1
|
Chen J, Shi Z, Zhang C, Xiong K, Zhao W, Wang Y. Oroxin A alleviates early brain injury after subarachnoid hemorrhage by regulating ferroptosis and neuroinflammation. J Neuroinflammation 2024; 21:116. [PMID: 38702778 PMCID: PMC11069275 DOI: 10.1186/s12974-024-03099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhonghua Shi
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Chunlei Zhang
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Wei Zhao
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
2
|
Gareev I, Shumadalova A, Ilyasova T, Beilerli A, Shi H. Circular RNAs in intracranial aneurysms: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Noncoding RNA Res 2024; 9:211-220. [PMID: 38125753 PMCID: PMC10730429 DOI: 10.1016/j.ncrna.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Intracranial aneurysms (IAs) present a substantial health threat, given the potential for catastrophic ruptures and subarachnoid hemorrhages (SAH). Swift and effective measures for diagnosis and treatment are paramount to enhance patient outcomes and alleviate the associated healthcare burden. In this context, circular RNAs (circRNAs) have emerged as an intriguing area of investigation, offering promise as both diagnostic biomarkers and therapeutic targets for IAs. CircRNAs have demonstrated their influence on critical molecular and cellular processes underpinning IAs pathogenesis, revealing their pivotal role in understanding this complex ailment. Beyond their diagnostic potential, circRNAs hold great potential as prognostic markers, providing crucial insights into IAs rupture risk. The unique circular structure and their regulatory functions make circRNAs an enticing avenue for innovative therapeutic approaches. The ongoing study of circRNAs in the context of IAs is an exciting and rapidly evolving field that has the potential to revolutionize approaches to diagnosis, treatment, and prevention of this life-threatening condition. As research continues to unravel the intricate roles of circRNAs, they are poised to become invaluable tools in clinical practice, enhancing patient care and ultimately reducing the impact of cerebral aneurysms on both individuals and healthcare systems. This comprehensive review delves deeply into the world of circRNAs in the realm of IAs, elucidating their multifaceted roles in the onset and progression of this condition. Moreover, this review ventures into the diagnosis and therapeutic potential of circRNAs, exploring their possible applications in gene therapy and as targets for novel treatment modalities.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
Chen J, Wang Y, Li M, Zhu X, Liu Z, Chen Q, Xiong K. Netrin-1 Alleviates Early Brain Injury by Regulating Ferroptosis via the PPARγ/Nrf2/GPX4 Signaling Pathway Following Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:219-237. [PMID: 36631632 DOI: 10.1007/s12975-022-01122-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Xun Zhu
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuanghua Liu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Chen J, Li M, Chen L, Xu Q, Yan T, Zhang C, Hu P, He J, Zhu X, Zhu X, Wang Y. Pioglitazone in spontaneous subarachnoid hemorrhage: study protocol of a multicenter, double-blind, randomized trial (PSSH). Front Pharmacol 2024; 14:1323292. [PMID: 38249343 PMCID: PMC10796591 DOI: 10.3389/fphar.2023.1323292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Spontaneous subarachnoid hemorrhage (SAH), is a disorder that may be fatal and is primarily caused by a ruptured brain aneurysm. Despite significant leaps forward in the methods to produce aneurysms, the long-term outcomes did not much improve. Pioglitazone is a medication that has been authorized by the FDA as an agonist for the peroxisome proliferator-activated receptor-gamma (PPARγ). Pioglitazone or PPARγ has neuroprotective benefits in animal experiments both during and after traumatic brain injury (TBI) and SAH. Nevertheless, the treatment impact of Pioglitazone on humans is still unknown at this time. As a result, we will conduct a randomized, double-blind, placebo-controlled trial to explore the impact of pioglitazone on SAH. Methods/Design: This trial will recruit 400 patients with SAH from four Chinese hospitals. These patients will be equally and randomly assigned to Pioglitazone and placebo control groups for up to 30 days. Scores on the modified Rankin scale (mRS) are the primary outcomes. The secondary outcomes are a 30-day all-cause mortality rate, 6 months of Montreal cognitive assessment (Mo-CA), delayed cerebral ischemia, the requirement for intensive care, the incidence of sepsis, etc. All serious adverse events (SAEs) were recorded during the hospital. Every primary and safety analysis was conducted based on the intention-to-treat technique. The participants were given either a matching placebo or 15 mg of pioglitazone, with dose titrated to a target of 45 mg daily. Data on the therapeutic use of pioglitazone after SAH will be provided as a consequence of the findings of this experiment. In addition, this pilot trial is the first to prospectively investigate the effectiveness and safety of pioglitazone in patients with SAH. Ethics and dissemination: Ethics approval was obtained from the Medical Ethics Committee of 904th Hospital of Joint Logistic Support Force of PLA (Wuxi Taihu Hospital, approval No. 20220701). The findings of the trial will be presented at conferences, discussed in relevant patient groups, and published in peer-reviewed journals. Clinical Trial Registration: clinicaltrials.gov, identifier ChiCTR2200062954.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Neurosurgery, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
- Department of Neurosurgery, Wuxi Huishan Peoples Hospital, Wuxi, Jiangsu, China
| | - Qinyi Xu
- Department of Neurosurgery, Wuxi Huishan Peoples Hospital, Wuxi, Jiangsu, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunlei Zhang
- Department of Neurosurgery, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Ping Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianqing He
- Department of Neurosurgery, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Xun Zhu
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuhai Wang
- Department of Neurosurgery, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| |
Collapse
|
5
|
Xia J, Hu C, Wang L, Zhang Y. Association between statin use on delirium and 30-day mortality in patients with chronic obstructive pulmonary disease in the intensive care unit. Eur J Med Res 2023; 28:572. [PMID: 38062497 PMCID: PMC10704755 DOI: 10.1186/s40001-023-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Delirium occurs frequently in patients with chronic obstructive pulmonary disease in the intensive care unit. Effective prevention and treatment strategies for delirium remain limited. We aimed to assess delirium and 30-day mortality in patients with chronic obstructive pulmonary disease who were statin and non-statin users. METHODS In this retrospective study, patients with chronic obstructive pulmonary disease were identified from the Medical Information Mart for Intensive Care database (MIMIC-IV). The primary exposure variable was the use of statins 3 days after entering the intensive care unit and the primary outcome measure was the presence of delirium. The secondary outcome measure was 30-day mortality. Since the cohort study was retrospective, we used an inverse probability weighting derived from the propensity score matching to balance different variables. RESULTS Among a cohort of 2725 patients, 1484 (54.5%) were statin users. Before propensity score matching, the prevalence of delirium was 16% and the 30-day mortality was 18% in patients with chronic obstructive pulmonary disease. Statin use was significantly negatively correlated with delirium, with an odds ratio of 0.69 (95% CI 0.56-0.85, p < 0.001) in the inverse probability weighted cohort and 30-day mortality of 0.7 (95% CI 0.57-0.85, p < 0.001). CONCLUSIONS Statin use is associated with a lower incidence of delirium and 30-day mortality in patients with chronic obstructive pulmonary disease in the intensive care unit.
