148a-3p and miR-181a-5p decreased in EC and benign patients (P < 0.001), and the level of miR-181a-5p in early EC patients was significantly lower (P < 0.001). According to logistic regression analysis, combined detection of miR-34a-5p, miR-148a-3p and Cyfra21-1 provided the highest diagnosis efficiency of 85.07% with sensitivity and specificity reaching 85.45% and 84.71%. Compared with preoperative samples, the level of miR-34a-5p decreased while miR-148a-3p and miR-181a-5p increased in postoperative samples (P < 0.001). Collectively, this first developed, novel absolute quantitative RT-qPCR method exhibits high application value in detecting miRNAs, miR-34a-5p, miR-148a-3p and miR-181a-5p may serve as potential biomarkers in the diagnosis and prognosis of EC, and miR-181a-5p probably could serve as a new biomarker for early EC.
Collapse
|
18
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|
19
|
Vincristine and prednisone regulates cellular and exosomal miR-181a expression differently within the first time diagnosed and the relapsed leukemia B cells. Leuk Res Rep 2020; 14:100221. [PMID: 33094092 PMCID: PMC7568182 DOI: 10.1016/j.lrr.2020.100221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
We explored the effect of vincristine and prednisone on cellular and exosomal miR-181a expression in first time diagnosed leukemia and relapsed leukemia. Vincristine and prednisone induced apoptosis/pro-apoptotic genes in first time diagnosed leukemia, and suppressed the cellular and exosomal miR-181a expression. In contrast, vincristine and prednisone could not induce apoptosis/pro-apoptotic genes in relapsed leukemia, and could not change the expression of cellular or exosomal miR-181a. In conclusion, the non-suppressive nature of miR-181a in relapsed leukemia might contribute to the chemo-resistance and this suggests a potential role of miR-181a-inhibitor along with the chemotherapy in the treatment of relapsed leukemia.
Collapse
|
20
|
Haque S, Vaiselbuh SR. Silencing of Exosomal miR-181a Reverses Pediatric Acute Lymphocytic Leukemia Cell Proliferation. Pharmaceuticals (Basel) 2020; 13:ph13090241. [PMID: 32932883 PMCID: PMC7558769 DOI: 10.3390/ph13090241] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes are cell-generated nano-vesicles found in most biological fluids. Major components of their cargo are lipids, proteins, RNA, DNA, and non-coding RNAs. The miRNAs carried within exosomes reveal real-time information regarding disease status in leukemia and other cancers, and therefore exosomes have been studied as novel biomarkers for cancer. We investigated the impact of exosomes on cell proliferation in pediatric acute lymphocytic leukemia (PALL) and its reversal by silencing of exo-miR-181a. We isolated exosomes from the serum of PALL patients (Exo-PALL) and conditioned medium of leukemic cell lines (Exo-CM). We found that Exo-PALL promotes cell proliferation in leukemic B cell lines by gene regulation. This exosome-induced cell proliferation is a precise event with the up-regulation of proliferative (PCNA, Ki-67) and pro-survival genes (MCL-1, and BCL2) and suppression of pro-apoptotic genes (BAD, BAX). Exo-PALL and Exo-CM both show over expression of miR-181a compared to healthy donor control exosomes (Exo-HD). Specific silencing of exosomal miR-181a using a miR-181a inhibitor confirms that miR-181a inhibitor treatment reverses Exo-PALL/Exo-CM-induced leukemic cell proliferation in vitro. Altogether, this study suggests that exosomal miR-181a inhibition can be a novel target for growth suppression in pediatric lymphatic leukemia.
