1
|
Chowdhury MR, Karamveer K, Tiwary BK, Nampoothiri NK, Erva RR, Deepa VS. Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment. Metab Brain Dis 2024; 40:8. [PMID: 39556154 DOI: 10.1007/s11011-024-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) poses a longstanding health challenge, prompting a century-long exploration into its etiology and progression. Despite significant advancements in medical science, current AD treatments provide only symptomatic relief, urging a shift towards innovative paradigms. This study, departing from the amyloid hypothesis, integrates Systems Pharmacology, Molecular Docking and Molecular Dynamic Simulations to investigate a polyherbal phytoformulation (US 7,273,626 B2) rooted in Ayurveda for AD, consisting of Bacopa monnieri, Hippophae rhamnoides, and Dioscorea bulbifera (BHD). Diosgenin emerges as a crucial compound, aligning with previous studies, yet recognizing its limitations in explaining BHD's mechanism, this research delves into the intricate network of interactions. Protein-Protein Interaction (PPI) network analysis identifies hub genes (ALOX5, GSK3B, ACHE, SRC, AKT1, EGFR, PIK3R1, ESR1 and APP), suggesting a systems-level modulation of AD. Enrichment analyses unveil 370 AD-associated genes and key terms like "Cellular Response to Chemical Stimulus" and "Regulation of Biological Quality." KEGG pathway analysis underscores BHD's potential in Alzheimer's disease pathway (hsa05010), Endocrine resistance (hsa01522), and PI3K-Akt signaling (hsa04151). Molecular docking, carefully selecting compounds (Kaempferol, Quercetin, Myricetin, Isorhamnetin, Beta-Sitosterol, Stigmasterol, Emodin and Diosgenin) and top modulated targets, validates interactions with high dock scores, providing promising therapeutic avenues. Two core targets, Acetylcholinesterase (AChE) and Estrogen Receptor 1 (ESR1), were identified for further investigation due to their critical roles in Alzheimer's disease. To validate the molecular docking results, Molecular Dynamics (MD) simulations were performed on the AChE complexes with Myricetin, Beta-Sitosterol, and Stigmasterol, as well as the ESR1 complexes with Emodin, Diosgenin, and Beta-Sitosterol. These simulations were then compared to the interactions observed with the marketed drugs Donepezil and Estradiol, which are commonly used in Alzheimer's treatment. The MD simulations provided detailed insights into the stability and behavior of these complexes over time. The findings indicated that Myricetin and Emodin not only maintained stable interactions with AChE and ESR1 but also exhibited greater stability than Donepezil and Estradiol at specific time points and protein regions, as demonstrated by lower RMSD and RMSF values. These results suggest that natural compounds hold promise as potential therapeutic agents in the treatment of Alzheimer's disease, offering new avenues for drug development, while the formulation BHD shows potential as an adjuvant in integrative medicine alongside standard Alzheimer's treatments, effectively targeting related pathways and genes.
Collapse
Affiliation(s)
- Mayank Roy Chowdhury
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | - Karamveer Karamveer
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Navaneeth K Nampoothiri
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | | |
Collapse
|
2
|
Pan X, Lei Z, Chen J, Jia C, Deng J, Liu Y, Luo X, Wang L, Zi D, Wang Z, Li S, Tan J. Blocking α 1 Adrenergic Receptor as a Novel Target for Treating Alzheimer's Disease. ACS Chem Neurosci 2024. [PMID: 39325017 DOI: 10.1021/acschemneuro.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
While amyloidopathy and tauopathy have been recognized as hallmarks in Alzheimer's disease (AD) brain, recently, increasing lines of evidence have supported the pathological roles of cerebrovascular changes in the pathogenesis and progression of AD. Restoring or ameliorating the impaired cerebrovascular function during the early phase of the disease may yield benefits against the cognitive decline in AD. In the present study, we evaluated the potential therapeutic effects of nicergoline [NG, a well-known α1 adrenergic receptor (ADR) blocker and vasodilator] against AD through ameliorating vascular abnormalities. Our in vitro data revealed that NG could reverse β-amyloid1-42 (Aβ1-42)-induced PKC/ERK1/2 activation, the downstream pathway of α1-ADR activation, in α1-ADR-overexpressed N2a cells. NG also blocked Aβ1-42- or phenylephrine-induced constrictions in isolated rat arteries. All these in vitro data may suggest ADR-dependent impacts of Aβ on vascular function and the reversal effect of NG. In addition, the ameliorating impacts of NG treatment on cerebral vasoconstriction, vasoremodeling, and cognitive decline were investigated in vivo in a PSAPP transgenic AD mouse model. Consistent with in vitro findings, the chronic treatment of NG significantly ameliorated the cerebrovascular dysfunctions and Aβ plaque depositions in the brain. Moreover, an improved cognitive performance was also observed. Taken together, our findings supported the beneficial effects of NG on AD through adrenergic-related mechanisms and highlighted the therapeutic potential of α1-adrenergic vasomodulators against AD pathologies.