Collapse
Affiliation(s)
- Jiangling Xia
- Department of Anesthesiology, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zibo, Shandong, China
| | - Chunhuan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Leilei Wang
- School of Architecture and Engineering, Zibo Vocational Institute, Zibo, Shandong, China
| | - Yuzhu Zhang
- Department of Anesthesiology, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zibo, Shandong, China.
| |
Collapse
|
6
|
Xia J, Wang L, Zhang N, Xu H. Association between delirium and statin use in patients with congestive heart failure: a retrospective propensity score-weighted analysis. Front Aging Neurosci 2023; 15:1184298. [PMID: 37409005 PMCID: PMC10318247 DOI: 10.3389/fnagi.2023.1184298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background The relationship between statin use and delirium remains controversial; therefore, we aimed to study the association between statin exposure and delirium and in-hospital mortality in patients with congestive heart failure. Methods In this retrospective study, patients with congestive heart failure were identified from the Medical Information Mart for Intensive Care database. The primary exposure variable was statin use 3 days after admission to the intensive care unit, and the primary outcome measure was the presence of delirium. The secondary outcome measure was in-hospital mortality. Since the cohort study was retrospective, we used inverse probability weighting derived from the propensity score to balance various variables. Results Of 8,396 patients, 5,446 (65%) were statin users. Before matching, the prevalence of delirium was 12.5% and that of in-hospital mortality was 11.8% in patients with congestive heart failure. Statin use was significantly negatively correlated with delirium, with an odds ratio of 0.76 (95% confidence interval: [0.66-0.87]; P < 0.001) in the inverse probability weighting cohort and in-hospital mortality of 0.66 (95% confidence interval: [0.58-0.75]; P < 0.001). Conclusion Statins administered in the intensive care unit can significantly reduce the incidence of delirium and in-hospital mortality in patients with congestive heart failure.
Collapse
Affiliation(s)
- Jiangling Xia
- Department of Anesthesiology, Zibo Central Hospital, Zibo, Shandong, China
| | - Leilei Wang
- School of Architecture and Engineering, Zibo Vocational Institute, Zibo, Shandong, China
| | - Nannan Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China
| | - Hongyu Xu
- Department of Anesthesiology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
7
|
Gan N, Jia TL, Tian N, Liu SS, Cao S. Effect of nimodipine combined with atorvastatin calcium on microinflammation and oxidative stress levels in patients with cerebral vasospasm after subarachnoid hemorrhage. Pak J Med Sci 2023; 39:434-438. [PMID: 36950409 PMCID: PMC10025739 DOI: 10.12669/pjms.39.2.6721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/23/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Objective To evaluate the effect of nimodipine combined with atorvastatin calcium on the micro inflammation and oxidative stress levels in patients with cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH) and its clinical implications. Methods A total of 80 patients with CVS caused by SAH who had been admitted to Baoding First Central Hospital from August 2021 to August 2022 were selected and randomly divided into two groups. The control group underwent conventional symptomatic treatment, while the experimental group was administered nimodipine combined with atorvastatin calcium on the basis of conventional treatment. The changes in the micro inflammatory cytokines and oxidative stress factors in the two groups were compared, as well as the differences in clinical efficacy and incidence of adverse drug reactions. Result After treatment, the levels of inflammatory cytokines in the experimental group decreased more significantly than those in the control group (p=0.00). After treatment, the serum levels of oxidative stress factors were obviously higher in the experimental group than in the control group (p=0.00). After treatment, the total efficacy was 77.5% in the experimental group and 55% in the control group, and the difference was statistically significant (p=0.04). Conclusions Nimodipine combined with atorvastatin calcium could significantly improve the clinical symptoms in patients with CVS after SAH, which would be beneficial, safe, and effective for the patient's recovery.
