1
|
Bayasgalan T, Kanda M, Sato Y, Zhu H, Hamrah MH, Martinez FEG, Shinozuka T, Ito Y, Sasahara M, Shimizu D, Umeda S, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Kodera Y. SPOCD1 Enhances Cancer Cell Activities and Serves as a Prognosticator in Esophageal Squamous Cell Carcinoma. Cancer Genomics Proteomics 2025; 22:306-325. [PMID: 39993802 PMCID: PMC11880929 DOI: 10.21873/cgp.20503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM Comprehensive transcriptome analysis has revealed SPOC Domain Containing 1 (SPOCD1) as a potential biomarker for esophageal squamous cell carcinoma (ESCC). However, the expression and oncological roles of SPOCD1 in ESCC remains underexplored. We aimed to evaluate the role of SPOCD1 in oncogenesis and prognosis of ESCC in vitro and in vivoMaterials and Methods: The Cancer Cell Line Encyclopedia (CCLE) database was utilized to evaluate correlations between SPOCD1 expression and oncogenes in ESCC. mRNA and protein levels were measured by qRT-PCR and Simple Western assays, respectively. siRNA-mediated knockdown and overexpression experiments assessed the effects of SPOCD1 expression on proliferation, migration, and invasion of ESCC cell lines. In vivo, siRNA knockdown effects on tumor growth were tested in mouse xenograft models. SPOCD1 mRNA levels in 164 resected tissues were correlated with clinicopathological parameters and survival, while a cohort of 177 patients was analyzed for protein expression and survival. RESULTS SPOCD1 mRNA expression varied widely among ESCC cell lines and correlated with epithelial-mesenchymal transition-related genes. Knockdown significantly suppressed proliferation, migration, and invasion (p<0.001), while overexpression increased proliferation (p<0.001). In vivo, siRNA knockdown reduced tumor growth compared to both si-control (p=0.005) and untransfected groups (p<0.001). High SPOCD1 mRNA expression was linked to poor disease-specific survival (p=0.009, HR=1.965, 95% CI=1.187-3.252) and disease-free survival (p=0.047, HR=1.602, 95% CI=1.007-2.549). Similarly, elevated protein levels were associated with unfavorable disease-specific (p=0.013, HR=1.860, 95% CI=1.137-3.041) and disease-free survival (p=0.032, HR=1.618, 95% CI=1.042-2.513). CONCLUSION SPOCD1 expression correlates with the aggressiveness of ESCC cells, and its expression levels in tumor tissues may serve as a prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Tuvshin Bayasgalan
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Haote Zhu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mohammad Hussain Hamrah
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ito
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sasahara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Wang KD, Zhu ML, Qin CJ, Dong RF, Xiao CM, Lin Q, Wei RY, He XY, Zang X, Kong LY, Xia YZ. Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region. Br J Pharmacol 2023; 180:3175-3193. [PMID: 37501645 DOI: 10.1111/bph.16202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteosarcoma, a primary malignant bone tumour prevalent among adolescents and young adults, remains a considerable challenge despite protracted progress made in enhancing patient survival rates over the last 40 years. Consequently, the development of novel therapeutic approaches for osteosarcoma is imperative. Sanguinarine (SNG), a compound with demonstrated potent anticancer properties against various malignancies, presents a promising avenue for exploration. Nevertheless, the intricate molecular mechanisms underpinning SNG's actions in osteosarcoma remain elusive, necessitating further elucidation. EXPERIMENTAL APPROACH Single-stranded DNA-binding protein 1 (SSBP1) was screened out by differential proteomic analysis. Apoptosis, cell cycle, reactive oxygen species (ROS) and mitochondrial changes were assessed via flow cytometry. Western blotting and quantitative real-time reverse transcription PCR (qRT-PCR) were used to determine protein and gene levels. The antitumour mechanism of SNG was explored at a molecular level using chromatin immunoprecipitation (ChIP) and dual luciferase reporter plasmids. KEY RESULTS Our investigation revealed that SNG exerted an up-regulated effect on SSBP1, disrupting mitochondrial function and inducing apoptosis. In-depth analysis uncovered a mechanism whereby SNG hindered the JAK/signal transducer and activator of transcription 3 (STAT3) signalling pathway, relieved the inhibitory effect of STAT3 on SSBP1 transcription, and inhibited the downstream PI3K/Akt/mTOR signalling axis, ultimately activating apoptosis. CONCLUSIONS AND IMPLICATIONS The study delved further into elucidating the anticancer mechanism of SNG in osteosarcoma. Notably, we unravelled the previously undisclosed apoptotic potential of SSBP1 in osteosarcoma cells. This finding holds substantial promise in advancing the development of novel anticancer drugs and identification of therapeutic targets.
