1
|
Cai H, Li H, Xiao X, Wang S, Liu R, Qin Y, Zhou Y, Yao C. TRAF6 promotes abdominal aortic aneurysm development by activating macrophage pyroptosis via the NLRP3/Caspase1/GSDMD pathway. FASEB J 2025; 39:e70318. [PMID: 39831511 DOI: 10.1096/fj.202402873r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Abdominal aortic aneurysm represents a critical pathology of the aorta that currently lacks effective pharmacological interventions. TNF receptor-associated factor 6 (TRAF6) has been established to be involved in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. However, its role in abdominal aortic aneurysm (AAA) remains unclear. This study aimed to explore the role of TRAF6 on AAA formation and its underlying mechanisms. Single-cell RNA sequencing of human AAA tissues demonstrated that TRAF6 was significantly upregulated in aortic macrophages. Moreover, overexpression of TRAF6 promotes AAA formation in elastase-induced C57BL/6 mice, while TRAF6 pharmacological inhibition could attenuate AAA development. Consistently, inhibition of TRAF6 in macrophages through in vitro methods notably limits their pyroptosis, while also diminishing proinflammatory responses in these cells. Mechanistically, TRAF6 can modulate macrophage pyroptosis through the NLRP3/Caspase1/GSDMD signaling pathway. Our study highlights the crucial role of the TRAF6/NLRP3/Caspase1/GSDMD axis in macrophage pyroptosis and AAA, offering potential biomarkers and therapeutic targets for AAA.
Collapse
Affiliation(s)
- Huoying Cai
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoyong Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Siwen Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Ruiming Liu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Yuansen Qin
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Yu Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Chen Yao
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Xu H, Li L, Dong B, Lu J, Zhou K, Yin X, Sun H. TRAF6 promotes chemoresistance to paclitaxel of triple negative breast cancer via regulating PKM2-mediated glycolysis. Cancer Med 2023; 12:19807-19820. [PMID: 37746908 PMCID: PMC10587986 DOI: 10.1002/cam4.6552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Ample evidence reveals that glycolysis is crucial to tumor progression; however, the underlying mechanism of its drug resistance is still worth being further explored. TRAF6, an E3 ubiquitin ligase, is well recognized to overexpress in various types of cancer, which predicts a poor prognosis. In our study, we discovered that TRAF6 was expressed more significantly in the case of triple-negative breast cancer (TNBC) than in other of breast cancers, promoting chemoresistance to paclitaxel; that inhibited TRAF6 expression in the chemoresistant TNBC (TNBC-CR) cells enhanced the sensitivity by decreasing glucose uptake and lactate production; that TRAF6 regulated glycolysis and facilitated chemoresistance via binding directly to PKM2; and that overexpressing PKM2 in the TNBC-CR cells with TRAF6 knocked down regained significantly TRAF6-dependent drug resistance and glycolysis. Additionally, we verified that TRAF6 could facilitate PKM2-mediated glycolysis and chemoresistance in animal models and clinical tumor tissues. Thus, we identified the novel function of TRAF6 to promote glycolysis and drug resistance in TNBC with the regulation of PKM2, which could provide a potential molecular target for TNBC treatment.
Collapse
Affiliation(s)
- Han Xu
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Longzhi Li
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Bing Dong
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Ji Lu
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Kun Zhou
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Xiaoxing Yin
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Huizhen Sun
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. A20 Enhances the Expression of the Proto-Oncogene C-Myc by Downregulating TRAF6 Ubiquitination after ALV-A Infection. Viruses 2022; 14:v14102210. [PMID: 36298765 PMCID: PMC9607361 DOI: 10.3390/v14102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Hens infected with avian leukosis virus subgroup A (ALV-A) experience stunted growth, immunosuppression, and potentially, lymphoma development. According to past research, A20 can both promote and inhibit tumor growth. In this study, DF-1 cells were infected with ALV-A rHB2015012, and Gp85 expression was measured at various time points. A recombinant plasmid encoding the chicken A20 gene and short hairpin RNA targeting chicken A20 (A20-shRNA) was constructed and transfected into DF-1 cells to determine the effect on ALV-A replication. The potential signaling pathways of A20 were explored using bioinformatics prediction, co-immunoprecipitation, and other techniques. The results demonstrate that A20 and ALV-A promoted each other after ALV-A infection of DF-1 cells, upregulated A20, inhibited TRAF6 ubiquitination, and promoted STAT3 phosphorylation. The phosphorylated-STAT3 (p-STAT3) promoted the expression of proto-oncogene c-myc, which may lead to tumorigenesis. This study will help to further understand the tumorigenic process of ALV-A and provide a reference for preventing and controlling ALV.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| |
Collapse
|
5
|
Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4607197. [PMID: 33294443 PMCID: PMC7714562 DOI: 10.1155/2020/4607197] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, is a signal transduction molecule shared by the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) family and the TNFR superfamily. TRAF6 has a unique TRAF domain and RING finger domain that mediate intracellular signaling events. In the immune system, TRAF6-mediated signaling has been shown to be critical for the development, homeostasis, and activation of a variety of immune cells, including B cells, T cells, dendritic cells, and macrophages. Although the pathogenesis and etiology of autoimmune diseases and cancer are not fully understood, it is worth noting that existing studies have shown that TRAF6 is involved in the pathogenesis and development of a variety of these diseases. Herein, we reviewed the role of TRAF6 in certain immune cells, as well as the function and potential effect of TRAF6 in autoimmune diseases and cancer. Our review indicates that TRAF6 may be a novel target for autoimmune diseases and cancer.