Collapse
Affiliation(s)
- Ning Gan
- Ning Gan, Department of Neurosurgery, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Tong-le Jia
- Tong-le Jia, Department of Neurosurgery, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Nan Tian
- Nan Tian, Department of Neurosurgery, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Si-si Liu
- Si-si Liu. Department of Neurology and Intensive Care, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Shan Cao
- Shan Cao, Department of Neurology, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| |
Collapse
|
8
|
Wu Y, Zhang J, Feng X, Jiao W. Omega-3 polyunsaturated fatty acids alleviate early brain injury after traumatic brain injury by inhibiting neuroinflammation and necroptosis. Transl Neurosci 2023; 14:20220277. [PMID: 36895263 PMCID: PMC9990778 DOI: 10.1515/tnsci-2022-0277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Presently, traumatic brain injury (TBI) is a leading contributor to disability and mortality that places a considerable financial burden on countries all over the world. Docosahexaenoic acid and eicosapentaenoic acid are two kinds of omega-3 polyunsaturated fatty acids (ω-3 PUFA), both of which have been shown to have beneficial biologically active anti-inflammatory and antioxidant effects. However, the neuroprotective effect of ω-3 PUFA in TBI has not been proven, and its probable mechanism remains obscure. We suppose that ω-3 PUFA can alleviate early brain injury (EBI) via regulating necroptosis and neuroinflammation after TBI. This research intended to examine the neuroprotective effect of ω-3 and its possible molecular pathways in a C57BL/6 mice model of EBI caused by TBI. Cognitive function was assessed by measuring the neuronal necroptosis, neuroinflammatory cytokine levels, brain water content, and neurological score. The findings demonstrate that administration of ω-3 remarkably elevated neurological scores, alleviated cerebral edema, and reduced inflammatory cytokine levels of NF-κB, interleukin-1β (IL-1β), IL-6, and TNF-α, illustrating that ω-3 PUFA attenuated neuroinflammation, necroptosis, and neuronal cell death following TBI. The PPARγ/NF-κB signaling pathway is partially responsible for the neuroprotective activity of ω-3. Collectively, our findings illustrate that ω-3 can alleviate EBI after TBI against neuroinflammation and necroptosis.
Collapse
Affiliation(s)
- Yali Wu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Jing Zhang
- Department of Neurosurgery, The Fourth People's Hospital of Taizhou, Taizhou, 225300, China
| | - Xiaoyan Feng
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Wei Jiao
- Department of Nursing, 904th Hospital of Joint Logistic Support Force of PLA, 101 Xing Yuan North Road, Wuxi, 214044, China
| |
Collapse
|
9
|
Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci 2022; 16:1025708. [PMID: 36582214 PMCID: PMC9793715 DOI: 10.3389/fncel.2022.1025708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a common cerebrovascular disease with high disability and mortality rates worldwide. The pathophysiological mechanisms involved in an aneurysm rupture in SAH are complex and can be divided into early brain injury and delayed brain injury. The initial mechanical insult results in brain tissue and vascular disruption with hemorrhages and neuronal necrosis. Following this, the secondary injury results in diffused cerebral damage in the peri-core area. However, the molecular mechanisms of neuronal death following an aneurysmal SAH are complex and currently unclear. Furthermore, multiple cell death pathways are stimulated during the pathogenesis of brain damage. Notably, particular attention should be devoted to necrosis, apoptosis, autophagy, necroptosis, pyroptosis and ferroptosis. Thus, this review discussed the mechanism of neuronal death and its influence on brain injury after SAH.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuanghua Liu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Xu J, Li Q, Xu CY, Mao S, Jin JJ, Gu W, Shi Y, Zou CF, Ye L. Obstructive sleep apnea aggravates neuroinflammation and pyroptosis in early brain injury following subarachnoid hemorrhage via ASC/HIF-1α pathway. Neural Regen Res 2022; 17:2537-2543. [PMID: 35535908 PMCID: PMC9120669 DOI: 10.4103/1673-5374.339000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/04/2022] Open
Abstract
Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage. However, the underlying mechanism remains unclear. In this study, we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea. We found that sleep apnea aggravated brain edema, increased hippocampal neuron apoptosis, and worsened neurological function in this mouse model of subarachnoid hemorrhage. Then, we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died, and lactate dehydrogenase release increased, after 48 hours. We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β, interleukin-18, interleukin-6, nuclear factor κB, pyroptosis-related protein caspase-1, pro-caspase-1, and NLRP3, promoted the proliferation of astrocytes, and increased the expression of hypoxia-inducible factor 1α and apoptosis-associated speck-like protein containing a CARD, which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway. We also found that knockdown of hypoxia-inducible factor 1α expression in vitro greatly reduced the damage to HY22 cells. These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis, at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.
