1
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
2
|
Chung SF, Tam SY, Kim CF, Chong HC, Lee LMY, Leung YC. Mono-PEGylated thermostable Bacillus caldovelox arginase mutant (BCA-M-PEG20) induces apoptosis, autophagy, cell cycle arrest and growth inhibition in gastric cancer cells. Invest New Drugs 2022; 40:895-904. [PMID: 35857203 PMCID: PMC9395487 DOI: 10.1007/s10637-022-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC<sub>50</sub> values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.
Collapse
Affiliation(s)
- Sai-Fung Chung
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Suet-Ying Tam
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chi-Fai Kim
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hiu-Chi Chong
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Leo Man-Yuen Lee
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Han GD, Sun Y, Hui HX, Tao MY, Liu YQ, Zhu J. MiR-1224 Acts as a Prognostic Biomarker and Inhibits the Progression of Gastric Cancer by Targeting SATB1. Front Oncol 2021; 11:748896. [PMID: 34604093 PMCID: PMC8484804 DOI: 10.3389/fonc.2021.748896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 01/26/2023] Open
Abstract
Objective MiR-1224 has been reported to exhibit abnormal expression in several tumors. However, the expressing pattern and roles of miR-1224 in gastric cancer (GC) remain unclear. Our current research aimed to explore the potential involvement of miR-1224 in the GC progression. Materials and Methods The expression of miR-1224 was examined in tissue samples of 128 GC patients and cell lines by RT-PCR. Besides, the associations of miR-1224 expressions with clinicopathologic features and prognosis of GC patients were analyzed. Then, the possible influences of miR-1224 on cell proliferation and cell migration were determined. Afterward, the molecular target of miR-1224 was identified using bioinformatics assays and confirmed experimentally. Finally, RT-PCR and Western blot assays were performed to investigate the effect of the abnormal miR-1224 expression on the EMT and Wnt/β-catenin pathway. Results miR-1224 was lowly expressed in the GC specimens and cell lines due to T classification and TNM stage. Survival assays demonstrated that GC patients with low expressions of miR-1224 possessed poor overall survivals. Moreover, in vitro and in vivo assays revealed that the overexpression of miR-1224 inhibited cell proliferation, migration, and invasion in GC cells. SATB homeobox 1 (SATB1) was verified as a direct target of miR-1224 in GC. Furthermore, β-catenin and c-myc were significantly inhibited in miR-1224-overexpression cells. Conclusions Our findings highlight the potential of miR-1224 as a therapeutic target and novel biomarker for GC patients
Collapse
Affiliation(s)
- Guo-Dong Han
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuan Sun
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hong-Xia Hui
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ming-Yue Tao
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang-Qing Liu
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jing Zhu
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
4
|
Xu J, Wang X, Ke Q, Liao K, Wan Y, Zhang K, Zhang G, Wang X. Combined bioinformatics technology to explore pivot genes and related clinical prognosis in the development of gastric cancer. Sci Rep 2021; 11:15412. [PMID: 34326374 PMCID: PMC8322082 DOI: 10.1038/s41598-021-94291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
To screen the key genes in the development of gastric cancer and their influence on prognosis. The GEO database was used to screen gastric cancer-related gene chips as a training set, and the R packages limma tool was used to analyze the differential genes expressed in gastric cancer tissues compared to normal tissues, and then the selected genes were verified in the validation set. The String database was used to calculate their Protein–protein interaction (PPI) network, using Cytoscape software's Centiscape and other plug-ins to analyze key genes in the PPI network. The DAVID database was used to enrich and annotate gene functions of differential genes and PPI key module genes, and further explore correlation between expression level and clinical stage and prognosis. Based on clinical data and patient samples, differential expression of key node genes was verified by immunohistochemistry. The 63 characteristic differential genes screened had good discrimination between gastric cancer and normal tissues, and are mainly involved in regulating extracellular matrix receptor interactions and the PI3k-AKT signaling pathway. Key nodes in the PPI network regulate tumor proliferation and metastasis. Analysis of the expression levels of key node genes found that relative to normal tissues, the expression of ITGB1 and COL1A2 was significantly increased in gastric cancer tissues, and patients with late clinical stages of tumors had higher expression of ITGB1 and COL1A2 in tumor tissues, and their survival time was longer (P < 0.05). This study found that ITGB1 and COL1A2 are key genes in the development of gastric cancer and can be used as prognostic markers and potential new targets for gastric cancer.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xinlu Wang
- Public Health College of Nanchang University, Nanchang, China
| | - Qiwen Ke
- Information Engineering School of Nanchang University, Nanchang, China
| | - Kaili Liao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yanhua Wan
- Department of General Surgery, The Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, China
| | - Kaihua Zhang
- Department of General Surgery, The Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, China
| | - Guanyu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China. .,Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Sun Z, Qiu Z, Wang Z, Chi H, Shan P. Silencing Ribosomal Protein L22 Promotes Proliferation and Migration, and Inhibits Apoptosis of Gastric Cancer Cells by Regulating the Murine Double Minute 2-Protein 53 (MDM2-p53) Signaling Pathway. Med Sci Monit 2021; 27:e928375. [PMID: 34050122 PMCID: PMC8168286 DOI: 10.12659/msm.928375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to investigate the effect of ribosomal protein L22 (RPL22) on gastric cancer (GC) cell proliferation, migration, and apoptosis, and its correlation with the murine double minute 2-protein 53 (MDM2-p53) signaling pathway. Material/Methods The RPL22 expression in GC tissues and cells was detected by quantitative reverse transcription-polymerase chain reaction and western blotting. RPL22 was overexpressed in the MKN-45 cells by the transfection of a vector, pcDNA3.1 (pcDNA)-RPL22, whereas it was silenced in the MGC-803 cells by the transfection of short interfering (si) RNA (si-RPL22). Flow cytometric analysis, cell viability assays, wound healing assays, and transwell assays were utilized to explore the influences of RPL22 on the apoptosis, proliferation, migration, and invasion. Nutlin-3 (an MDM2-p53 inhibitor) was used to inhibit MDM2-p53 signaling. Results The RPL22 expression was downregulated in GC tissues and cells. It was significantly lower in the advanced GC tissues than in the early GC tissues, and was significantly lower in the lymphatic metastatic tissues than in the non-lymphatic metastatic tissues. The transfection of si-RPL22 accelerated the ability of GC cells to proliferate and metastasize, whereas apoptosis was dampened. The transfection of pcDNA-RPL22 exerted the opposite effect on the GC cells; MDM2 expression was upregulated in RPL22-silenced GC cells, while the expression of p53 was downregulated. In vitro, treatment with nutlin-3 reversed the promoting effects of si-RPL22 on GC progression. Conclusions In vitro, the silencing of RPL22 aggravates GC by regulating the MDM2-p53 signaling pathway.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhigang Qiu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhengkun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Honghui Chi
- Department of Cardiovascular Surgery II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Peipei Shan
- Institute for Translational Medicine, College of Medicine of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|