Collapse
|
6
|
Abstract
Tumor necrosis factor receptor (TNFR)-related factors (TRAFs) are important linker molecules in the tumor necrosis factor superfamily (TNFSF) and the Toll-like/interleukin-1 receptor (TLR/ILR) superfamily. There are seven members: TRAF1-TRAF7, among those members, tumor necrosis factor receptor-associated factor 6 (TRAF6) is upregulated in various tumors, which has been related to tumorigenesis and development. With the in-depth study of the relationship between TRAF6 and different types of tumors, TRAF6 has oncogenic characteristics involved in tumorigenesis, tumor development, invasion, and metastasis through various signaling pathways, therefore, targeting TRAF6 has provided a novel strategy for tumor treatment. This review summarizes and analyzes the role of TRAF6 in tumorigenesis and tumor development in combination with the current research on TRAF6 and tumors.
Collapse
|
7
|
Combined administration of a small-molecule inhibitor of TRAF6 and Docetaxel reduces breast cancer skeletal metastasis and osteolysis. Cancer Lett 2020; 488:27-39. [PMID: 32474152 DOI: 10.1016/j.canlet.2020.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Tumour necrosis factor receptor-associated factor 6 (TRAF6) has been implicated in breast cancer and osteoclastic bone destruction. Here, we report that 6877002, a verified small-molecule inhibitor of TRAF6, reduced metastasis, osteolysis and osteoclastogenesis in models of osteotropic human and mouse breast cancer. First, we observed that TRAF6 is highly expressed in osteotropic breast cancer cells and its level of expression was higher in patients with bone metastasis. Pre-exposure of osteoclasts and osteoblasts to non-cytotoxic concentrations of 6877002 inhibited cytokine-induced NFκB activation and osteoclastogenesis, and reduced the ability of osteotropic human MDA-MB-231 and mouse 4T1 breast cancer cells to support bone cell activity. 6877002 inhibited human MDA-MB-231-induced osteolysis in the mouse calvaria organ system, and reduced soft tissue and bone metastases in immuno-competent mice following intra-cardiac injection of mouse 4T1-Luc2 cells. Of clinical relevance, combined administration of 6877002 with Docetaxel reduced metastasis and inhibited osteolytic bone damage in mice bearing 4T1-Luc2 cells. Thus, TRAF6 inhibitors such as 6877002 - alone or in combination with conventional chemotherapy - show promise for the treatment of metastatic breast cancer.
Collapse
|
8
|
Jia X, Meng W, Zhang L, Jia Y, Shi Y, Tong Z. Construction of differentially expressed Her-2 related lncRNA-mRNA-miRNA ceRNA network in Her-2 positive breast cancer. Transl Cancer Res 2020; 9:2527-2533. [PMID: 35117612 PMCID: PMC8798026 DOI: 10.21037/tcr.2020.03.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Background Her-2 positive subtype breast cancer is characterized as Her-2 gene amplification with poor survival and increased invasiveness accounting for 20–30% of invasive infiltrated breast cancer. A lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network is constructed to detect Her-2 specific RNAs in the development and progression of HER-2 positive breast cancer which may overcoming the anti-HER-2 therapy resistance of breast cancer cells. Methods One thousand one hundred and nine breast cancer samples obtained from The Cancer Genome Atlas (TCGA) database were classified into two cohorts including ER+/PR+ (n=461) and ER-/PR- breast cancer (n=152). Differently expressed mRNAs, lncRNAs and miRNAs were screened in ER+/PR+ and ER-/PR- breast cancer cohorts, respectively. lncRNA-miRNA interactions were preformed to predicted and verified by miRcode. miRNA-mRNA interactions were selected to predict targeted mRNAs of miRNAs by miRanda, Targetscan and miRTarBase. Results lncRNA-miRNA-mRNA ceRNA network was constructed by retained lncRNAs, miRNAs and mRNAs. Fifteen DEmiRNAs, 129 DElncRNAs and 269 DEmRNAs were retained in ER+/PR+ cohort after intersection with DEmiRNAs, DElncRNAs and DEmRNAs between breast cancer and normal tissues. Six hundred and ninety-three DEmRNAs, 25 DEmiRNAs and 364 DElncRNAs were retained in ER-/PR- cohort. ceRNA network in ER+/PR+ breast cancer cohort was constructed of the interactions of 4 DElncRNA–DEmiRNA pairs and 2 DEmiRNA–DEmRNA pairs included 4 DElncRNAs, 1 DEmiRNAs, and 2 DEmRNAs. ceRNA network in ER-/PR- breast cancer cohort was constructed of the interactions of 24 DElncRNA–DEmiRNA pairs and 1 DEmiRNA–DEmRNA pairs included 19 DElncRNAs, 4 DEmiRNAs, and 1 DEmRNA. MIR7-3HG- hsa-mir-204-NTRK2 axis was identified in both ER+/PR+ and ER-/PR- cohort in our study. Conclusions Based on the ceRNA hypothesis, a potential Her-2 related regulatory ceRNA networks are constructed which may provide novel insights into the mechanism underlying the biological processes of Her-2 positive breast cancer.
Collapse
Affiliation(s)
- Xiaochen Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Wenjing Meng
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Lu Zhang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yehui Shi
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|