1
|
Braile M, Luciano N, Carlomagno D, Salvatore G, Orlandella FM. Insight into the Role of the miR-584 Family in Human Cancers. Int J Mol Sci 2024; 25:7448. [PMID: 39000555 PMCID: PMC11242779 DOI: 10.3390/ijms25137448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Among the non-coding RNAs, the aberrant expression of microRNAs (miRNAs) is well described in the oncology field. It is clear that the altered expression of miRNAs is crucial for a variety of processes such as proliferation, apoptosis, motility, angiogenesis and metastasis insurgence. Considering these aspects, RNA-based therapies and the use of miRNAs as non-invasive biomarkers for early diagnosis are underlined as promising opportunities against cancer death. In the era of precision medicine, significant progress in next-generation sequencing (NGS) techniques has broadened knowledge regarding the miRNAs expression profile in cancer tissues and in the blood of cancer patients. In this scenario, pre-clinical and clinical studies suggested that the members of the miR-584 family, i.e., miR-584-5p and -3p, are prominent players in cancer development and progression. Under some conditions, these miRNAs are under-expressed in cancer tissues acting as tumor suppressors, while in other conditions, they are overexpressed, acting as oncogenes increasing the aggressive behavior of cancer cells. The aim of this review is to provide a comprehensive and up-to-date overview on the expression, upstream genes, molecular targets and signaling pathways influenced by the miR-584 family (i.e., miR-584-3p and -5p) in various human solid and hematological cancers. To achieve this goal, 64 articles on this topic are discussed. Among these articles, 55 are focused on miR-584-5p, and it is outlined how this miRNA could be used in future applications as a potential new therapeutic strategy and diagnostic tool.
Collapse
Affiliation(s)
| | - Neila Luciano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Davide Carlomagno
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Giuliana Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy
| | - Francesca Maria Orlandella
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy
| |
Collapse
|
2
|
Fischer S, Lichtenthaeler C, Stepanenko A, Heyl F, Maticzka D, Kemmerer K, Klostermann M, Backofen R, Zarnack K, Weigand JE. Heterogenous nuclear ribonucleoprotein D-like controls endothelial cell functions. Biol Chem 2024; 405:229-239. [PMID: 37942876 DOI: 10.1515/hsz-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
HnRNPs are ubiquitously expressed RNA-binding proteins, tightly controlling posttranscriptional gene regulation. Consequently, hnRNP networks are essential for cellular homeostasis and their dysregulation is associated with cancer and other diseases. However, the physiological function of hnRNPs in non-cancerous cell systems are poorly understood. We analyzed the importance of HNRNPDL in endothelial cell functions. Knockdown of HNRNPDL led to impaired proliferation, migration and sprouting of spheroids. Transcriptome analysis identified cyclin D1 (CCND1) and tropomyosin 4 (TPM4) as targets of HNRNPDL, reflecting the phenotypic changes after knockdown. Our findings underline the importance of HNRNPDL for the homeostasis of physiological processes in endothelial cells.
Collapse
Affiliation(s)
- Sandra Fischer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Chiara Lichtenthaeler
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Anastasiya Stepanenko
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Florian Heyl
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Daniel Maticzka
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Katrin Kemmerer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Rolf Backofen
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Julia E Weigand
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| |
Collapse
|
3
|
Downregulated miR-150-5p in the Tissue of Nasopharyngeal Carcinoma. Genet Res (Camb) 2022; 2022:2485055. [PMID: 36118276 PMCID: PMC9467814 DOI: 10.1155/2022/2485055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
The clinical significance and potential targets of miR-150-5p have not been elucidated in nasopharyngeal carcinoma (NPC). The pooled analysis based on 539 NPC samples and 75 non-NPC nasopharyngeal samples demonstrated that the expression of miR-150-5p was down-regulated in NPC, with the area under the curve being 0.89 and the standardized mean difference being -0.66. Subsequently, we further screened the differentially expressed genes (DEGs) of 14 datasets, including 312 NPC samples and 70 non-NPC nasopharyngeal samples. After the DEGs were narrowed down with the predicted targets from the miRWalk database, 1316 prospective target genes of miR-150-5p were identified. The enrichment analysis suggested that "pathways in cancer" was the most significant pathway. Finally, six hub genes of "pathways in cancer", including EGFR, TP53, HRAS, CCND1, CDH1, and FGF2, were screened out through the STRING database. In conclusion, the down-regulation of miR-150-5p modulates the tumorigenesis and progression of NPC.