Collapse
Affiliation(s)
- Jun Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Li
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen-Yu Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shan Mao
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jia-Jia Jin
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Shi
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chun-Fang Zou
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Respiration, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, Jiangsu Province, China
| | - Liang Ye
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
11
|
Wu X, Jiao W, Chen J, Tao Y, Zhang J, Wang Y. Ulinastatin alleviates early brain injury after intracerebral hemorrhage by inhibiting oxidative stress and neuroinflammation via ROS/MAPK/Nrf2 signaling pathway. Acta Cir Bras 2022; 37:e370606. [PMID: 36074399 PMCID: PMC9448248 DOI: 10.1590/acb370606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: Spontaneous intracerebral hemorrhage (ICH) is still a major public health problem, with high mortality and disability. Ulinastatin (UTI) was purified from human urine and has been reported to be anti-inflammatory, organ protective, and antioxidative stress. However, the neuroprotection of UTI in ICH has not been confirmed, and the potential mechanism is unclear. In the present study, we aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in ICH-induced early brain injury in a C57BL/6 mouse model. Methods: The neurological score, brain water content, neuroinflammatory cytokine levels, oxidative stress levels, and neuronal damage were evaluated. Results: UTI treatment markedly increased the neurological score, alleviated brain edema, decreased the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and NF-κB, decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and upregulated the levels of glutathione (GSH), superoxide dismutase (SOD), and Nrf2. This finding indicated that UTI-mediated inhibition of neuroinflammation and oxidative stress alleviated neuronal damage after ICH. The neuroprotective capacity of UTI is partly dependent on the ROS/MAPK/Nrf2 signaling pathway. Conclusions: UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Xi Wu
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Wei Jiao
- MD. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Junhui Chen
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Yunna Tao
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Jing Zhang
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Yuhai Wang
- PhD. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| |
Collapse
|
12
|
Mi L, Min X, Chai Y, Zhang J, Chen X. NLRP1 Inflammasomes: A Potential Target for the Treatment of Several Types of Brain Injury. Front Immunol 2022; 13:863774. [PMID: 35707533 PMCID: PMC9189285 DOI: 10.3389/fimmu.2022.863774] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) is a member of the NLR family. The NLRP1 inflammasome consists of the NLRP1 protein, the adaptor protein apoptosis-associated speck-like protein containing a CARD domain, and the effector molecule pro-caspase-1. When stimulated, the inflammasome initiates the cleavage of pro-caspase-1 and converts it into its active form, caspase-1; then, caspase-1 facilitates the cleavage of the proinflammatory cytokines interleukin-1β and interleukin-18 into their active and secreted forms. In addition, caspase-1 also mediates the cleavage of gasdermin D, which leads to pyroptosis, an inflammatory form of cell death. Pathological events that damage the brain and result in neuropathological conditions can generally be described as brain injury. Neuroinflammation, especially that driven by NLRP1, plays a considerable role in the pathophysiology of brain injury, such as early brain injury (EBI) of subarachnoid hemorrhage, ischemic brain injury during stroke, and traumatic brain injury (TBI). In this article, a thorough overview of NLRP1 is presented, including its structure, mechanism of activation, and role in neuroinflammation. We also present recent studies on NLRP1 as a target for the treatment of EBI, ischemic brain injury, TBI, and other types of brain injury, thus highlighting the perspective of NLRP1 as an effective mediator of catastrophic brain injury.
Collapse
Affiliation(s)
- Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiaobin Min
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Baodi Clinical College, Tianjin Medical University, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- *Correspondence: Xin Chen,
| |
Collapse
|
13
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
15
|
Wan R, Cai S, Pan D, Yang W, Zhou R. Effects of Atorvastatin Therapy on Postoperative Delirium After Malignant Tumor Surgeries in Older Adults. Neuropsychiatr Dis Treat 2022; 18:915-923. [PMID: 35469242 PMCID: PMC9034858 DOI: 10.2147/ndt.s360332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Postoperative delirium (POD) is one of the prevalent and potentially fatal clinical conditions, leading to high disability and mortality in older patients, as well as increased duration of hospital stay and more hospitalization expenses. There were no effective drugs in the clinical management of POD, and an absence of evidence-based medicine concerning the treatment of POD. MATERIALS AND METHODS The present study explored whether atorvastatin (Ato) can decrease the occurrence rate of POD. The present research included patients over the age of 60 who were hospitalized to critical care units (ICUs) following surgery for malignant tumors. Patients received Ato (40mg/day) or placebos utilizing a computer-based random sequencing (in a 1:1 ratio). The primary outcome measure was the occurrence of delirium within the first seven days following surgery. RESULTS A total of 230 individuals were classified into two groups, namely the placebo group (n=123) and the Ato group (n=107). Patients belonging to two groups had similar baseline clinical data, and there were no statistically significant differences between them. The occurrence of delirium in the Ato group was remarkably reduced unlike the case in the placebo group. 30-day all-cause mortality did not vary significantly between the two groups. Pulmonary infection and Bedsore were significantly decreased in the Ato group than the placebo group, there were no statistically significant differences between the two groups in rhabdomyolysis and abnormal liver enzymes. In terms of medication responses, there were no statistically significant differences between the two groups. Ato patients had remarkably shortened hospital stays and spent remarkably less on hospitalization expenditures in comparison with those in the placebo group. CONCLUSION The findings from the present research indicated that Ato can decrease the occurrence of delirium following surgical operation of malignant tumors among elderly patients, it also can reduce the duration of hospitalization, hospital cost, and post-surgical complications, but not improve 30-day all-cause mortality. REGISTRATION NUMBER ChiCTR-IPR-17011984.
