1
|
Chuong HQ, Xinh PT, Tram DB, Ha NTT, Nguyen TM, Anh PNL, Van ND, Anh NHM, Dung PC, Nghia H, Vu HA. Spectrum of WAS gene mutations in Vietnamese patients with Wiskott-Aldrich syndrome. Pediatr Int 2024; 66:e15770. [PMID: 38641933 DOI: 10.1111/ped.15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 04/21/2024]
Abstract
BACKGROUND WAS gene mutational analysis is crucial to establish a definite diagnosis of Wiskott-Aldrich syndrome (WAS). Data on the genetic background of WAS in Vietnamese patients have not been reported. METHODS We recruited 97 male, unrelated patients with WAS and analyzed WAS gene mutation using Sanger sequencing technology. RESULTS We identified 36 distinct hemizygous pathogenic mutations, with 17 novel variants, from 38 patients in the entire cohort (39.2%). The mutational spectrum included 14 missense, 12 indel, five nonsense, four splicing, and one non-stop mutations. Most mutations appear only once, with the exception of c.37C>T (p.R13X) and c.374G>A (p.G125E) each of which occurs twice in unrelated patients. CONCLUSION Our data enrich the mutational spectrum of the WAS gene and are crucial for understanding the genetic background of WAS and for supporting genetic counseling.
Collapse
Affiliation(s)
- Ho Quoc Chuong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phan Thi Xinh
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Duong Bich Tram
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thanh Ha
- Department of Molecular Biology, Dai Phuoc Clinic, Ho Chi Minh City, Vietnam
| | - Tuan Minh Nguyen
- Department of Hematology, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | | | - Nguyen Dinh Van
- Department of Oncology and Hematology, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | | | - Phu Chi Dung
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Huynh Nghia
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:2029-2037. [PMID: 34211152 DOI: 10.1038/s41436-021-01242-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To develop an evidence-based clinical practice guideline for the use of exome and genome sequencing (ES/GS) in the care of pediatric patients with one or more congenital anomalies (CA) with onset prior to age 1 year or developmental delay (DD) or intellectual disability (ID) with onset prior to age 18 years. METHODS The Pediatric Exome/Genome Sequencing Evidence-Based Guideline Work Group (n = 10) used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence to decision (EtD) framework based on the recent American College of Medical Genetics and Genomics (ACMG) systematic review, and an Ontario Health Technology Assessment to develop and present evidence summaries and health-care recommendations. The document underwent extensive internal and external peer review, and public comment, before approval by the ACMG Board of Directors. RESULTS The literature supports the clinical utility and desirable effects of ES/GS on active and long-term clinical management of patients with CA/DD/ID, and on family-focused and reproductive outcomes with relatively few harms. Compared with standard genetic testing, ES/GS has a higher diagnostic yield and may be more cost-effective when ordered early in the diagnostic evaluation. CONCLUSION We strongly recommend that ES/GS be considered as a first- or second-tier test for patients with CA/DD/ID.
Collapse
|
3
|
McNulty SN, Evenson MJ, Riley M, Yoest JM, Corliss MM, Heusel JW, Duncavage EJ, Pfeifer JD. A Next-Generation Sequencing Test for Severe Congenital Neutropenia: Utility in a Broader Clinicopathologic Spectrum of Disease. J Mol Diagn 2020; 23:200-211. [PMID: 33217554 DOI: 10.1016/j.jmoldx.2020.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 10/24/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a collection of diverse disorders characterized by chronically low absolute neutrophil count in the peripheral blood, increased susceptibility to infection, and a significant predisposition to the development of myeloid malignancies. SCN can be acquired or inherited. Inherited forms have been linked to variants in a group of diverse genes involved in the neutrophil-differentiation process. Variants that promote resistance to treatment have also been identified. Thus, genetic testing is important for the diagnosis, prognosis, and management of SCN. Herein we describe clinically validated assay developed for assessing patients with suspected SCN. The assay is performed from a whole-exome backbone. Variants are called across all coding exons, and results are filtered to focus on 48 genes that are clinically relevant to SCN. Validation results indicated 100% analytical sensitivity and specificity for the detection of constitutional variants among the 48 reportable genes. To date, 34 individuals have been referred for testing (age range: birth to 67 years). Several pathogenic and likely pathogenic variants have been identified, including one in a patient with late-onset disease. The pattern of cases referred for testing suggests that this assay has clinical utility in a broader spectrum of patients beyond those in the pediatric population who have classic early-onset symptoms characteristic of SCN.
