1
|
Wu H, Liu Y, Hao Y, Hou D, Yang R. Lycium barbarum polysaccharide protects cardiomyocytes from hypoxia/reoxygenation injury via activation of SIRT3/CypD signaling. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:72. [PMID: 36819526 PMCID: PMC9929766 DOI: 10.21037/atm-22-6081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
Background Myocardial ischemia-reperfusion is a common pathological feature of many heart and vascular diseases, but the molecular mechanism of this process is still unclear, and there is no effective way to protect cardiomyocytes. The aim of this study was to examine the effects and underlying molecular mechanisms of Lycium barbarum polysaccharide (LBP) on myocardial ischemia-reperfusion injury in cardiomyocytes. Methods The cardiomyocyte cell line H9c2 were used to establish an in vitro hypoxia/reoxygenation (H/R) model. After treatment with LBP and/or the SIRT3 inhibitor 3-TYP, cell morphology was observed under the light microscopy. The Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assay were used to detect cell proliferation, and flow cytometry was performed to assess cell apoptosis. The lysine (166)-acetylation of CypD1 was determined by co-immunoprecipitation assay. Enzyme-linked immunosorbent assay (ELISA) was used to determine the lactate dehydrogenase (LDH) level in the culture medium. Na+-K+-ATPase activity, Ca2+-ATPase activity, and nitric oxide (NO) levels were measured. Results LBP alleviated cell damage and upregulated STIR3 expression in a dose-dependent manner. Upregulated SIRT3 expression and suppressed acetylation of CypD were also observed in H/R-induced H9c2 cells treated with LBP. Indeed, LBP remarkably reversed the inhibition of proliferation and cell apoptosis in H/R-induced H9c2 cells by activating SIRT3/CypD signaling. Blockade of SIRT3 with SIRT3 inhibitor (3-TYP) inhibited the protective effect of LBP on H9c2 cells. LBP markedly alleviated the H/R-induced increase of LDH release, and the decrease of Na+-K+-ATPase activity, Ca2+-ATPase activity, and NO levels. Inhibition of SIRT3 restored the protective effects of LBP. Conclusions LPB induced deacetylation of CypD by upregulating SIRT3, thereby protecting mitochondrial function and relieving H/R-induced injury in cardiomyocytes.
Collapse
Affiliation(s)
- Hailiang Wu
- Cadre Ward of Heart Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yajuan Liu
- Cadre Ward of Heart Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Hao
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dandan Hou
- Cadre Ward of Heart Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ruiying Yang
- Cadre Ward of Heart Center, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
MiR-133b regulates oxidative stress injury of trophoblasts in preeclampsia by mediating the JAK2/STAT3 signaling pathway. J Mol Histol 2021; 52:1177-1188. [PMID: 34623553 DOI: 10.1007/s10735-021-10024-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related syndrome. Aberrant placental microRNAs (miRNAs) expression might associate with PE, including miR-133b. However, its role in the pathogenesis of preeclampsia remains elusive. Therefore, this study explored the role of miR-133b in oxidative stress injury of trophoblasts in preeclampsia (PE) by mediating the JAK2/STAT3 signaling pathway. Placental tissues were collected from PE patients to detect the expression of miR-133b and JAK2/STAT3. Then, in vitro experiments were performed on human extravillous trophoblast-derived HTR-8/SVneo cells, which were divided into Normal, hypoxia/reoxygenation (H/R), H/R + miR-NC, H/R + miR-133b inhibitor, H/R + JAK2 siRNA and H/R + miR-133b inhibitor + JAK2 siRNA groups. Cell invasion and migration abilities were detected by Transwell and wound healing assays, while apoptosis was detected by flow cytometry. The intracellular oxidative stress levels were also measured. Furthermore, the expression of miR-133b and the JAK2/STAT3 pathway was determined by qRT-PCR and Western blotting. We found that miR-133b was up-regulated, with decreases in JAK2 and p-STAT3/STAT3 in placental tissues of PE patients. Additionally, HTR8/SVneo cells in the H/R group had decreased invasion and migration abilities with increased apoptotic rates and oxidative stress levels. Moreover, the expression of miR-133b was up-regulated with decreases in p-JAK2 and p-STAT3 in H/R-treated HTR8/SVneo cells. These indicators in the H/R + miR-133b inhibitor group were ameliorated in comparison with those in the H/R group but deteriorated in the H/R + JAK2 siRNA group. Moreover, JAK2 siRNA reversed the positive effect of the miR-133b inhibitor on the invasion and migration abilities of trophoblasts. In summary, inhibiting miR-133b may improve oxidative stress injury to promote the migration and invasion of trophoblasts and suppress apoptosis by activating the JAK2/STAT3 pathway.