Collapse
Affiliation(s)
- Rong Wan
- Department of Quality Management, The 904th Hospital of Joint Logistic Support Force (Anhui Medical University Affiliated Wuxi Clinical College), Wuxi, 214044, People's Republic of China
| | - Shengwei Cai
- Department of Oncology, The 904th Hospital of Joint Logistic Support Force (Anhui Medical University Affiliated Wuxi Clinical College), Wuxi, 214044, People's Republic of China
| | - Dejian Pan
- Department of Oncology, The 904th Hospital of Joint Logistic Support Force (Anhui Medical University Affiliated Wuxi Clinical College), Wuxi, 214044, People's Republic of China
| | - Weilin Yang
- Department of Oncology, The 904th Hospital of Joint Logistic Support Force (Anhui Medical University Affiliated Wuxi Clinical College), Wuxi, 214044, People's Republic of China
| | - Rengui Zhou
- Department of Oncology, The 904th Hospital of Joint Logistic Support Force (Anhui Medical University Affiliated Wuxi Clinical College), Wuxi, 214044, People's Republic of China
| |
Collapse
|
16
|
Tao Y, Xu Y, Shen M, Feng X, Wu Y, Wu Y, Shen L, Wang Y. The neuroprotection of cerebrolysin after spontaneous intracerebral hemorrhage through regulates necroptosis via Akt/ GSK3β signaling pathway. Acta Cir Bras 2021; 36:e361002. [PMID: 34817023 PMCID: PMC8610213 DOI: 10.1590/acb361002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. METHODS In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). RESULTS The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. CONCLUSIONS CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wu
- Anhui Medical University, China
| | | | | | | |
Collapse
|
17
|
Jiang B, Li Y, Dai W, Wu A, Wu H, Mao D. Hydrogen-rich saline alleviates early brain injury through regulating of ER stress and autophagy after experimental subarachnoid hemorrhage. Acta Cir Bras 2021; 36:e360804. [PMID: 34644772 PMCID: PMC8516430 DOI: 10.1590/acb360804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Subarachnoid hemorrhage (SAH) is a common complication of cerebral vascular disease. Hydrogen has been reported to alleviate early brain injury (EBI) through oxidative stress injury, reactive oxygen species (ROS), and autophagy. Autophagy is a programmed cell death mechanism that plays a vital role in neuronal cell death after SAH. However, the precise role of autophagy in hydrogen-mediated neuroprotection following SAH has not been confirmed. METHODS In the present study, the objective was to investigate the neuroprotective effects and potential molecular mechanisms of hydrogen-rich saline in SAH-induced EBI by regulating neural autophagy in the C57BL/6 mice model. Mortality, neurological score, brain water content, ROS, malondialdehyde (MDA), and neuronal death were evaluated. RESULTS The results show that hydrogen-rich saline treatment markedly increased the survival rate and neurological score, increased neuron survival, downregulated the autophagy protein expression of Beclin-1 and LC3, and endoplasmic reticulum (ER) stress. That indicates that hydrogen-rich saline-mediated inhibition of autophagy and ER stress ameliorate neuronal death after SAH. The neuroprotective capacity of hydrogen-rich saline is partly dependent on the ROS/Nrf2/heme oxygenase-1 (HO-1) signaling pathway. CONCLUSIONS The results of this study demonstrate that hydrogen-rich saline improves neurological outcomes in mice and reduces neuronal death by protecting against neural autophagy and ER stress.
Collapse
Affiliation(s)
| | | | | | - An Wu
- Wenzhou Medical University, China
| | | | | |
Collapse
|
18
|
Fei W, Jiao W, Feng X, Chen X, Wang Y. Intermittent hypoxia mimicking obstructive sleep apnea aggravates early brain injury following ICH via neuroinflammation and apoptosis. Mol Med Rep 2021; 24:824. [PMID: 34558649 PMCID: PMC8485128 DOI: 10.3892/mmr.2021.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke associated with high mortality and morbidity due to the lack of effective therapy. Obstructive sleep apnea (OSA) has been reported to aggravate early brain injury (EBI) and worsen the overall outcome of patients with ICH. However, the precise role of OSA-mediated neuroinflammation and apoptosis following ICH has not been confirmed. The present study aimed to investigate the neuronal damage induced by OSA and the potential molecular mechanisms by which ICH-induced EBI regulates neural apoptosis in a C57BL/6 mouse ICH model. Mortality, neurological score, brain water content and neuronal death were evaluated by Evans blue extravasation, TUNEL staining, ELISA, analysis of reactive oxygen species/lipid peroxidation and western blotting. The results showed that OSA induction decreased survival rate, neurological score and neuron survival and upregulated the protein expression levels of Caspase-3, Bax, cytokines IL-1β, IL-6 and TNF-α and NF-κB, which indicated that OSA-mediated induction of apoptosis and neuroinflammation aggravated neuronal death following ICH. The molecular mechanism was partly dependent on the activating transcription factor/CHOP pathway. Taken together, the results demonstrated that OSA worsens neurological outcomes in mice and increases neuronal death by enhancing neural apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Wenjing Fei
- Department of Neurology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei Jiao
- Department of Nursing, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xiaoyan Feng
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xufeng Chen
- Department of Gastroenterology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yuhai Wang
- Department of Neurology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
19
|
Yang L, Wang Y, Zhang C, Cheng H. Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage‑induced brain injury via necroptosis and neuroinflammation. Mol Med Rep 2021; 24:544. [PMID: 34080030 PMCID: PMC8185517 DOI: 10.3892/mmr.2021.12183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapies. The alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid receptor antagonist perampanel has been reported to alleviate early brain injury following subarachnoid hemorrhage and traumatic brain injury by reducing reactive oxygen species, apoptosis, autophagy, and necroptosis. Necroptosis is a caspase‑independent programmed cell death mechanism that serves a vital role in neuronal cell death following ICH. However, the precise role of necroptosis in perampanel‑mediated neuroprotection following ICH has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of perampanel in ICH‑induced early brain injury by regulating neural necroptosis in C57BL/6 mice and in a hemin‑induced neuron damage cell culture model. Mortality, neurological score, brain water content, and neuronal death were evaluated. The results demonstrated that perampanel treatment increased the survival rate and neurological score, and increased neuron survival. In addition, perampanel treatment downregulated the protein expression levels of receptor interacting serine/threonine kinase (RIP) 1, RIP3, and mixed lineage kinase domain like pseudokinase, and of the cytokines IL‑1β, IL‑6, TNF‑α, and NF‑κB. These results indicated that perampanel‑mediated inhibition of necroptosis and neuroinflammation ameliorated neuronal death in vitro and in vivo following ICH. The neuroprotective capacity of perampanel was partly dependent on the PTEN pathway. Taken together, the results of the present study demonstrated that perampanel improved neurological outcomes in mice and reduced neuronal death by protecting against neural necroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Lixiang Yang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Can Zhang
- Department of Neurosurgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
20
|
Xu XQ, Luo JZ, Li XY, Tang HQ, Lu WH. Effects of perioperative rosuvastatin on postoperative delirium in elderly patients: A randomized, double-blind, and placebo-controlled trial. World J Clin Cases 2021; 9:5909-5920. [PMID: 34368309 PMCID: PMC8316934 DOI: 10.12998/wjcc.v9.i21.5909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Experimental evidence has indicated the benefits of statins for the treatment of postoperative delirium. Previously, clinical trials did not reach definite conclusions on the effects of statins on delirium. Some clinical trials have indicated that statins reduce postoperative delirium and improve outcomes, while some studies have reported negative results.