Collapse
Affiliation(s)
- Kai-Di Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Lin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Lin Z, Chen L, Wu T, Zhang Y, Huang X, Chen Y, Chen J, Xu Y. Prognostic Value of SPOCD1 in Esophageal Squamous Cell Carcinoma: A Comprehensive Study Based on Bioinformatics and Validation. Front Genet 2022; 13:872026. [PMID: 35646092 PMCID: PMC9130929 DOI: 10.3389/fgene.2022.872026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
In the study, we aimed to explore and analyze the potential function of SPOC Domain Containing 1 (SPOCD1) in esophageal squamous cell carcinoma (ESCC). We performed a comprehensive analysis of gene expression of SPOCD1 and its corresponding clinicopathological features in ESCC. In particular, the correlation between SPOCD1 and ESCC was evaluated using a wide range of analysis tools and databases, including TCGA, GTEx, GenePattern, CellMiner, GDSC, and STRING datasets. Different bioinformatics analyses, including differential expression analysis, mutation analysis, drug sensitivity analysis, function analysis, pathway analysis, co-expression network analysis, immune cell infiltration analysis, and survival analysis, were carried out to comprehensively explore the potential molecular mechanisms and functional effects of SPOCD1 on the initiation and progression of ESCC. The expression of SPOCD1 was upregulated in ESCC tissues compared to those in normal tissues. In the high SPOCD1 expression group, we found apparent mutations in TP53, TTN, and MUC16 genes, which were 92, 36, and 18%, respectively. GO and KEGG enrichment analysis of SPOCD1 and its co-expressed genes demonstrated that it may serve as an ESCC oncogene by regulating the genes expression in the essential functions and pathways of tumorigenesis, such as glycosaminoglycan binding, Cytokine-cytokine receptor interaction, and Ras signaling pathway. Besides, the immune cell infiltration results revealed that SPOCD1 expression was positively correlated with Macrophages M0 and Mast cells activated cells, and negatively correlated with plasma cells and T cells follicular helper cell infiltration. Finally, ESCC patients with high expression of SPOCD1 indicated poor overall survival. qRT-PCR demonstrated that the SPOCD1 expression in ESCC tissues was significantly higher than adjacent tissues (p < 0.001). Our study indicated that SPOCD1 was increased in ESCC tissues. The current data support the oncogenic role of SPOCD1 in the occurrence and development of ESCC. Most importantly, SPOCD1 might be an independent prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Zhizhong Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Lin Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Tingting Wu
- The School of Nusing, Fujian Medical University, Fuzhou, China.,Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yiping Zhang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xinyi Huang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Junqiang Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
4
|
Iqbal MA, Li M, Lin J, Zhang G, Chen M, Moazzam NF, Qian W. Preliminary Study on the Sequencing of Whole Genomic Methylation and Transcriptome-Related Genes in Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14051163. [PMID: 35267472 PMCID: PMC8909391 DOI: 10.3390/cancers14051163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Epigenetic alterations are critical for tumor onset and development. DNA methylation is one of the most studied pathways concerning various types of cancer. A promising and exciting avenue of research is the discovery of biomarkers of early-stage malignancies for disease prevention and prognostic indicators following cancer treatment by examining the DNA methylation modification of relevant genes implicated in cancer development. We have made significant advances in the study of DNA methylation and thyroid cancer. This study is novel in that it distinguished methylation changes that occurred primarily in the gene body region of the aforementioned hypermethylated or hypomethylated thyroid cancer genes. Our findings imply that exposing whole-genome DNA methylation patterns and gene expression profiles in thyroid cancer provides new insight into the carcinogenesis of thyroid cancer, demonstrating that gene expression mediated by DNA methylation modifications may play a significant role in tumor growth. Abstract Thyroid carcinoma is the most prevalent endocrine cancer globally and the primary cause of cancer-related mortality. Epigenetic modifications are progressively being linked to metastasis. This study aimed to examine whole-genome DNA methylation patterns and the gene expression profiles in thyroid cancer tissue samples using a MethylationEPIC BeadChip (850K), RNA sequencing, and a targeted bisulfite sequencing assay. The results of the Illumina Infinium human methylation kit (850K) analyses identified differentially methylated CpG locations (DMPs) and differentially methylated CpG regions (DMRs) encompassing nearly the entire genome with high resolution and depth. Gene ontology and KEGG pathway analyses revealed that the genes associated with DMRs belonged to various domain-specific ontologies, including cell adhesion, molecule binding, and proliferation. The RNA-Seq study found 1627 differentially expressed genes, 1174 of which that were up-regulated and 453 of which that were down-regulated. The targeted bisulfite sequencing assay revealed that CHST2, DPP4, DUSP6, ITGA2, SLC1A5, TIAM1, TNIK, and ABTB2 methylation levels were dramatically lowered in thyroid cancer patients when compared to the controls, but GALNTL6, HTR7, SPOCD1, and GRM5 methylation levels were significantly raised. Our study revealed that the whole-genome DNA methylation patterns and gene expression profiles in thyroid cancer shed new light on the tumorigenesis of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Asad Iqbal