Collapse
Affiliation(s)
- Shabirul Haque
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA;
- Correspondence: or
| | - Sarah R. Vaiselbuh
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA;
- Department of Pediatrics, Staten Island University Hospital, Northwell Health, 475 Seaview Ave, Staten Island, NY 10305, USA
| |
Collapse
|
21
|
Expression patterns of seven key genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Sci Rep 2020; 10:12342. [PMID: 32704077 PMCID: PMC7378835 DOI: 10.1038/s41598-020-69308-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers and a major cause of cancer related mortality worldwide. Incidence of GC is affected by various factors, including genetic and environmental factors. Despite extensive research has been done for molecular characterization of GC, it remains largely unknown. Therefore, further studies specially conducted among various ethnicities in different geographic locations, are required to know the precise molecular mechanisms leading to tumorigenesis and progression of GC. The expression patterns of seven candidate genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a, and miR-93 were determined in 24 paired GC tissues and corresponding non-cancerous tissues by quantitative Real-Time PCR. The association between the expression of these genes and clinicopathologic factors were also investigated. Our results demonstrated that overall mRNA levels of GATA6 were significantly decreased in the tumor samples in comparison with the non-cancerous tissues (median fold change (FC) = 0.3143; P = 0.0003). Overall miR-93 levels were significantly increased in the tumor samples relative to the non-cancerous gastric tissues (FC = 2.441; P = 0.0002). β-catenin mRNA expression showed a strong positive correlation with miR-34a (r = 0.5784; P = 0.0031), and miR-181a (r = 0.5652; P = 0.004) expression. miR-34a and miR-181a expression showed a significant positive correlation (r = 0.4862; P = 0.016). Moreover, lower expression of Notch1 was related to distant metastasis in GC patients with a borderline statistical significance (p = 0.0549). These data may advance our understanding of the molecular biology that drives GC as well as provide potential targets for defining novel therapeutic strategies for GC treatment.
Collapse
|
22
|
Wang B, Mao JH, Wang BY, Wang LX, Wen HY, Xu LJ, Fu JX, Yang H. Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett 2020; 489:87-99. [PMID: 32531321 DOI: 10.1016/j.canlet.2020.05.038] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Exosomes are key mediators of intercellular communication and play a role in the pathogenesis and progression of cancer. Exosomes in circulating body fluids serve as molecular markers for cancer diagnosis. This study aimed to investigate the role of exosomal microRNA (miR)-1910-3p in breast cancer and determine its clinical diagnostic value. MiR-1910-3p promoted proliferation and migration of breast cancer cells in vitro and in vivo. In vitro, exosomes enriched in miR-1910-3p transferred miR-1910-3p to mammary epithelial cells and breast cancer cells, promoting proliferation and migration, inhibiting apoptosis, and inducing autophagy. In vivo, exosomes enriched in miR-1910-3p promoted the proliferation and migration of breast cancer cells. MiR-1910-3p downregulated myotubularin-related protein 3, activated the NF-κB and wnt/β-catenin signaling pathway, and promoted breast cancer progression. Serum miR-1910-3p in exosomes was an effective diagnostic marker that improved the sensitivity of breast cancer diagnosis when used in combination with the traditional tumor marker CA153. In conclusion, breast cancer cell-derived exosomes promoted the growth, metastasis, and autophagy of breast cancer cells by transferring miR-1910-3p. MiR-1910-3p in serum exosomes may serve as a novel molecular marker for breast cancer diagnosis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Hui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bing-Ying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling-Xia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-Yan Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Long-Jiang Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Xiang Fu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Wang Y, Liu G, Sun S, Qin J. miR-1294 alleviates epithelial-mesenchymal transition by repressing FOXK1 in gastric cancer. Genes Genomics 2019; 42:217-224. [PMID: 31833046 DOI: 10.1007/s13258-019-00899-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported play critical roles in regulating tumor