Collapse
|
3
|
Cloves Regulate Na +-K +-ATPase to Exert Antioxidant Effect and Inhibit UVB Light-Induced Skin Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5197919. [PMID: 34471465 PMCID: PMC8405327 DOI: 10.1155/2021/5197919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to observe the effect of cloves (Syzygium aromaticum (L.) Merr. & L.M. Perry) on the mouse skin using a UVB-induced skin injury mouse model. The serum, liver, and skin indexes of mice were determined by kits, H&E tissue staining, and qPCR assay. The compound composition of cloves was determined by HPLC. The results showed that cloves increased the activity of Na+-K+-ATPase in the skin and then maintained the sodium and potassium pump in the damaged skin muscle membrane. Cloves alleviated the oxidative stress injury induced by UVB irradiation by normalizing the related oxidative stress indexes (T-SOD, CAT, AGEs, and H2O2) in serum and skin. Inhibition of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and increased activation of anti-inflammatory cytokines IL-4 and IL-10 occurred after treatment with cloves, which ultimately reduced the inflammatory damage to the body. Further results showed that cloves upregulate SOD1, SOD2, CAT, GSH, IL-10, IκB-α, AMPK, SIRT1, LKB1, PGC-1α, APPL1, and FoxO1 and downregulate NF-κB p65, TNF-α, IL-6, and mTOR mRNA expression in the skin tissues of UVB-damaged mice. The results of composition analysis showed that the five most abundant compounds in cloves are rutin, isoquercitrin, ferulic acid, dihydroquercetin, and quercitrin. Cloves regulate the skin sarcomembrane Na+-K+-ATPase through these five compounds, and because they regulate the oxidation, inflammation, and ATP energy consumption of the body, they subsequently protect the skin from UVB damage.
Collapse
|
4
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Liu JJ, Zhao GX, He LL, Wang Z, Zibrila AI, Niu BC, Gong HY, Xu JN, Soong L, Li CF, Lu Y. Lycium barbarum polysaccharides inhibit ischemia/reperfusion-induced myocardial injury via the Nrf2 antioxidant pathway. Toxicol Rep 2021; 8:657-667. [PMID: 33868952 PMCID: PMC8041662 DOI: 10.1016/j.toxrep.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
Oxidative stress is considered to be one of main pathophysiological mechanisms in myocardial ischemia/reperfusion (I/R) injury. Lycium barbarum polysaccharides (LBP), the main ingredient of Lycium barbarum, have potential antioxidant activity. We aimed to investigate the effects of LBP on myocardial I/R injury and explore the underlying mechanisms. Myocardial I/R group was treated with or without LBP to evaluate oxidative stress markers and the role of Nrf2 signal pathway. Our results showed that I/R increased infarct size and the activities of creatine kinase (CK) and lactate dehydrogenase (LDH) when compared with control group. Meanwhile, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were enhanced and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) were decreased. These changes were associated with a significant increase in myocardial apoptosis, ultimately leading to cardiac dysfunction. LBP reduced infarct size (38.4 ± 2 % versus 19.4 ± 1.8 %, p < 0.05), CK and LDH activities and myocardial apoptotic index. Meanwhile, LBP suppressed the production of ROS and restored redox status. Additionally, LBP increased protein level of nuclear Nrf2 in vivo (2.1 ± 0.3 versus 3.8 ± 0.4, p < 0.05) and in vitro (1.9 ± 0.2 versus 3.8 ± 0.1, p < 0.05) and subsequently upregulated heme oxygenase 1 and NADPH dehydrogenase quinone 1 compared to I/R group. Interestingly, Nrf2 siRNA abolished the protective effects of LBP. LBP suppressed oxidative stress damage and attenuated cardiac dysfunction induced by I/R via activation of the Nrf2 antioxidant signal pathway.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Gong-Xiao Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Lei-Lei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Zheng Wang
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, China
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Bai-Chun Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Hao-Yu Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Jing-Ning Xu
- Department of Obstetrics & Gynaecology, Northwest Women & Children Hospital, China
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Chun-Fang Li
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, China.,Department of Pharmacy, College of Stomatology, Xi'an Jiaotong University, China
| |
Collapse
|
6
|