- Department of Otolaryngology-Head & Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China;
| | - Mingyang Li
- Department of Basic Medical Sciences, Affiliated to School of Medicine, Jiangsu University, Zhenjiang 212002, China;
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | - Guoliang Zhang
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | - Miao Chen
- Department of Pathology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | | | - Wei Qian
- Department of Otolaryngology-Head & Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China;
- Correspondence: ; Tel.: +86-0511-88917833 or +86-1535-8586188
| |
Collapse
|
5
|
Wang JH, Wu XJ, Duan YZ, Li F. Circular RNA_CNST Promotes the Tumorigenesis of Osteosarcoma Cells by Sponging miR-421. Cell Transplant 2021; 29:963689720926147. [PMID: 32693639 PMCID: PMC7563816 DOI: 10.1177/0963689720926147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) act crucial roles in the progression of multiple malignancies including osteosarcoma (OS). But, the underlying mechanisms by which hsa_circ_0017311 (circCNST) contributes to the tumorigenesis of OS remain poorly understood. Our present study aimed to explore the role and mechanisms of circCNST in OS tumorigenesis. The differentially expressed circRNAs were identified by the Gene Expression Omnibus database. The association of circCNST with clinicopathological features and prognosis in patients with OS was analyzed by RNA fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (PCR) analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assays, and a xenograft tumor model were conducted to assess the role of circCNST in OS cells in vitro and in vivo. CircCNST-specific binding with miR-421 was confirmed by FISH, luciferase gene report, and RNA immunoprecipitation assays. As a result, we found that the expression levels of circCNST were dramatically increased in OS tissues and cell lines as compared with the adjacent normal tissues, and it was associated with tumor size and poor survival in OS patients. Knockdown of circCNST repressed cell viability, colony formation, and xenograft tumor growth, while restored expression of circCNST reversed these effects. Furthermore, circCNST was colocalized with miR-421 in the cytoplasm and acted as a sponge of miR-421, which attenuated circCNST-induced proliferation-promoting effects in OS cells by targeting SLC25A3. In conclusion, our findings demonstrate that circCNST promotes the tumorigenesis of OS cells by sponging miR-421, and provides a potential biomarker for patients with OS.
Collapse
Affiliation(s)
- Ji-Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xue-Jian Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yong-Zhuang Duan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
6
|
Kulasekaran G, Chaineau M, Piscopo VEC, Verginelli F, Fotouhi M, Girard M, Tang Y, Dali R, Lo R, Stifani S, McPherson PS. An Arf/Rab cascade controls the growth and invasiveness of glioblastoma. J Cell Biol 2021; 220:e202004229. [PMID: 33443570 PMCID: PMC7812876 DOI: 10.1083/jcb.202004229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35. Knockdown of either Rab35 or Arf5 increases cell migration, invasiveness, and self-renewal in culture and enhances the growth and invasiveness of BTIC-initiated brain tumors in mice. RNAseq of the tumors reveals up-regulation of the tumor-promoting transcription factor SPOCD1, and disruption of the Arf5/Rab35 axis in glioblastoma cells leads to strong activation of the epidermal growth factor receptor, with resulting enhancement of SPOCD1 levels. These discoveries reveal an unexpected cascade between an Arf and a Rab and indicate a role for the cascade, and thus endosomal trafficking, in brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Liu D, Yang Y, Yan A, Yang Y. SPOCD1 accelerates ovarian cancer progression and inhibits cell apoptosis via the PI3K/AKT pathway. Onco Targets Ther 2020; 13:351-359. [PMID: 32021280 PMCID: PMC6974139 DOI: 10.2147/ott.s200317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is the most common type of gynecological malignant tumors with poor prognosis. The spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) is a newly identified molecule that has been indicated to discriminate progressive in human solid tumors. However, the role of SPOCD1 in OC remains unknown. Methods The expression of SPOCD1 in OC and non-cancerous tissue was detected by Realtime polymerase chain reaction and immunohistochemical staining. The expression of SPOCD1 in OC cells (SKOV3 and CAOV3) was also detected by immunohistochemical staining. The effect of SPOCD1 on cell proliferation was analyzed by Cell Counting Kit 8 and colony formation assay, and cell migration was analyzed by transwell assay. Apoptosis was analyzed by flow cytometry. The protein expression of SPOCD1, PTEN, PI3K, p-AKT, and mTOR in OC cells was measured by Western blot. Results SPOCD1 expression was significantly upregulated in OC tissues compared with non-cancerous tissues (P<0.01), and was positively correlated to FIGO stage and tumor grade of OC. Also, SPOCD1 was significantly expressed in nucleus and cytoplasm of SKOV3 and CAOV3 cells. Kaplan–Meier analysis indicated that patients with high SPOCD1 expression had shorter overall survival (HR =1.512, 95%CI: 1.321–2.793, P=0.031) and progression-free survival (HR =1.875, 95%CI: 1.435–3.157, P=0.028). SPOCD1 was upregulated in OC SKOV3 and CAOV3 cells. Further investigation revealed that downregulation of SPOCD1 inhibited the SKOV3 and CAOV3 cells proliferation and migration. In addition, the deficit of SPOCD1 increased the apoptosis in SKOV3 and CAOV3 cells. PI3K/AKT pathway was inhibited by knockdown of SPOCD1 in SKOV3 and CAOV3 cells. Conclusions Our data suggest that SPOCD1 may act as a carcinogenesis factor by activating the PI3K/AKT pathway to restrained cell apoptosis in OC.
