1
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
2
|
Wu JY, Yang JL, Hu JL, Xu S, Zhang XJ, Qian SY, Chen ML, Ali MA, Zhang J, Zha Z, Zheng GQ. Reporting quality and risk of bias of randomized controlled trials of Chinese herbal medicine for multiple sclerosis. Front Immunol 2024; 15:1429895. [PMID: 39229262 PMCID: PMC11369894 DOI: 10.3389/fimmu.2024.1429895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Background Multiple sclerosis (MS) is the most common non-traumatic disabling disease affecting young adults. A definitive curative treatment is currently unavailable. Many randomized controlled trials (RCTs) have reported the efficacy of Chinese herbal medicine (CHM) on MS. Because of the uncertain quality of these RCTs, the recommendations for routine use of CHM for MS remain inconclusive. The comprehensive evaluation of the quality of RCTs of CHM for MS is urgent. Methods Nine databases, namely, PubMed, Embase, Web of Science, Cochrane Library, EBSCO, Sinomed, Wanfang Database, China National Knowledge Infrastructure, and VIP Database, were searched from inception to September 2023. RCTs comparing CHM with placebo or pharmacological interventions for MS were considered eligible. The Consolidated Standards of Reporting Trials (CONSORT) and its extension for CHM formulas (CONSORT-CHM Formulas) checklists were used to evaluate the reporting quality of RCTs. The risk of bias was assessed using the Cochrane Risk of Bias tool. The selection criteria of high-frequency herbs for MS were those with cumulative frequency over 50% among the top-ranked herbs. Results A total of 25 RCTs were included. In the included RCTs, 33% of the CONSORT items and 21% of the CONSORT-CHM Formulas items were reported. Eligibility title, sample size calculation, allocation concealment, randomized implementation, and blinded description in CONSORT core items were reported by less than 5% of trials. For the CONSORT-CHM Formulas, the source and authentication method of each CHM ingredient was particularly poorly reported. Most studies classified the risk of bias as "unclear" due to insufficient information. The top five most frequently used herbs were, in order, Radix Rehmanniae Preparata, Radix Rehmanniae Recens, Herba Epimedii, Scorpio, and Poria. No serious adverse effect had been reported. Conclusions The low reporting of CONSORT items and the unclear risk of bias indicate the inadequate quality of RCTs in terms of reporting completeness and result validity. The CONSORT-CHM Formulas appropriately consider the unique characteristics of CHM, including principles, formulas, and Chinese medicinal substances. To improve the quality of RCTs on CHM for MS, researchers should adhere more closely to CONSORT-CHM Formulas guidelines and ensure comprehensive disclosure of all study design elements.
Collapse
Affiliation(s)
- Jing-Ying Wu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jiang-Li Yang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jia-Ling Hu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shan Xu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shi-Yan Qian
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Min-Li Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mahad Abdulkadir Ali
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Zheng Zha
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
3
|
Torrillas-de la Cal A, Torres-Sanchez S, Bravo L, Llorca-Torralba M, Garcia-Partida JA, Arroba AI, Berrocoso E. Chemogenetic activation of locus coeruleus neurons ameliorates the severity of multiple sclerosis. J Neuroinflammation 2023; 20:198. [PMID: 37658434 PMCID: PMC10474779 DOI: 10.1186/s12974-023-02865-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/30/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.