Spinelli M, Boucard C, Di Nicuolo F, Haesler V, Castellani R, Pontecorvi A, Scambia G, Granieri C, Barnea ER, Surbek D, Mueller M, Di Simone N. Synthetic PreImplantation Factor (sPIF) reduces inflammation and prevents preterm birth. PLoS One 2020; 15:e0232493. [PMID: 32511256 PMCID: PMC7279576 DOI: 10.1371/journal.pone.0232493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 01/05/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality and spontaneous PTB is a major contributor. The preceding inflammation/infection contributes not only to spontaneous PTB but is associated with neonatal morbidities including impaired brain development. Therefore, control of exaggerated immune response during pregnancy is an attractive strategy. A potential candidate is synthetic PreImplantation Factor (sPIF) as sPIF prevents inflammatory induced fetal loss and has neuroprotective properties. Here, we tested maternal sPIF prophylaxis in pregnant mice subjected to a lipopolysaccharides (LPS) insult, which results in PTB. Additionally, we evaluated sPIF effects in placental and microglial cell lines. Maternal sPIF application reduced the LPS induced PTB rate significantly. Consequently, sPIF reduced microglial activation (Iba-1 positive cells) and preserved neuronal migration (Cux-2 positive cells) in fetal brains. In fetal brain lysates sPIF decreased IL-6 and INFγ concentrations. In-vitro, sPIF reduced Iba1 and TNFα expression in microglial cells and reduced the expression of pro-apoptotic (Bad and Bax) and inflammatory (IL-6 and NLRP4) genes in placental cell lines. Together, maternal sPIF prophylaxis prevents PTB in part by controlling exaggerated immune response. Given the sPIF`FDA Fast Track approval in non-pregnant subjects, we envision sPIF therapy in pregnancy.
Collapse
Affiliation(s)
- Marialuigia Spinelli
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Céline Boucard
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fiorella Di Nicuolo
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- International Scientific Institute Paolo VI, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italia
| | - Valerie Haesler
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roberta Castellani
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
| | - Alfredo Pontecorvi
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- U.O.C di Endocrinologia e Diabetologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Giovanni Scambia
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Chiara Granieri
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
| | - Eytan R. Barnea
- The Society for The Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ, United States of America
- BioIncept LLC, Cherry Hill, NJ, United States of America
| | - Daniel Surbek
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
- * E-mail: (MM); (NDS)
| | - Nicoletta Di Simone
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia
- Dipartimento di Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Roma, Italia
- * E-mail: (MM); (NDS)
| |
Collapse
|
7
|
Qi L, Jiang J, Zhang J, Zhang L, Wang T. Curcumin Protects Human Trophoblast HTR8/SVneo Cells from H 2O 2-Induced Oxidative Stress by Activating Nrf2 Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9020121. [PMID: 32024207 PMCID: PMC7071057 DOI: 10.3390/antiox9020121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pregnancy complications are associated with oxidative stress induced by accumulation of trophoblastic ROS in the placenta. We employed the human trophoblast HTR8/SVneo cell line to determine the effect of curcumin pre-treatment on H2O2-induced oxidative damage in HTR8/Sveo cells. Cells were pretreated with 2.5 or 5 μM curcumin for 24 h, and then incubated with 400 μM H2O2 for another 24 h. The results showed that H2O2 decreased the cell viability and induced excessive accumulation of reactive oxygen species (ROS) in HTR8/Sveo cells. Curcumin pre-treatment effectively protected HTR8/SVneo cells against oxidative stress-induced apoptosis via increasing Bcl-2/Bax ratio and decreasing the protein expression level of cleaved-caspase 3. Moreover, curcumin pre-treatment alleviated the excessive oxidative stress by enhancing the activity of antioxidative enzymes. The antioxidant effect of curcumin was achieved by activating Nrf2 and its downstream antioxidant proteins. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of curcumin on HTR8/SVneo cells against oxidative damage. Taken together, our results show that curcumin could protect HTR8/SVneo cells from H2O2-induced oxidative stress by activating Nrf2 signaling pathway.
