1
|
Xu H, Jiang Y, Lu Y, Hu Z, Du R, Zhou Y, Liu Y, Zhao X, Tian Y, Yang C, Zhang Z, Qiu M, Wang Y. Thiram exposure induces tibial dyschondroplasia in broilers via the regulation effect of circ_003084/miR-130c-5p/BMPR1A crosstalk on chondrocyte proliferation and differentiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133071. [PMID: 38008051 DOI: 10.1016/j.jhazmat.2023.133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Thiram, an agricultural insecticide, has been demonstrated to induce tibial dyschondroplasia (TD) in avian species. Circular RNA (circRNAs), a novel class of functional biological macromolecules characterized by their distinct circular structure, play crucial roles in various biological processes and diseases. Nevertheless, the precise regulatory mechanism underlying non-coding RNA involvement in thiram-induced broiler tibial chondrodysplasia remains elusive. In this study, we established a broiler model of thiram exposure for 10 days to assess TD and obtain a ceRNA network by RNA sequencing. By analyzing the differentially expressed circRNAs network, we id entify that circ_003084 was significantly upregulated in TD cartilage. Elevated circ_003084 inhibited TD chondrocytes proliferation and differentiation in vitro but promote apoptosis. Mechanistically, circ_003084 competitively binds to miR-130c-5p and prevents miR-130c-5p to decrease the level of BMPR1A, which upregulates the expression of apoptosis genes Caspase 3, Caspase 9, Bax and Bcl2, and finally facilitates cell apoptosis. Taken together, these findings imply that circ_003084/miR-130c-5p/BMPR1A interaction regulated TD chicken chondrocyte proliferation, apoptosis, and differentiation. This is the first work to reveal the mechanism of regulation of circRNA-related ceRNA on thiram-induced TD, offering a key reference for environmental toxicology.
Collapse
Affiliation(s)
- Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuru Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxiang Lu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ranran Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaofu Tian
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Fratini L, Jaeger M, de Farias CB, Brunetto AT, Brunetto AL, Shaw L, Roesler R. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with microRNAs and long noncoding RNAs. Mol Cell Biochem 2021; 476:4107-4116. [PMID: 34292482 DOI: 10.1007/s11010-021-04226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The transcription factor Zinc finger E-box binding 1 (ZEB1) displays a range of regulatory activities in cell function and embryonic development, including driving epithelial-mesenchymal transition. Several aspects of ZEB1 function can be regulated by its functional interactions with noncoding RNA types, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Increasing evidence indicates that ZEB1 importantly influences cancer initiation, tumor progression, metastasis, and resistance to treatment. Cancer is the main disease-related cause of death in children and adolescents. Although the role of ZEB1 in pediatric cancer is still poorly understood, emerging findings have shown that it is expressed and regulates childhood solid tumors including osteosarcoma, retinoblastoma, neuroblastoma, and central nervous system tumors. Here, we review the evidence supporting a role for ZEB1, and its interplays with miRNAs and lncRNAs, in pediatric cancers.
Collapse
Affiliation(s)
- Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
3
|
Damerell V, Pepper MS, Prince S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther 2021; 6:246. [PMID: 34188019 PMCID: PMC8241855 DOI: 10.1038/s41392-021-00647-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
4
|
Feng T, Zhu Z, Jin Y, Wang H, Mao X, Liu D, Li Y, Lu L, Zuo G. The microRNA‑708‑5p/ZEB1/EMT axis mediates the metastatic potential of osteosarcoma. Oncol Rep 2019; 43:491-502. [PMID: 31894343 PMCID: PMC6967104 DOI: 10.3892/or.2019.7452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA‑708‑5p (miR‑708‑5p) and epithelial‑to‑mesenchymal transition (EMT) have been widely identified to contribute to the pathogenesis and progression of multiple cancers. However, the connection between miR‑708‑5p and EMT has not been sufficiently clarified. Therefore, our research aimed to investigate the impact of miR‑708‑5p on EMT and the metastasis of osteosarcoma (OS). We first analyzed the differentially expressed microRNAs (DEmiRNAs) from the GSE70367 dataset. We found that the expression of miR‑708‑5p was lower in OS cells. Overexpression of miR‑708‑5p was able to impair the migration and invasion of OS cells. Moreover, miR‑708‑5p inhibited EMT of OS cells MG63 and SaOS‑2, wherein E‑cadherin was increased, and N‑cadherin, vimentin, and Snail were decreased. Semaphorin 4C (SEMA4C), mitogen‑activated protein kinase kinase kinase 3 (MAP3K3), and zinc finger E‑box‑binding homeobox 1 (ZEB1) were predicted as target genes of miR‑708‑5p by bioinformatics method. Only ZEB1, one of the EMT‑inducing transcription factors, was validated as the direct target gene of miR‑708‑5p in OS cells through dual‑luciferase reporter assay and Western blot analysis. Knockdown of ZEB1 was found to inhibit the metastasis of MG63 and SaOS‑2 cells, whereas ZEB1 over-expression promoted their metastasis. In summary, miR‑708‑5p impaired the metastasis and EMT of OS, which was found to be mediated by inhibition of ZEB1.