Collapse
Affiliation(s)
- Samantha N McNulty
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Meaghan Riley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Summit Pathology, Loveland, Colorado
| | - Jennifer M Yoest
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John D Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
4
|
Malinowski J, Miller DT, Demmer L, Gannon J, Pereira EM, Schroeder MC, Scheuner MT, Tsai ACH, Hickey SE, Shen J. Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. Genet Med 2020; 22:986-1004. [PMID: 32203227 PMCID: PMC7222126 DOI: 10.1038/s41436-020-0771-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Exome and genome sequencing (ES/GS) are performed frequently in patients with congenital anomalies, developmental delay, or intellectual disability (CA/DD/ID), but the impact of results from ES/GS on clinical management and patient outcomes is not well characterized. A systematic evidence review (SER) can support future evidence-based guideline development for use of ES/GS in this patient population. Methods We undertook an SER to identify primary literature from January 2007 to March 2019 describing health, clinical, reproductive, and psychosocial outcomes resulting from ES/GS in patients with CA/DD/ID. A narrative synthesis of results was performed. Results We retrieved 2654 publications for full-text review from 7178 articles. Only 167 articles met our inclusion criteria, and these were primarily case reports or small case series of fewer than 20 patients. The most frequently reported outcomes from ES/GS were changes to clinical management or reproductive decision-making. Two studies reported on the reduction of mortality or morbidity or impact on quality of life following ES/GS. Conclusion There is evidence that ES/GS for patients with CA/DD/ID informs clinical and reproductive decision-making, which could lead to improved outcomes for patients and their family members. Further research is needed to generate evidence regarding health outcomes to inform robust guidelines regarding ES/GS in the care of patients with CA/DD/ID.
Collapse
Affiliation(s)
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Laurie Demmer
- Atrium Health's Levine Children's Hospital, Charlotte, NC, USA
| | - Jennifer Gannon
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri, Kansas City, MO, USA
| | - Elaine Maria Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maren T Scheuner
- Division of Medical Genetics, Department of Pediatrics and Division of Hematology-Oncology, Department of Medicine, University of California, San Francisco, CA, USA.,San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Anne Chun-Hui Tsai
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
5
|
Jin YY, Wu J, Chen TX, Chen J. When WAS Gene Diagnosis Is Needed: Seeking Clues Through Comparison Between Patients With Wiskott-Aldrich Syndrome and Idiopathic Thrombocytopenic Purpura. Front Immunol 2019; 10:1549. [PMID: 31354712 PMCID: PMC6634258 DOI: 10.3389/fimmu.2019.01549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Wiskott-Aldrich syndrome (WAS) is a rare and severe X-linked disorder with variable clinical phenotypes correlating with the type of mutations in the WAS gene. The syndrome is difficult to differentiate from idiopathic thrombocytopenic purpura (ITP) before genetic diagnosis. We retrospectively reviewed patients suspected to have WAS who were referred to our hospital from 2004 to 2016 and compared the clinical features and laboratory examination of genetically confirmed WAS patients and of patients diagnosed with ITP in order to seek some clues to distinguish WAS and ITP before genetic diagnosis. Methods: Seventy-eight children suspected to have WAS from 78 unrelated families were enrolled in this study. The clinical data and laboratory examination of children were reviewed in the present study. The distribution of lymphocyte subsets from peripheral blood was examined by how cytometry. WASP mutations were identified by direct sequencing of PCR-amplified genomic DNA. Results: Forty-two patients were finally diagnosed with WAS genetically. The median onset age of these patients was 1 month (range: 1 day−10 months). The median diagnosis lag was 4.6 months (range: 0 months−9.42 years). Fifteen patients (35.71%) had positive family histories. More than half of the patients (n = 23, 54.76%) had diarrhea. Twenty-three (54.76%) had pneumonia, 7 with severe symptoms. Major bleeding events included skin spots or petechiae (n = 27, 64.29%), per-rectal bleeding (n = 21, 50.00%), epistaxis (n = 7, 16.67%) and intracranial bleeding (n = 2, 4.76%). Twenty-nine patients (69.05%) had eczema, and one patient had a drug allergy. Three patients had autoimmune diseases, among whom 2 had autoimmune hemolytic anemia and one had autoimmune hemolytic anemia and IgA nephropathy. A total of 42 mutations in WASP were identified, including 19 novel mutations. Eight patients received hematopoietic stem cell transplantation (HSCT) and all survived. Compared with the 30 patients diagnosed with ITP, the WAS patients had higher EOS counts and elevated IgE level, increased NK cell numbers but fewer CD8+T lymphocytes. Conclusion: The WAS gene diagnosis should be considered in all males with ITP-like features, especially for patients with a very early onset age, decreased MPV (<6.5 fl), higher EOS counts and elevated IgE level, increased NK cell number, diminished CD8+T lymphocyte count.