development and progression. OBJECTIVE This study aimed to investigate the potential effect of miR-1294 in gastric cancer (GC). METHODS Reverse transcription quantitative polymerase chain reaction (RT-PCR) were performed to verify the expression level of miR-1294 and Forkhead box protein K1 (FOXK1). Overall survival data of miR-1294 for GC was analysed by log-rank test. Targetscan was used to screen potential target gene of miR-1294. Dual luciferase assay was assessed to investigate the relationship between miR-1294 and FOXK1. The miR-1294 overexpression and knockdown were designed to study the biological function of miR-1294. The migration and invasion of GC cell lines were investigated by wound healing and transwell assays. Western blotting were performed to verify the expression level of epithelial marker, mesenchymal markers and FOXK1. Overexpression of FOXK1 was designed to study the rescue effects of FOXK1 in SGC7901 cell. RESULTS miR-1294 was found downregulated in GC patients and cell lines. A higher miR-1294 expression showed a significant longer overall survival than those with a lower miR-1294 expression. miR-1294 directly targets FOXK1 and regulates the expression of FOXK1. In addition, miR-1294 regulates epithelial-mesenchymal transition (EMT) by inhibiting FOXK1 in GC cells and it can be rescued by overexpression of FOXK1. CONCLUSION miR-1294 alleviates EMT process in GC by targeting FOXK1.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Shijuan Sun
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Junjie Qin
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| |
Collapse
|
24
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
25
|
Association of MTMR3 rs12537 at miR-181a binding site with rheumatoid arthritis and systemic lupus erythematosus risk in Egyptian patients. Sci Rep 2019; 9:12299. [PMID: 31444373 PMCID: PMC6707250 DOI: 10.1038/s41598-019-48770-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in microRNA-target sites influence an individual's risk and prognosis for autoimmune diseases. Myotubularin-related protein 3 (MTMR3), an autophagy-related gene, is a direct target of miR-181a. We investigated whether MTMR3 SNP rs12537 in the miR-181a-binding site is associated with the susceptibility and progression of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Overall, 94 patients with RA, 80 patients with SLE, and 104 healthy volunteers were recruited. Genotyping and expression analysis of circulating MTMR3 and miR-181a were performed by qPCR. The autophagic marker MAP1LC3B was measured by ELISA. The rs12537 minor homozygote (TT) genotype was a candidate risk factor of both RA and SLE. rs12537TT was associated with lower serum MTMR3 expression and higher LC3B levels than other genotypes in patients with both diseases. Serum miR-181a expression was higher in rs12537TT carriers than in other genotypes among SLE patients. Serum miR-181a and MTMR3 levels were inversely correlated in SLE but not in RA patients. rs12537TT and serum miR-181a were positively associated with disease severity in both diseases. Our results identify a novel role of rs12537 in the susceptibility and progression of RA and SLE, possibly through impacting the interaction between miR-181a and MTMR3 leading to increased autophagy.
Collapse
|
26
|
Wang Z, Zhang M, Shan R, Wang YJ, Chen J, Huang J, Sun LQ, Zhou WB. MTMR3 is upregulated in patients with breast cancer and regulates proliferation, cell cycle progression and autophagy in breast cancer cells. Oncol Rep 2019; 42:1915-1923. [PMID: 31485632 PMCID: PMC6775797 DOI: 10.3892/or.2019.7292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
As a member of the myotubularin family, myotubularin related protein 3 (MTMR3) has been demonstrated to participate in tumor development, including oral and colon cancer. However, little is known about its functional roles in breast cancer. In the present study, the expression of MTMR3 in breast cancer was evaluated by immunohistochemical staining of tumor tissues from 172 patients. Online data was then used for survival analysis from the PROGgeneV2 database. In vitro, MTMR3 expression was silenced in MDA-MB-231 cells via lentiviral shRNA transduction. MTT, colony formation and flow cytometry assays were performed in the control and MTMR3-silenced cells to evaluate the cell growth, proliferation and cell cycle phase distribution, respectively. Western blotting was used to evaluate the protein expression levels of autophagy-related markers. The results demonstrated that the expression of MTMR3 in breast cancer tissues was significantly increased compared with adjacent normal tissues. MTMR3 was highly expressed in triple-negative breast cancer and was associated with disease recurrence. MTMR3 knockdown in MDA-MB-231 cells inhibited cell proliferation and induced cell cycle arrest and autophagy. The present results indicated that MTMR3 may have an important role in promoting the progression of breast cancer, and its inhibition may serve as a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong Shan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Jie Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Huang