Collapse
Affiliation(s)
- Xidong Pan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Congcong Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Institute of Brain Science and Brain-Inspired Research, Jinan 271016, China
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xingmei Luo
- Comprehensive Ward, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Likun Wang
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
3
|
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 2023:10.1007/s10495-023-01848-y. [PMID: 37186274 DOI: 10.1007/s10495-023-01848-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of hyperphosphorylated tau and amyloid-β (Aβ) protein resulting in synaptic loss and apoptosis. Aβ and tau deposition trigger apoptotic pathways that result in neuronal death. Apoptosis is considered to be responsible for manifestations associated with AD under pathological conditions. It regulates via extrinsic and intrinsic pathways. It activates various proteins including Bcl-2 family proteins like Bax, Bad, Bid, Bcl-XS, Bcl-XL and caspases comprising of initiator, effector and inflammatory caspases carried out through a cascade of events that finally lead to cell disintegration. The apoptotic elements interact with trophic factors, signaling molecules including Ras-ERK, JNK, GSK-3β, BDNF/TrkB/CREB and PI3K/AKT/mTOR. Ras-ERK signaling is involved in the progression of cell cycle and apoptosis. JNK pathway is also upregulated in AD which results in decreased expression of anti-apoptotic proteins. JAK-STAT triggers caspase-3 mediated apoptosis leading to neurodegeneration. The imbalance between autophagy and apoptosis is regulated by PI3K/Akt/mTOR pathway. GSK-3β is involved in the stimulation of pro-apoptotic factors resulting in dysregulation of apoptosis. Drugs like filgrastim, epigallocatechin gallate, curcumin, nicergoline and minocycline are under development which target these pathways and modulate the disease condition. This study sheds light on apoptotic pathways that are cardinal for neuronal survival and perform crucial role in the occurrence of AD along with the trends in therapeutics targeting apoptosis induced AD. To develop prospective treatments for AD, it is desirable to elucidate potential targets including restoration apoptotic balance, regulation of caspases, Bcl-2 and other crucial proteins involved in apoptosis mediated AD.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
4
|
Xu L, Li M, Wei A, Yang M, Li C, Liu R, Zheng Y, Chen Y, Wang Z, Wang K, Wang T. Treadmill exercise promotes E3 ubiquitin ligase to remove amyloid β and P-tau and improve cognitive ability in APP/PS1 transgenic mice. J Neuroinflammation 2022; 19:243. [PMID: 36195875 PMCID: PMC9531430 DOI: 10.1186/s12974-022-02607-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background Moderate physical exercise is conducive to the brains of healthy humans and AD patients. Previous reports have suggested that treadmill exercise plays an anti-AD role and improves cognitive ability by promoting amyloid clearance, inhibiting neuronal apoptosis, reducing oxidative stress level, alleviating brain inflammation, and promoting autophagy–lysosome pathway in AD mice. However, few studies have explored the relationships between the ubiquitin–proteasome system and proper exercise in AD. The current study was intended to investigate the mechanism by which the exercise-regulated E3 ubiquitin ligase improves AD. Methods Both wild type and APP/PS1 transgenic mice were divided into sedentary (WTC and ADC) and exercise (WTE and ADE) groups (n = 12 for each group). WTE and ADE mice were subjected to treadmill exercise of 12 weeks in order to assess the effect of treadmill running on learning and memory ability, Aβ plaque burden, hyperphosphorylated Tau protein and E3 ubiquitin ligase. Results The results indicated that exercise restored learning and memory ability, reduced Aβ plaque areas, inhibited the hyperphosphorylation of Tau protein activated PI3K/Akt/Hsp70 signaling pathway, and improved the function of the ubiquitin–proteasome system (increased UCHL-1 and CHIP levels, decreased BACE1 levels) in APP/PS1 transgenic mice. Conclusions These findings suggest that exercise may promote the E3 ubiquitin ligase to clear β-amyloid and hyperphosphorylated Tau by activating the PI3K/Akt signaling pathway in the hippocampus of AD mice, which is efficient in ameliorating pathological phenotypes and improving learning and memory ability. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02607-7.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Mingzhe Li
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Aili Wei
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Miaomiao Yang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Chao Li
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Yuejun Zheng
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Yuxin Chen
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Zixi Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Kun Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China. .,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
5
|
Malík M, Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022; 14:3367. [PMID: 36014874 PMCID: PMC9415189 DOI: 10.3390/nu14163367] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.