Collapse
Grants
- #FPU20-03072 "Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades"; FPU fellowship
- PID2022-1427850B-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PDC2022-133987-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PY20_00958 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CTS-510 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CEIJ-003 CEIMAR
- “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación
- “Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades”; FPU fellowship
- “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (IN-CO9)
- "Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad
- Universidad de Cadiz
Collapse
Affiliation(s)
- Alejandro Torrillas-de la Cal
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Meritxell Llorca-Torralba
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Cell Biology and Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Ana I Arroba
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health (Immunology Area), University of Cádiz, 11003, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
4
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Li G, Zhou J, Wei J, Liu B. Dexmedetomidine Ameliorated Cognitive Dysfunction Induced by Intestinal Ischemia Reperfusion in Mice with Possible Relation to the Anti-inflammatory Effect Through the Locus Coeruleus Norepinephrine System. Neurochem Res 2022; 47:3440-3453. [PMID: 35945306 PMCID: PMC9546995 DOI: 10.1007/s11064-022-03706-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is a common central nervous system complication that occurs following surgery or organs damage outside the nervous system. Neuroinflammation plays a key role in the molecular mechanisms of cognitive impairment. Dexmedetomidine alleviates neuroinflammation and reduces cognitive dysfunction incidence; however, the mechanism by which dexmedetomidine alleviates cognitive dysfunction remains unclear. This study evaluated the effect of dexmedetomidine on attenuation of early cognitive impairment induced by intestinal ischemia–reperfusion in mice and examined whether the locus coeruleus norepinephrine (LCNE) system participates in the anti-inflammatory effect of dexmedetomidine. The superior mesenteric artery was clamped for 45 min to induce intestinal ischemia reperfusion injury. Dexmedetomidine alone or combined with DSP-4, a selective locus coeruleus noradrenergic neurotoxin, was used for pretreatment. Postoperative cognition was assessed using the Morris water maze. Serum and hippocampal levels of IL-1β, TNF-α, norepinephrine (NE), and malondialdehyde (MDA) were assessed by enzyme-linked immunosorbent assay. Immunofluorescence, immunohistochemistry, and hematoxylin and eosin staining were used to evaluate the expression of tyrosine hydroxylase (TH) in the locus coeruleus, hippocampal microglia, and intestinal injury. Pretreatment with dexmedetomidine alleviated intestinal injury and decreased the serum and hippocampal levels of NE, IL-1β, TNF-α, and MDA at 24 h after intestinal ischemia reperfusion, decreased TH-positive neurons in the locus coeruleus, and ameliorated cognitive impairment. Similarly, DSP-4 pre-treatment alleviated neuroinflammation and improved cognitive function. Furthermore, α2-adrenergic receptor antagonist atipamezole or yohimbine administration diminished the neuroprotective effects and improved cognitive function with dexmedetomidine. Therefore, dexmedetomidine attenuated early cognitive dysfunction induced by intestinal ischemia–reperfusion injury in mice, which may be related to its anti-inflammatory effects through the LCNE system.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jicheng Wei
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Jiang Y, Zhang Q. Catalpol ameliorates doxorubicin-induced inflammation and oxidative stress in H9C2 cells through PPAR-γ activation. Exp Ther Med 2020; 20:1003-1011. [PMID: 32765656 PMCID: PMC7388568 DOI: 10.3892/etm.2020.8743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Drug-induced cardiomyopathy is a severe disease that leads to refractory heart disease at late stages, with increasing detrimental effects. DOX-induced cell damage is primarily induced via cellular oxidative stress. The present study investigated the effects of catalpol on doxorubicin (DOX)-induced H9C2 cardiomyocyte inflammation and oxidative stress. The Cell Counting Kit-8 assay was performed to detect cell viability, and western blotting was performed to detect the expression of peroxisome proliferator-activated receptor (PPAR)-γ in H9C2 cells. The expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 were measured using ELISAs. Furthermore, the oxidative stress kit was used to detect the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase. A reactive oxygen species (ROS) kit and DCF-DA staining were used to detect ROS levels. The results indicated that DOX treatment inhibited H9C2 cell expression of PPAR-γ and decreased H9C2 cell viability. Various concentrations of catalpol exhibited a less potent effect on H9C2 cell viability compared with DOX; however, catalpol increased the viability of DOX-induced H9C2 cells. Catalpol treatment also significantly decreased the expression levels of inflammatory factors (TNF-α, IL-1β and IL-6) in DOX-induced H9C2 cells, which was reversed by transfections with short hairpin RNA targeting PPAR-γ. Results from the present study indicated that catalpol ameliorated DOX-induced inflammation and oxidative stress in H9C2 cardiomyoblasts by activating PPAR-γ.