- Hunan Province Clinic Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
Xu X, Jiang X, Chen L, Zhao Y, Huang Z, Zhou H, Shi M. MiR-181a Promotes Apoptosis and Reduces Cisplatin Resistance by Inhibiting Osteopontin in Cervical Cancer Cells. Cancer Biother Radiopharm 2019; 34:559-565. [PMID: 31436472 DOI: 10.1089/cbr.2019.2858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: In this study, the authors established a cervical cancer cisplatin (DDP) drug-resistant cell line to explore the role of miR-181a in the regulation of osteopontin (OPN) expression and the proliferation, apoptosis, as well as DDP resistance of cervical cancer cells. Materials and Methods: Dual luciferase reporter gene assay was performed to validate the targeted relationship between miR-181a and OPN. The DDP-resistant cell line CaSki/DDP was established to compare the expressions of miR-181a and OPN. The cell proliferation activity was detected by CCK-8 assay. CaSki/DDP cells were divided into miR-NC group and miR-181a mimic group followed by analysis of cell apoptosis by flow cytometry, and the cell proliferation by EdU staining. Results: There was a targeted relationship between miR-181a and OPN mRNA. MiR-181a expression was significantly lower, while OPN mRNA and protein levels were significantly higher in CaSki/DDP cells than that in CaSki cells. Compared with the miR-NC group, OPN mRNA and protein were significantly decreased, cell apoptosis was significantly increased, and cell proliferation ability was significantly attenuated in miR-181a mimic transfection group. Conclusions: The decrease of miR-181a expression and the upregulation of OPN expression are related to the DDP resistance of cervical cancer cells. Overexpression of miR-181a can inhibit the expression of OPN, induce cell apoptosis cells, restrain cell proliferation, and reduce DDP resistance in cervical cancer cells.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Xiaofei Jiang
- Department of Gynecology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, China
| | - Liping Chen
- Department of Cardiology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Yu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihua Huang
- Department of Obstetrics and Gynecology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Huifang Zhou
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingqing Shi
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| |
Collapse
|
28
|
Wang HT, Tong X, Zhang ZX, Sun YY, Yan W, Xu ZM, Fu WN. MYCT1 represses apoptosis of laryngeal cancerous cells through the MAX/miR-181a/NPM1 pathway. FEBS J 2019; 286:3892-3908. [PMID: 31152622 DOI: 10.1111/febs.14942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
MYCT1 is an important gene known to regulate cell viability and apoptosis of laryngeal cancer cells. However, the underlying molecular mechanism remains unclear. Here, we show that MAX enhances the expression of miR-181a by directly binding to its promoter, whereas miR-181a targets NPM1 and suppresses its expression in laryngeal cancer cells. MYCT1 and miR-181a decrease cell viability and colony formation through enhanced apoptosis, whereas NPM1 displays opposite effects in laryngeal cancer cells. Their opposing functions are further supported by the findings (a) that miR-181a is down-regulated, while NPM1 is up-regulated in laryngeal cancer, and (b) that either inhibition of miR-181a or overexpression of NPM1 can revert the pro-apoptotic effects of MYCT1 on laryngeal cancer cells through extracellular and intracellular apoptotic pathways. Our data suggest that MYCT1 may synergistically interact with MAX as a co-transcription factor or a component of MAX transcriptional complex, to transcriptionally regulate the expression of miR-181a, which, in turn, decreases NPM1 expression at post-transcriptional levels, leading to enhanced apoptosis in laryngeal cancer cells. These factors may serve as potential targets for early diagnosis and treatment of laryngeal cancer.