AIM To evaluate whether perioperative rosuvastatin treatment reduces the incidence of delirium and improves clinical outcomes.
METHODS This randomized, double-blind, and placebo-controlled trial was conducted in a single center in Jiangsu, China. This study enrolled patients aged greater than 60 years who received general anesthesia during elective operations and provided informed consent. A computer-generated randomization sequence (in a 1:1 ratio) was used to randomly assign patients to receive either rosuvastatin (40 mg/d) or placebo. Participants, care providers, and investigators were all masked to group assignments. The primary endpoint was the incidence of delirium, which was assessed twice daily with the Confusion Assessment Method during the first 7 postoperative days. Analyses were performed on intention-to-treat and safety populations.
RESULTS Between January 1, 2017 and January 1, 2020, 3512 patients were assessed. A total of 821 patients were randomly assigned to receive either placebo (n = 411) or rosuvastatin (n = 410). The incidence of postoperative delirium was significantly lower in the rosuvastatin group [23 (5.6%) of 410 patients] than in the placebo group {42 (13.5%) of 411 patients [odds ratios (OR) = 0.522, 95% confidence interval (CI): 0.308-0.885; P < 0.05]}. No significant difference in 30-d all-cause mortality (6.1% vs 8.7%, OR = 0.67, 95%CI: 0.39-1.2, P = 0.147) was observed between the two groups. Rosuvastatin decreased the hospitalization time (13.8 ± 2.5 vs 14.2 ± 2.8, P = 0.03) and hospitalization expenses (9.3 ± 2.5 vs 9.8 ± 2.9, P = 0.007). No significant differences in abnormal liver enzymes (9.0% vs 7.1%, OR = 1.307, 95%CI: 0.787-2.169, P = 0.30) or rhabdomyolysis (0.73% vs 0.24%, OR = 3.020, 95%CI: 0.31-29.2, P = 0.37) were observed between the two groups.
CONCLUSION The current study suggests that perioperative rosuvastatin treatment reduces the incidence of delirium after an elective operation under general anesthesia. However, the evidence does not reveal that rosuvastatin improves clinical outcomes. The therapy is safe. Further investigation is necessary to fully understand the potential usefulness of rosuvastatin in elderly patients.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Department of Anesthesiology, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi 214044, Jiangsu Province, China
| | - Jing-Zhi Luo
- Department of Anesthesiology, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi 214044, Jiangsu Province, China
| | - Xiao-Yu Li
- Department of Anesthesiology, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi 214044, Jiangsu Province, China
| | - Hai-Qin Tang
- Department of Anesthesiology, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi 214044, Jiangsu Province, China
| | - Wei-Hong Lu
- Department of Anesthesiology, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi 214044, Jiangsu Province, China
| |
Collapse
|
21
|
Zhang C, Wang Y, Chen J, Yang S, Wang Y. Controlled decompression alleviates early brain injury in rabbit intracranial hypertension model by regulating apoptosis/necroptosis. Acta Cir Bras 2021; 36:e360406. [PMID: 34076083 PMCID: PMC8184258 DOI: 10.1590/acb360406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the effects of controlled decompression and rapid decompression,
explore the potential mechanism, provide the theoretical basis for the
clinical application, and explore the new cell death method in intracranial
hypertension. Methods Acute intracranial hypertension was triggered in rabbits by epidural balloon
compression. New Zealand white rabbits were randomly put into the sham
group, the controlled decompression group, and the rapid decompression
group. Brain water content, etc., was used to evaluate early brain injury.
Western blotting and double immunofluorescence staining were used to detect
necroptosis and apoptosis. Results Brain edema, neurological dysfunction, and brain injury appeared after
traumatic brain injury (TBI). Compared with rapid decompression, brain water
content was significantly decreased, neurological scores were improved by
controlled decompression treatment. Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) staining and Nissl staining showed neuron
death decreased in the controlled decompression group. Compared with rapid
decompression, it was also found that apoptosis-related protein caspase-3/
tumor necrosis factor (TNF)-a was reduced markedly in the brain cortex and
serum, and the expression levels of necroptosis-related protein,
receptor-interacting protein 1 (RIP1)/receptor-interacting protein 1 (RIP3)
reduced significantly in the controlled decompression group. Conclusions Controlled decompression can effectively reduce neuronal damage and cerebral
edema after craniocerebral injury and, thus, protect the brain tissue by
alleviating necroptosis and apoptosis.