Collapse
Affiliation(s)
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
6
|
Kang M, Lee DB, Kwon S, Lee E, Kim WJ. Effectiveness of Nootropics in Combination with Cholinesterase Inhibitors on Cognitive Function in Mild-to-Moderate Dementia: A Study Using Real-World Data. J Clin Med 2022; 11:jcm11164661. [PMID: 36012898 PMCID: PMC9409895 DOI: 10.3390/jcm11164661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical benefits of nootropics in the treatment of cognitive decline has been either limited or controversial. This study aimed to observe the effectiveness of cholinesterase inhibitor (ChEI) and nootropics combination in the treatment of cognitive impairment in dementia. Data were based on electronic medical records in a university health system. Patients with mild-to-moderate dementia and no history of prior cognitive enhancer use were included (n = 583). The subjects were categorized into the ChEI only group and the ChEI and nootropics combination group. The primary outcome measure was the change in cognitive function, as assessed by the mini-mental state examination (MMSE) from baseline to 300–400 days after the first ChEI prescription. Subsequent analyses were conducted in consideration of the dementia type, medical adherence, and type of nootropics. The changes in MMSE scores from baseline to endpoint were not significantly different between the two groups. In Alzheimer’s dementia, the combination group showed significantly less deterioration in MMSE language subscale scores compared to the ChEI only group (F = 6.86, p = 0.009), and the difference was consistent in the highly adherent subjects (F = 10.16, p = 0.002). The choline alfoscerate and the ginkgo biloba extract subgroups in Alzheimer’s dementia showed more significant improvements in the MMSE language subscale scores compared to the other nootropics subgroup (F = 7.04, p = 0.001). The present study showed that the effectiveness of ChEI and nootropics combination on cognition may appear differently according to the dementia type. This emphasizes the need for well-controlled studies to generalize the effectiveness of nootropics across various clinical settings.
Collapse
Affiliation(s)
- Minjae Kang
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dan Bee Lee
- Medical Information Team, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
| | - Sungchan Kwon
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Lee
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Woo Jung Kim
- Medical Information Team, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
- Correspondence:
| |
Collapse
|
7
|
|
8
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
9
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
10
|
The structural simplification of lysergic acid as a natural lead for synthesizing novel anti-Alzheimer agents. Bioorg Med Chem Lett 2021; 47:128205. [PMID: 34139326 DOI: 10.1016/j.bmcl.2021.128205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, projected to be the second leading cause of mortality by 2040. AD is characterized by a progressive impairment of memory leading to dementia and loss of ability to carry out daily functions. In addition to the deficiency of acetylcholine release in synapse, there are other mechanisms explaining the etiology of the disease. The most disputing ones are associated with the accumulation of damaged proteins β-amyloid (Aβ) and hyperphosphorylated tau outside and inside neurons, respectively. Lysergic acid derivatives have been shown to possess promising anti-Alzheimer effect. Moreover, lysergic acid structure encompasses the general structural requirements for acetylcholinesterase inhibition. In this study, sixteen analogues, derived from lysergic acid structure, were synthesized. Heck and Mannich reactions were carried out to 4-bromo indole nucleus to generate potentially active analogues. Some of them were subsequently cyclized by nitromethane and zinc reduction procedures. Some of these compounds showed neuroprotective and anti-inflammatory effects stronger than the currently used anti-Alzheimer drug; donepezil. Some of the synthesized com-pounds showed a noticeable acetylcholinesterase inhibition. Twelve molecular targets attributed with AD etiology were tested versus the synthesized compounds by in silico modeling. Docking scores of modeling were plotted against in vitro activity of the compounds. The one afforded the strongest positive correlation was ULK-1 which has a significant role in autophagy.