Collapse
Affiliation(s)
- He-Tan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Xue Tong
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Zhao-Xiong Zhang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Wei Yan
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Zhen-Ming Xu
- Department of Otolaryngology, the Fourth People's Hospital of Shenyang City, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Yan Y, Yan H, Wang Q, Zhang L, Liu Y, Yu H. Micro
RNA
10a induces glioma tumorigenesis by targeting myotubularin‐related protein 3 and regulating the Wnt/β‐catenin signaling pathway. FEBS J 2019; 286:2577-2592. [PMID: 30927504 DOI: 10.1111/febs.14824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Hua Yan
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Qin Wang
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Le Zhang
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Ying Liu
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Haimiao Yu
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| |
Collapse
|
30
|
Zonneveld MI, Keulers TGH, Rouschop KMA. Extracellular Vesicles as Transmitters of Hypoxia Tolerance in Solid Cancers. Cancers (Basel) 2019; 11:cancers11020154. [PMID: 30699970 PMCID: PMC6406242 DOI: 10.3390/cancers11020154] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Tumour hypoxia is a common feature of solid tumours that contributes to poor prognosis after treatment. This is mainly due to increased resistance of hypoxic cells to radio- and chemotherapy and the association of hypoxic cells with increased metastasis development. It is therefore not surprising that an increased hypoxic tumour fraction is associated with poor patient survival. The extent of hypoxia within a tumour is influenced by the tolerance of individual tumor cells to hypoxia, a feature that differs considerably between tumors. High numbers of hypoxic cells may, therefore, be a direct consequence of enhanced cellular capability inactivation of hypoxia tolerance mechanisms. These include HIF-1α signaling, the unfolded protein response (UPR) and autophagy to prevent hypoxia-induced cell death. Recent evidence shows hypoxia tolerance can be modulated by distant cells that have experienced episodes of hypoxia and is mediated by the systemic release of factors, such as extracellular vesicles (EV). In this review, the evidence for transfer of a hypoxia tolerance phenotype between tumour cells via EV is discussed. In particular, proteins, mRNA and microRNA enriched in EV, derived from hypoxic cells, that impact HIF-1α-, UPR-, angiogenesis- and autophagy signalling cascades are listed.
Collapse
Affiliation(s)
- Marijke I Zonneveld
- Maastricht Radiation Oncology (MaastRO) lab, GROW⁻School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Tom G H Keulers
- Maastricht Radiation Oncology (MaastRO) lab, GROW⁻School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Kasper M A Rouschop
- Maastricht Radiation Oncology (MaastRO) lab, GROW⁻School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
31
|
Yang CL, Zheng XL, Ye K, Sun YN, Lu YF, Ge H, Liu H. Effects of microRNA-217 on proliferation, apoptosis, and autophagy of hepatocytes in rat models of CCL4-induced liver injury by targeting NAT2. J Cell Physiol 2018; 234:3410-3424. [PMID: 30417525 DOI: 10.1002/jcp.26748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Liver injury is an important cause of serious liver disease. This study aims to explore the effects of miR-217 targeting NAT2 on hepatocyte proliferation, apoptosis, and autophagy following carbon tetrachloride (CCL4)-induced liver injury. Rat models of CCL4-induced liver injury were established. Healthy Wistar rats were randomized into the normal, blank, negative control (NC), microRNA-217 (miR-217) mimic, miR-217 inhibitor, small interfering RNA (siRNA)-N-acetyltransferase 2 (NAT2), and miR-217 inhibitor + siRNA-NAT2 groups. NAT2 activity was evaluated with reversed-phase high-performance liquid chromatographic method. Immunohistochemistry was used to detect NAT2 protein positive rate. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to examine expressions of miR-217, NAT2, Bcl-2, Bax, p35, LC3-II, Becline-1, and the ratio of caspase-3/cleaved caspase-3. Autophagy, proliferation, and cell cycle distribution were determined by electron microscope, CCK-8, and flow cytometry. NAT2 protein positive rate and miR-217, NAT2, Bcl-2, and p35 expressions were higher and Bax, LC3-II, and Becline-1 expressions and the ratio of caspase-3/cleaved caspase-3 lower in the normal group than the other six groups. Compared with the blank and NC groups, in the miR-217 mimic and siRNA-NAT2 groups, Bax, LC3-II, and Becline-1 expressions and the ratio of caspase-3/cleaved caspase-3, and hepatocyte apoptosis and autophagy increased, while NAT2, Bcl-2, and p35 expressions and hepatocyte proliferation decreased; opposite results were observed in the miR-217 inhibitor group. Collectively, miR-217 targeting NAT2 inhibits proliferation and promotes apoptosis and autophagy of hepatocytes in CCL4-induced liver injury.