Collapse
Affiliation(s)
- Tianyu Feng
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhongkai Zhu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaqian Jin
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Wang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohan Mao
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Liu
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiling Li
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lixia Lu
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 2019; 10:4141-4151. [PMID: 30580326 PMCID: PMC6326679 DOI: 10.18632/aging.101710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
Naringin, a citrus bioflavonoid, has anti-inflammatory actions and cardio- and neuroprotective effects. In addition, naringin exhibits multiple antitumor actions in several cancer types, including osteosarcoma, the most common type of bone cancer. Here, we show that naringin inhibits proliferation and invasion and induces apoptosis in human osteosarcoma cells by inhibiting zinc finger E-box binding homeobox 1 (Zeb1), a transcriptional repressor of epithelial differentiation involved in tumor metastasis. Our expression analyses confirm that Zeb1 is highly expressed in osteosarcoma specimens and cell lines. The effects of naringin, which included downregulation of Cyclin D1, MMP2, and bcl-2, where reproduced by siRNA-mediated Zeb1 silencing, whereas Zeb1 overexpression increased proliferation, migration, and Cyclin D1, MMP2, and bcl-2 levels. In addition, naringin administration reduced tumor nodule formation and attenuated the expression of the above proteins in the livers of mice injected with MG63 osteosarcoma cells. Our study provides preclinical evidence for the potential therapeutic application of naringin in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Ming
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Qiu Chuang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Wang Jiashi
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Li Bin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Wang Guangbin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Ji Xianglu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| |
Collapse
|
6
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
7
|
Wang B, Qu XL, Liu J, Lu J, Zhou ZY. HOTAIR promotes osteosarcoma development by sponging miR-217 and targeting ZEB1. J Cell Physiol 2018; 234:6173-6181. [PMID: 30367466 DOI: 10.1002/jcp.27394] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have drawn increasing attention because of the role which they play in various diseases, including osteosarcoma. So far, the function and mechanism of HOTAIR in osteosarcoma are unclear. In our study, we observed that HOTAIR was elevated accompanied with a decrease of miR-217 and an increase of ZEB1 in human osteosarcoma cells including U2OS, MG63, Saos-2, and SW1353 compared with human osteoblast cell line hFOB. In addition, the subsequent functional assay exhibited that silencing HOTAIR could significantly repress osteosarcoma cell growth, migration, invasion, and induce cell apoptosis capacity, which indicated that HOTAIR exerted an oncogenic role in osteosarcoma. Moreover, it was revealed by using bioinformatics analysis that HOTAIR can be targeted by microRNA-217 (miR-217). miR-217 has been recognized as a crucial tumor suppressive gene in cancers. We verified that mimics of miR-217 were able to suppress the osteosarcoma development. Furthermore, real-time quantitative PCR showed that HOTAIR siRNA increased miR-217 expression. Besides these, ZEB1 was identified as a downstream gene of miR-217 and we found that HOTAIR can mediate osteosarcoma progress by upregulating ZEB1 expression via acting as a competitive endogenous RNA (ceRNA) via miR-217. Taken these together, our findings in this study indicated that HOTAIR/miR-217/ZEB1 axis, as a novel research point can provide new insights into molecular mechanism of osteosarcoma development.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University, Shanghai, China
| | - Xing-Long Qu
- Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University, Shanghai, China
| | - Jiaxiang Liu
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junhui Lu
- Department of Rheumatology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Zong-Yu Zhou
- Department of Orthopedics, Huaiyin Hospital of Huai'an City, Huai'an, China
| |
Collapse
|
8
|
Bellavia D, Raimondi L, Costa V, De Luca A, Carina V, Maglio M, Fini M, Alessandro R, Giavaresi G. Engineered exosomes: A new promise for the management of musculoskeletal diseases. Biochim Biophys Acta Gen Subj 2018; 1862:1893-1901. [PMID: 29885361 DOI: 10.1016/j.bbagen.2018.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine. SCOPE OF REVIEW The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system. MAJOR CONCLUSIONS The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine. GENERAL SIGNIFICANCE However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.
Collapse
Affiliation(s)
- D Bellavia
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy.
| | - L Raimondi
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - A De Luca
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - M Maglio
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - M Fini
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - R Alessandro
- Department of Biopathology and Medical Biotechnologies, Section of Biology and Genetics, University of Palermo, Palermo 90133, Italy; Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - G Giavaresi
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|