Collapse
Affiliation(s)
- Can Zhang
- Wuxi Medical College of Anhui Medical University, China
| | - Yue Wang
- Wuxi Medical College of Anhui Medical University, China
| | - Junhui Chen
- Wuxi Medical College of Anhui Medical University, China
| | - Shuo Yang
- Wuxi Medical College of Anhui Medical University, China
| | - Yuhai Wang
- Wuxi Medical College of Anhui Medical University, China
| |
Collapse
|
22
|
Kashefiolasl S, Wagner M, Brawanski N, Seifert V, Wanderer S, Andereggen L, Konczalla J. Statins Improve Clinical Outcome After Non-aneurysmal Subarachnoid Hemorrhage: A Translational Insight From a Systematic Review of Experimental Studies. Front Neurol 2021; 12:620096. [PMID: 34054685 PMCID: PMC8160298 DOI: 10.3389/fneur.2021.620096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
The efficacy of statin-treatment in aneurysmal subarachnoid hemorrhage (SAH) remains controversial. We aimed to investigate the effects of statin-treatment in non-aneurysmal (na)SAH in accordance with animal research data illustrating the pathophysiology of naSAH. We systematically searched PubMed using PRISMA-guidelines and selected experimental studies assessing the statin-effect on SAH. Detecting the accordance of the applied experimental models with the pathophysiology of naSAH, we analyzed our institutional database of naSAH patients between 1999 and 2018, regarding the effect of statin treatment in these patients and creating a translational concept. Patient characteristics such as statin-treatment (simvastatin 40 mg/d), the occurrence of cerebral vasospasm (CVS), delayed infarction (DI), delayed cerebral ischemia (DCI), and clinical outcome were recorded. In our systematic review of experimental studies, we found 13 studies among 18 titles using blood-injection-animal-models to assess the statin-effect in accordance with the pathophysiology of naSAH. All selected studies differ on study-setting concerning drug-administration, evaluation methods, and neurological tests. Patients from the Back to Bedside project, including 293 naSAH-patients and 51 patients with simvastatin-treatment, were recruited for this analysis. Patients under treatment were affected by a significantly lower risk of CVS (p < 0.01; OR 3.7), DI (p < 0.05; OR 2.6), and DCI (p < 0.05; OR 3). Furthermore, there was a significant association between simvastatin-treatment and favorable-outcome (p < 0.05; OR 3). However, dividing patients with statin-treatment in pre-SAH (n = 31) and post-SAH (n = 20) treatment groups, we only detected a tenuously significant higher chance for a favorable outcome (p < 0.05; OR 0.05) in the small group of 20 patients with statin post-SAH treatment. Using a multivariate-analysis, we detected female gender (55%; p < 0.001; OR 4.9), Hunt&Hess ≤III at admission (p < 0.002; OR 4), no anticoagulant-therapy (p < 0.0001; OR 0.16), and statin-treatment (p < 0.0001; OR 24.2) as the main factors improving the clinical outcome. In conclusion, we detected a significantly lower risk for CVS, DCI, and DI in naSAH patients under statin treatment. Additionally, a significant association between statin treatment and favorable outcome 6 months after naSAH onset could be confirmed. Nevertheless, unified animal experiments should be considered to create the basis for developing new therapeutic schemes.
Collapse
Affiliation(s)
- Sepide Kashefiolasl
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Nina Brawanski
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Wanderer
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland.,Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Lukas Andereggen
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland.,Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Juergen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Chen J, Wang Y, Wu J, Yang J, Li M, Chen Q. The Potential Value of Targeting Ferroptosis in Early Brain Injury After Acute CNS Disease. Front Mol Neurosci 2020; 13:110. [PMID: 32625062 PMCID: PMC7314952 DOI: 10.3389/fnmol.2020.00110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Acute central nervous system (CNS) disease is very common and with high mortality. Many basic studies have confirmed the molecular mechanism of early brain injury (EBI) after acute CNS disease. Neuron death and dysfunction are important reasons for the neurological dysfunction in patients with acute CNS disease. Ferroptosis is a nonapoptotic form of cell death, the classical characteristic of which is based on the iron-dependent accumulation of toxic lipid reactive oxygen species. Previous studies have indicated that this mechanism is critical in the cell death events observed in many diseases, including cancer, tumor resistance, Alzheimer’s disease, Parkinson’s disease, stroke, and intracerebral hemorrhage (ICH). Ferroptosis may also play a very important role in EBI after acute CNS disease. Unresolved issues include the relationship between ferroptosis and other forms of cell death after acute CNS disease, the specific molecular mechanisms of EBI, the strategies to activate or inhibit ferroptosis to achieve desirable attenuation of EBI, and the need to find new molecular markers of ferroptosis that can be used to detect and study this process in vivo after acute CNS disease.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Jiyun Wu
- Department of Orthopedic, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Jiaji Yang
- Department of Orthopedic, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Chen J, Li M, Zhu X, Chen L, Yang S, Zhang C, Wu T, Feng X, Wang Y, Chen Q. Atorvastatin reduces cerebral vasospasm and infarction after aneurysmal subarachnoid hemorrhage in elderly Chinese adults. Aging (Albany NY) 2020; 12:2939-2951. [PMID: 32035420 PMCID: PMC7041764 DOI: 10.18632/aging.102788] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/19/2020] [Indexed: 05/02/2023]
Abstract