Collapse
Affiliation(s)
- Cheng-Liang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Li Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ye
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya-Nan Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Fei Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- Department of Gastroenterology, Heping Hospital of Changzhi Medical College, Changzhi, China
| |
Collapse
|
32
|
Huang X, Wu L, Zhang G, Tang R, Zhou X. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci 2018; 26:1121-1129. [PMID: 30376765 DOI: 10.1177/1933719118808916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE It has been demonstrated that preeclampsia is associated with alterations in placental microRNA expression. Previous reports have shown that hsa-miR-181a-5p is overexpressed in human preeclamptic placenta compared with normotensive placenta. The purpose of this study was to explore whether upregulated hsa-miR-181a-5p expression is involved in the ontogenesis of preeclampsia. METHODS Twenty preeclamptic placentas and 20 normotensive placentas were obtained from nulliparous women by cesarean section. Expression of hsa-miR-181a-5p in placenta tissues and human trophoblast cell lines was analyzed by reverse transcription polymerase chain reaction. The trophoblast cell lines (HTR-8/SVneo and JAR) were transfected with specific oligonucleotides to upregulate miR-181a-5p expression. The effect of miR-181a-5p expression on proliferation, cell cycle, apoptosis, and invasion in HTR-8/SVneo and JAR cells was then investigated. RESULT It was demonstrated that hsa-miR-181a-5p expression was upregulated in preeclamptic placentas and that it may trigger antiproliferation and inhibition of cell cycle progression, induce apoptosis, and suppress invasion in HTR-8/SVneo and JAR cells. CONCLUSION Anomalously upregulated hsa-miR-181a-5p expression could contribute to trophoblast dysfunction and may be a crucial factor in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaohao Huang
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,These authors contributed equally to this article
| | - Lan Wu
- 2 Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,These authors contributed equally to this article
| | - Guoying Zhang
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Tang
- 2 Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,Ranran Tang and Xue Zhou are joint corresponding authors to this paper
| | - Xue Zhou
- 2 Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,Ranran Tang and Xue Zhou are joint corresponding authors to this paper
| |
Collapse
|
33
|
Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Biosci Rep 2018; 38:BSR20180516. [PMID: 30266744 PMCID: PMC6200703 DOI: 10.1042/bsr20180516] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an important process in endogenous substrate degradation by lysosomes within cells, with a degree of evolutionary conservation. Like apoptosis and cell senescence, cell autophagy is a very important biological phenomenon involving the development and growth of biological processes. Abnormal autophagy may lead to tumorigenesis. In recent years, increasing studies have demonstrated that long non-coding RNAs (lncRNAs) and miRNAs can regulate cell autophagy by modulating targetting gene expression. In this review, we will provide an overview of lncRNAs and miRNAs in autophagy modulation and new insights into the underlying mechanisms, as well as their potential utilization in disease diagnosis, prognosis, and therapy.