Collapse
Affiliation(s)
- Ying-Ying Jin
- Department of Rheumatology/Immunology, Children's National Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Division of Immunology, Institute of Pediatric Translational Medicine, Children's National Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong-Xin Chen
- Department of Rheumatology/Immunology, Children's National Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Immunology, Institute of Pediatric Translational Medicine, Children's National Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of Dermatology, Children's National Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Fathi M, Shahraki H, Sharif Rahmani E, Rahimi H, Omidi P, Darvishi S, Abazari MF, Hosseini A. Whole Exome Sequencing of an X-linked Thrombocytopenia Patient with Normal Sized Platelets. Avicenna J Med Biotechnol 2019; 11:253-258. [PMID: 31379999 PMCID: PMC6626504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Wiskott-Aldrich Syndrome (WAS) is a rare X-linked recessive Primary Immunodeficiency (PID) caused by mutations in WAS gene which encodes a protein known as WASp. WASp plays important roles in cytoskeletal functions that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. WASp defect particularly causes platelets abnormality which is presented in forms of decrease of Mean Platelet Volume (MPV) and thrombocytopenia in most WAS conditions; nevertheless, some studies reported WAS patients with a normal or large size of platelets in recent years. This phenomenon is unique and the exact mechanism of thrombocytopenia with a normal or large size of platelets is still unknown. In this study, Next Generation Sequencing (NGS) was utilized to discover the causing mutation in WAS gene; furthermore, an attempt was made to evaluate the possibility of other mutations or genes especially WASp interacting proteins and inherited platelet disorder genes in patient clinical symptoms for the purpose of understanding the origin of such unique symptom and to perform further analysis if it is required. Therefore, clinical manifestations and immunologic functions of the patient were checked and Whole Exome Sequencing (WES) was performed to analyze all exonic variations which can be associated with patient phenotypes. Finally, a novel de novo mutation in WAS gene which truncates WASp to half of its normal size was determined as the only cause of clinical manifestation.
Collapse
Affiliation(s)
- Majid Fathi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hojat Shahraki
- Department of Laboratory Sciences, Faculty of Allied Medicine, Zahedan University of Medical Sciences, Zahedan, Iran,Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Edris Sharif Rahmani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Pouria Omidi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Darvishi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran,Corresponding author: Arshad Hosseini, Ph.D., Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran, Tel: +98 21 86704604, Fax: +98 21 88622533, E-mail:
| |
Collapse
|
7
|
Smith HS, Swint JM, Lalani SR, Yamal JM, de Oliveira Otto MC, Castellanos S, Taylor A, Lee BH, Russell HV. Clinical Application of Genome and Exome Sequencing as a Diagnostic Tool for Pediatric Patients: a Scoping Review of the Literature. Genet Med 2019; 21:3-16. [PMID: 29760485 DOI: 10.1038/s41436-018-0024-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. METHODS PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. RESULTS Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. CONCLUSION Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Baylor College of Medicine, The University of Texas School of Public Health, Houston, Texas, USA
| | - J Michael Swint
- The University of Texas School of Public Health, The Center for Clinical Research and Evidence-Based Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Seema R Lalani
- Baylor College of Medicine, Baylor Genetics Laboratory, Houston, Texas, USA
| | - Jose-Miguel Yamal
- The University of Texas School of Public Health, Houston, Texas, USA
| | | | | | - Amy Taylor
- Texas Medical Center Library, Houston, Texas, USA
| | | | - Heidi V Russell
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|