Collapse
Affiliation(s)
- Yanjie Jiang
- Department of Pharmacology, Jinhua Institute for Food and Drug Control, Jinhua, Zhejiang 321017, P.R. China
| | - Qing Zhang
- Department of Pharmacy, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, P.R. China
| |
Collapse
|
7
|
Stofkova A, Murakami M. Neural activity regulates autoimmune diseases through the gateway reflex. Bioelectron Med 2019; 5:14. [PMID: 32232103 PMCID: PMC7098223 DOI: 10.1186/s42234-019-0030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The brain, spinal cord and retina are protected from blood-borne compounds by the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB) and blood-retina barrier (BRB) respectively, which create a physical interface that tightly controls molecular and cellular transport. The mechanical and functional integrity of these unique structures between blood vessels and nervous tissues is critical for maintaining organ homeostasis. To preserve the stability of these barriers, interplay between constituent barrier cells, such as vascular endothelial cells, pericytes, glial cells and neurons, is required. When any of these cells are defective, the barrier can fail, allowing blood-borne compounds to encroach neural tissues and cause neuropathologies. Autoimmune diseases of the central nervous system (CNS) and retina are characterized by barrier disruption and the infiltration of activated immune cells. Here we review our recent findings on the role of neural activity in the regulation of these barriers at the vascular endothelial cell level in the promotion of or protection against the development of autoimmune diseases. We suggest nervous system reflexes, which we named gateway reflexes, are fundamentally involved in these diseases. Although their reflex arcs are not completely understood, we identified the activation of specific sensory neurons or receptor cells to which barrier endothelial cells respond as effectors that regulate gateways for immune cells to enter the nervous tissue. We explain this novel mechanism and describe its role in neuroinflammatory conditions, including models of multiple sclerosis and posterior autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- 1Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| | - Masaaki Murakami
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| |
Collapse
|
8
|
Li W, Wu H, Gao C, Yang D, Yang D, Shen J. Radix Rehmanniae Extract Ameliorates Experimental Autoimmune Encephalomyelitis by Suppressing Macrophage-Derived Nitrative Damage. Front Physiol 2018; 9:864. [PMID: 30079025 PMCID: PMC6062770 DOI: 10.3389/fphys.2018.00864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease in central nervous system (CNS) without effective treatment or medication yet. With high prevalence of MS patients worldwide and poor therapeutic outcome, seeking novel therapeutic strategy for MS is timely important. Radix Rehmanniae (RR), a typical Chinese Medicinal herb, has been used for neuroinflammatory diseases in Traditional Chinese Medicine for centuries. However, scientific evidence and underlying mechanisms of RR for MS are unclear. In this study, we tested the hypothesis that RR could attenuate the progress and severity of MS via suppressing macrophage-derived nitrative damage and inflammation by using experimental autoimmune encephalomyelitis (EAE) model for mimicking MS pathology. The results showed the RR treatment effectively ameliorated clinical disease severity, inhibited inflammation/demyelination in spinal cord, and alleviated CNS infiltration of encephalitogenic T cells and activated macrophages. Meanwhile, RR possessed bioactivities of scavenging ONOO- and reducing the expression of iNOS and NADPH oxidases in the spinal cords of the EAE mice. Furthermore, RR treatment suppressed nuclear factor-κB (NF-κB) signaling pathway in the splenocytes of EAE mice. The in vitro experiments on macrophages and neuronal cells exerted consistent results with the in vivo animal experiments. Taken together, we conclude that Radix Rehmanniae extract has therapeutic values for ameliorating EAE/MS pathological process and disease severity and its underlying mechanisms are associated with anti-inflammation and inhibiting macrophage-derived nitrative damages. Further study could yield novel promising therapeutic agent for multiple sclerosis.
Collapse
Affiliation(s)
- Wenting Li
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hao Wu
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chong Gao
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dan Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangang Shen
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|