Collapse
Affiliation(s)
- Dajiang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lan Zhou University, Lanzhou, China
| | - Yuan Yang
- The Reproductive Medicine Special Hospital, The First Hospital of Lanzhou University, Lanzhou, China
| | - Aiqin Yan
- Department of Obstetrics and Gynecology, Zhang ye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lan Zhou University, Lanzhou, China
| |
Collapse
|
8
|
Yu X, Martin PGP, Michaels SD. BORDER proteins protect expression of neighboring genes by promoting 3' Pol II pausing in plants. Nat Commun 2019; 10:4359. [PMID: 31554790 PMCID: PMC6761125 DOI: 10.1038/s41467-019-12328-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Ensuring that one gene's transcription does not inappropriately affect the expression of its neighbors is a fundamental challenge to gene regulation in a genomic context. In plants, which lack homologs of animal insulator proteins, the mechanisms that prevent transcriptional interference are not well understood. Here we show that BORDER proteins are enriched in intergenic regions and prevent interference between closely spaced genes on the same strand by promoting the 3' pausing of RNA polymerase II at the upstream gene. In the absence of BORDER proteins, 3' pausing associated with the upstream gene is reduced and shifts into the promoter region of the downstream gene. This is consistent with a model in which BORDER proteins inhibit transcriptional interference by preventing RNA polymerase from intruding into the promoters of downstream genes.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA
| | - Pascal G P Martin
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.,Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Scott D Michaels
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
9
|
Huang XY, Sun WY, Yan ZQ, Shi HR, Yang QL, Wang PF, Li SG, Liu LX, Zhao SG, Gun SB. Novel Insights reveal Anti-microbial Gene Regulation of Piglet Intestine Immune in response to Clostridium perfringens Infection. Sci Rep 2019; 9:1963. [PMID: 30760749 PMCID: PMC6374412 DOI: 10.1038/s41598-018-37898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
LncRNA play important roles in regulation of host immune and inflammation responses in defending bacterial infection. Clostridium perfringens (C. perfringens) type C is one of primary bacteria leading to piglet diarrhea and other intestinal inflammatory diseases. For the differences of host immune capacity, individuals usually show resistance and susceptibility to bacterial infection. However, whether and how lncRNAs involved in modulating host immune resistance have not been reported. We have investigated the expression patterns of ileum lncRNAs of 7-day-old piglets infected by C. perfringens type C through RNA sequencing. A total of 16 lncRNAs and 126 mRNAs were significantly differentially expressed in resistance (IR) and susceptibility (IS) groups. Many lncRNAs and mRNAs were identified to regulate resistance and susceptibility of piglets through immune related pathways. Five lncRNAs may have potential function on regulating the expressions of cytokines, these lncRNAs and cytokines work together to co-regulated piglet immune response to C. perfringens, affecting host resistance and susceptibility. These results provide valuable information for understanding the functions of lncRNA and mRNA in affecting piglet diarrhea resistance of defensing to C. perfringens type C, these lncRNAs and mRNAs may be used as the important biomarkers for decreasing C. perfringens spread and diseases in human and piglets.
Collapse
Affiliation(s)
- Xiao Yu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen Yang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zun Qiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hai Ren Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiao Li Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peng Fei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sheng Gui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li Xia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Sheng Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuang Bao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, 730070, China.
| |
Collapse
|