Collapse
|
11
|
Portela ALBM, Moreno RN, Ribeiro MHML, de Andrade FM, Alves YV, Alves M, Lira RPC. Role of nicergoline in corneal wound healing in diabetic rats. BMC Ophthalmol 2021; 21:77. [PMID: 33563243 PMCID: PMC7871528 DOI: 10.1186/s12886-021-01835-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Background To investigate the effect of nicergoline on the rate of complete corneal ulcer reepithelialization (CCUR) in diabetic rats with diabetic keratopathy. Methods Forty-eight streptozotocin-induced diabetic rats were randomly divided into two groups. The experimental group (n = 24) received nicergoline (10 mg.kg− 1.day− 1), while the control group (n = 24) received a placebo. A corneal epithelial defect was induced using a corneal diamond burr, and defect area was compared at time points of 0, 12, 24, 48 and 72 h after the injury using image analysis software. The probability of CCUR within 72 h was assessed using the Kaplan–Meier survival analysis log-rank test. Results When compared, 4 of the 24 rats (17%) in the placebo group and 12 of the 24 rats (50%) in the nicergoline group were found to have CCUR within 72 h (log-rank = 0.027). Cox regression analysis found no effect of the covariates blood glucose (P = 0.601) or weight (P = 0.322) on the corneal reepithelialization (survival) curve. Conclusions Nicergoline increased wound healing rates relative to placebo and may therefore be investigated as a treatment option in diabetic keratopathy.
Collapse
Affiliation(s)
| | | | | | | | - Yale Viana Alves
- Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Mônica Alves
- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
12
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
13
|
Yang Q, Zhao Q, Yin Y. miR-133b is a potential diagnostic biomarker for Alzheimer's disease and has a neuroprotective role. Exp Ther Med 2019; 18:2711-2718. [PMID: 31572518 DOI: 10.3892/etm.2019.7855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are involved in post-transcriptional gene regulation and aberrant expression of miRNAs has been widely detected in various human diseases. The aim of the present study was to examine the serum levels of miR-133b in patients with Alzheimer's disease (AD), and to explore its diagnostic value and neuroprotective role in AD. Reverse transcription-quantitative PCR was applied to analyze the serum levels of miR-133b in 105 AD patients and 98 healthy controls. A cell model of AD was established by treating SH-SY5Y cells with amyloid β (Aβ)25-35, and the resulting effect on miR-133b expression was determined. Cell viability and apoptosis were also measured. A dual-luciferase assay was used to validate a target gene of miR-133b. Receiver operating characteristic (ROC) curve analysis was also applied to assess the specificity and sensitivity of miR-133b to diagnose AD. The results indicated that the serum levels of miR-133b were significantly downregulated in AD patients and SH-SY5Y cells treated with Aβ25-35 (all P<0.001). A positive correlation between the serum levels of miR-133b and the Mini-Mental State Examination score of AD patients was determined (r=0.8814, P<0.001). The area under the ROC curve for miR-133b regarding the diagnosis of AD was 0.907, with a sensitivity of 90.8% and specificity of 74.3% at the cutoff value of 1.70. Overexpression of miR-133b significantly attenuated the Aβ25-35-induced inhibition of cell viability (P<0.01) and induction of cell apoptosis (P<0.01). The luciferase reporter assay demonstrated that epidermal growth factor receptor (EGFR) is a target gene of miR-133b. In conclusion, miR-133b may serve as a novel diagnostic biomarker for AD and it may have a neuroprotective role in AD and targets EGFR.
Collapse
Affiliation(s)
- Qin Yang
- Department of Neurology, Dongying People's Hospital, Dongcheng, Shandong 257091, P.R. China
| | - Qiuling Zhao
- Digestive Endoscopy Center, Dongying People's Hospital, Dongcheng, Shandong 257091, P.R. China
| | - Yanliang Yin
- Department of Health Care, Dongying People's Hospital, Dongcheng, Shandong 257091, P.R. China
| |
Collapse
|