We explored whether acute atorvastatin treatment would improve clinical outcomes and reduce the incidence of cerebral vasospasm after aneurysmal subarachnoid hemorrhage in elderly Chinese adults. Patients (60 to 90 years old) were admitted to intensive care units after surgery to clip or embolize their aneurysms. We assessed 592 patients and assigned 159 to receive atorvastatin (20 mg/day) and 158 to receive placebo once daily for up to 14 days. The primary outcome was the Glasgow outcome scale at 6 months, and secondary outcomes were cerebral vasospasm, 30-days all-cause mortality, cerebral infarction, and delayed ischemic neurological deficit. The incidence of postoperative cerebral vasospasm (39.3% vs 56%, P =0.004) and cerebral infarction (18.7% vs 27.3%, P=0.027) were significantly lower in the atorvastatin group. The study did not detect benefits in the use of atorvastatin for 6 months clinical outcome or 30-day all-cause mortality, but it suggests that atorvastatin together with nimodipine can reduce cerebral vasospasm and cerebral infarction after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xun Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Lei Chen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Shuo Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Chunlei Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Ting Wu
- Department of Cardiology, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Xiaoyan Feng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
25
|
Chen JH, Wu T, Xia WY, Shi ZH, Zhang CL, Chen L, Chen QX, Wang YH. An early neuroprotective effect of atorvastatin against subarachnoid hemorrhage. Neural Regen Res 2020; 15:1947-1954. [PMID: 32246644 PMCID: PMC7513987 DOI: 10.4103/1673-5374.280326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atorvastatin has been shown to reduce early brain edema and neuronal death after subarachnoid hemorrhage, but its mechanism is not clear. In this study, rat models of subarachnoid hemorrhage were established by autologous blood injection in the cisterna magna. Rat models were intragastrically administered 20 mg/kg atorvastatin 24 hours before subarachnoid hemorrhage, 12 and 36 hours after subarachnoid hemorrhage. Compared with the controls, atorvastatin treatment demonstrated that at 72 hours after subarachnoid hemorrhage, neurological function had clearly improved; brain edema was remarkably relieved; cell apoptosis was markedly reduced in the cerebral cortex of rats; the number of autophagy-related protein Beclin-1-positive cells and the expression levels of Beclin-1 and LC3 were increased compared with subarachnoid hemorrhage only. The ultrastructural damage of neurons in the temporal lobe was also noticeably alleviated. The similarities between the effects of atorvastatin and rapamycin were seen in all the measured outcomes of subarachnoid hemorrhage. However, these were contrary to the results of 3-methyladenine injection, which inhibits the signaling pathway of autophagy. These findings indicate that atorvastatin plays an early neuroprotective role in subarachnoid hemorrhage by activating autophagy. The experimental protocol was approved by the Animal Ethics Committee of Anhui Medical University, China (904 Hospital of Joint Logistic Support Force of PLA; approval No. YXLL-2017-09) on February 22, 2017.
Collapse
Affiliation(s)
- Jun-Hui Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| | - Ting Wu
- Department of Cardiology, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| | - Wen-Yuan Xia
- Department of Science and Education, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| | - Zhong-Hua Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| | - Chun-Lei Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| | - Lei Chen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province, China
| |
Collapse
|
26
|
Guan H, Zhang C, Chen T, Zhu J, Yang S, Shu L, Shen W, Wang Y. Controlled Decompression Attenuates Brain Injury in a Novel Rabbit Model of Acute Intracranial Hypertension. Med Sci Monit 2019; 25:9776-9785. [PMID: 31859264 PMCID: PMC6933874 DOI: 10.12659/msm.919796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background In the past, standard rapid decompressive craniectomy was used to alleviate the secondary damage caused by high intracranial pressure. Recent clinical studies showed that controlled decompression may have a better curative effect than rapid decompression. However, the effect on controlled decompression in animals is unclear. Material/Methods Totally 80 healthy male New Zealand rabbits were randomly divided into a sham group (n=20), a rapid decompression group (n=30), and a controlled decompression group (n=30). An intracranial hypertension model was induced by injecting saline into an epidural balloon catheter and reducing ICP slowly and gradually by use of a pressure pump. The model was evaluated and analyzed by general observations, imaging examination, ICP values, behavioral score, brain water content, Nissl staining, and caspase-3 protein detection. Results The mortality rate was 36.7% (11/30) in the rapid group, 20% (6/30) in the controlled group, and 5% (1/20) in the sham group. The incidence of epidural hematoma in the controlled group was lower than in the rapid group (p<0.01). The ICP was significantly lower in the controlled group than in the rapid group (p<0.001), and the behavioral score in the rapid group was higher than in the controlled group (p<0.05). There was a marked difference in brain water content between the controlled group and the rapid group (p<0.01). Nissl staining demonstrated that the ratio of Nissl body in the controlled group was significantly higher than in the rapid group (p<0.01). WB detection showed the expression of Caspase-3 in the controlled group was lower than in the rapid group (p<0.05). Conclusions The results show the advantages of use of controlled decompression with intracranial hypertension. The animal model we developed provides a platform for further research on controlled decompression.
Collapse
Affiliation(s)
- Haoxiang Guan
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Can Zhang
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Tao Chen
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Jie Zhu
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Shuo Yang
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Longfei Shu
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Wei Shen
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| | - Yuhai Wang
- Department of Neurosurgery, 904TH Hospital of People's Liberation Army (PLA), Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|