Collapse
|
8
|
Liu L, Sha XY, Wu YN, Chen MT, Zhong JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res 2020; 15:1526-1531. [PMID: 31997818 PMCID: PMC7059572 DOI: 10.4103/1673-5374.274349] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation, protein damage and DNA fragmentation. Increased oxidative stress is associated with the common pathological process of many eye diseases, such as glaucoma, diabetic retinopathy and ischemic optic neuropathy. Many studies have demonstrated that Lycium barbarum polysaccharides (LBP) protects against oxidative injury in numerous cells and tissues. For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200 µM cobalt chloride (CoCl2) for 24 hours. To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury, the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours. The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis, inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential. These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species.
Collapse
Affiliation(s)
- Lian Liu
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Yuan Sha
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Ning Wu
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Meng-Ting Chen
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Surico D, Bordino V, Cantaluppi V, Mary D, Gentilli S, Oldani A, Farruggio S, Melluzza C, Raina G, Grossini E. Preeclampsia and intrauterine growth restriction: Role of human umbilical cord mesenchymal stem cells-trophoblast cross-talk. PLoS One 2019; 14:e0218437. [PMID: 31206561 PMCID: PMC6576763 DOI: 10.1371/journal.pone.0218437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidative stress is involved in the pathogenesis and maintenance of pregnancy-related disorders, such as intrauterine growth restriction (IUGR) and preeclampsia (PE). Human umbilical cord mesenchymal stem cells (hUMSCs) have been suggested as a possible therapeutic tool for the treatment of pregnancy-related disorders in view of their paracrine actions on trophoblast cells. Objectives To quantify the plasma markers of peroxidation in patients affected by PE and IUGR and to examine the role of oxidative stress in the pathophysiology of PE and IUGR in vitro by using hUMSCs from physiological and pathological pregnancies and a trophoblast cell line (HTR-8/SVneo). Study design In pathological and physiological pregnancies the plasma markers of oxidative stress, arterial blood pressure, serum uric acid, 24h proteinuria, weight gain and body mass index (BMI) were examined. Furthermore, the pulsatility index (PI) of uterine and umbilical arteries, and of fetal middle cerebral artery was measured. In vitro, the different responses of hUMSCs, taken from physiological and pathological pregnancies, and of HTR-8/SVneo to pregnancy-related hormones in terms of viability and nitric oxide (NO) release were investigated. In some experiments, the above measurements were performed on co-cultures between HTR-8/SVneo and hUMSCs. Results The results obtained have shown that in pathological pregnancies, body mass index, serum acid uric, pulsatility index in uterine and umbilical arteries and markers of oxidative stress were higher than those found in physiological ones. Moreover, in PE and IUGR, a relation was observed between laboratory and clinical findings and the increased levels of oxidative stress. HTR-8/SVneo and hUMSCs showed reduced viability and increased NO production when stressed with H2O2. Finally, HTR-8/SVneo cultured in cross-talk with hUMSCs from pathological pregnancies showed a deterioration of cell viability and NO release when treated with pregnancy-related hormones. Conclusion Our findings support that hUMSCs taken from patients affected by PE and IUGR have significant features in comparison with those from physiologic pregnancies. Moreover, the cross-talk between hUMSCs and trophoblast cells might be involved in the etiopathology of IUGR and PE secondary to oxidative stress.
Collapse
Affiliation(s)
- Daniela Surico
- Department of Translational Medicine, Gynecologic Unit, University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
| | - Valerio Bordino
- Department of Translational Medicine, Gynecologic Unit, University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Nephrology-Kidney Transplantation Unit and Center for Autoimmune and Allergic Diseases (CAAD), University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - David Mary
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Alberto Oldani
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Serena Farruggio
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Carmela Melluzza
- Department of Translational Medicine, Gynecologic Unit, University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Giulia Raina
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
- * E-mail:
| |
Collapse
|