Collapse
|
34
|
Li S, Zeng X, Ma R, Wang L. MicroRNA-21 promotes the proliferation, migration and invasion of non-small cell lung cancer A549 cells by regulating autophagy activity via AMPK/ULK1 signaling pathway. Exp Ther Med 2018; 16:2038-2045. [PMID: 30186437 DOI: 10.3892/etm.2018.6370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the expression of microRNA (miR)-21 in non-small cell lung cancer (NSCLC) tissues, its biological functions and mechanism of autophagy regulation. A total of 46 patients with NSCLC were enrolled in the present study. To measure the expression of miR-21, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed. NSCLC A549 cells were transfected with miR-negative control (NC), miR-21 mimics or inhibitor. The CCK-8 assay was used to investigate the proliferation of A549 cells. To study migration and invasion abilities of A549 cells, The Transwell assay was performed. In addition, to determine the expression levels of ULK1, LC3B, AMPKα, p-AMPKα and p62 proteins, western blotting was conducted and laser confocal microscopy was performed to observe the formation of autophagosomes in A549 cells. To explore whether miR-21 regulates the biological functions of A549 cells via autophagy, an autophagy inhibitor, 3-MA, or agonist, rapamycin, were used in a rescue assay. Results indicated that miR-21 expression in NSCLC tissues was enhanced, and closely correlated with the occurrence and development of NSCLC. In vitro experiments showed that miR-21 mimics promoted the proliferation, migration and invasion of A549 cells, while miR-21 inhibitor inhibited these biological functions. Western blotting indicated that miR-21 upregulated autophagy marker LC3BII protein, but downregulated p62 protein. Laser confocal microscopy showed that miR-21 activated autophagy of A549. Rescue experiments indicated that autophagy reversed the effect of miR-21 on the proliferation, migration and invasion of A549 cells. Western blotting data suggested that autophagy-related AMPK/ULK1 signaling pathway was activated by miR-21, and interference or overexpression of ULK1 reversed the biological functions of miR-21. The present study demonstrated that miR-21 expression in NSCLC tissues was upregulated and positively correlated with lymphatic metastasis and clinical staging. In addition, miR-21 regulated autophagy activity of NSCLC A549 cells via AMPK/ULK1 signaling pathway, and promoted the proliferation, migration and invasion of NSCLC A549 cells.
Collapse
Affiliation(s)
- Shuping Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiaofei Zeng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ruidong Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Li Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
35
|
Sun W, Wang X, Li J, You C, Lu P, Feng H, Kong Y, Zhang H, Liu Y, Jiao R, Chen X, Ba Y. MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway. Cell Death Dis 2018; 9:438. [PMID: 29739921 PMCID: PMC5941226 DOI: 10.1038/s41419-018-0490-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/03/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a very common metastatic tumor with active angiogenesis that requires active angiogenesis. Recently, increased microRNA-181a-5p (miR-181a) expression was found to be significantly associated with liver metastasis and poor outcome in CRC patients. In this study, the role of miR-181a in tumor angiogenesis was further investigated. Capillary tube formation assays were used to demonstrate the ability of miR-181a to promote tumor angiogenesis. Bioinformatics analyses identified SRC kinase signaling inhibitor 1 (SRCIN1) as a potential target of miR-181a. Next, two CRC cell lines (HT29 and SW480) were used to clarify the function of miR-181a through SRCIN1 targeting. In addition, the biological effects of SRCIN1 inhibition by miR-181a were examined in vitro by quantitative RT-PCR, western blotting and enzyme-linked immunosorbent assay and in vivo by Matrigel plug angiogenesis assays and immunohistochemical staining. In clinical samples, Fluorescence in situ hybridization and immunofluorescence were performed to detect the relation between miR-181a and SRCIN1. In addition, SRCIN1 protein and miR-181a expression levels in CRC tissues were also measured by western blot and quantitative real-time polymerase chain reaction. MiR-181a markedly augmented the capability of CRC cells to advance tube formation in endothelial cells in vitro. The Matrigel plug assay showed that miR-181a promoted angiogenesis in vivo. In conclusion, miR-181a inhibited SRCIN1, which caused SRC to transform from an inactive status to an active conformation and to trigger vascular endothelial growth factor secretion, leading to increased angiogenesis. MiR-181a dysregulation contributes to angiogenesis in CRC, and downregulation of miR-181a represents a promising, novel strategy to achieve an efficient antiangiogenic response in anti-CRC therapy.
Collapse
Affiliation(s)
- Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Jialu Li
- Department of Gastroenterology, Tianjin First Center Hospital, 24 Fukang Road, Tianjin, 300192, China
| | - Chaoying You
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Huijin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Yan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|