Collapse
|
4
|
Li Z, Zhu Z, Wang Y, Wang Y, Li W, Wang Z, Zhou X, Bao Y. hsa‑miR‑15a‑5p inhibits colon cell carcinoma via targeting CCND1. Mol Med Rep 2021; 24:735. [PMID: 34414457 PMCID: PMC8404101 DOI: 10.3892/mmr.2021.12375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colon carcinoma is one of the most common cancers worldwide. Epidemiological studies have revealed that colon cancer is the third leading cause of cancer-related deaths, which is due to the increased incidence and mortality rates. However, the treatment strategies for colon cancer remain unsatisfactory for patients, especially for those with advanced or recurrent colon cancer. Dysregulated microRNAs (miRNAs) are considered to influence tumor development and metastasis. However, the molecular mechanism through which miRNAs affect cancer progression is not yet completely understood. The aim of the present study was to investigate the expression levels of has-miR-15a-5p and its molecular mechanism in colon cell carcinoma. In the present study, the expression levels of hsa-miR-15a-5p were found to be decreased in colon tumor tissues and cancer cell lines. Hsa-miR-15a-5p overexpression inhibited colon cell proliferation and migration. Mechanistically, the G1/S-specific cyclin-D1 (CCND1) gene was predicted as a target of hsa-miR-15a-5p, as evidenced by bioinformatics and dual-luciferase reporter assay analyses. CCND1 overexpression significantly increased the progression of colon cancer. Furthermore, CCND1 was demonstrated to mediate the effects of hsa-miR-15a-5p on colon cancer cells. The present study demonstrated that hsa-miR-15a-5p alleviated the proliferation, migration and invasion of colon cancer by targeting the CCND1 gene, which represents a potential molecular target for the diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Integrated Traditional Chinese and Western Medicine, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zeyu Zhu
- Department of Orthopedics, Huaian Hospital, Huaian, Jiangsu 223200, P.R. China
| | - Yanjun Wang
- Department of Women's Preventive Health, Huishan No. 2 People's Hospital, Wuxi, Jiangsu 214400, P.R. China
| | - Ying Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Weibing Li
- Department of Integrated Traditional Chinese and Western Medicine, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhigang Wang
- Department of Hospital Quality Management, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xinyuan Zhou
- Department of Gastroenterology, Wuxi Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Yuhua Bao
- Department of Integrated Traditional Chinese and Western Medicine, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
5
|
Circ_0000745 strengthens the expression of CCND1 by functioning as miR-488 sponge and interacting with HuR binding protein to facilitate the development of oral squamous cell carcinoma. Cancer Cell Int 2021; 21:271. [PMID: 34020639 PMCID: PMC8139082 DOI: 10.1186/s12935-021-01884-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/16/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The implication of circular RNAs (circRNAs) in human cancers has aroused much concern. In this study, we investigated the function of circ_0000745 and its potential functional mechanisms in oral squamous cell carcinoma (OSCC) to further understand OSCC pathogenesis. METHODS The expression of circ_0000745, miR-488 and cyclin D1 (CCND1) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). Cell proliferation capacity was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Cell cycle progression and cell apoptosis were determined by flow cytometry assay. The protein levels of CCND1, PCNA, Cleaved-caspase 3 and HuR were detected by western blot. Animal study was conducted to identify the role of circ_0000745 in vivo. The targeted relationship was verified by dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. RESULTS The expression of circ_0000745 was increased in OSCC tissues and cells. Circ_0000745 downregulation inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, as well as blocked tumor growth in vivo. MiR-488 was a target of circ_0000745, and circ_0000745 downregulation suppressed OSCC development by enriching miR-488. Besides, circ_0000745 regulated CCND1 expression by targeting miR-488. In addition, circ_0000745 regulated CCND1 expression by interacting with HuR protein. CCND1 knockdown also inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, and CCND1 overexpression recovered the inhibitory effects on OSCC cell malignant behaviors caused by circ_0000745 downregulation. CONCLUSIONS Circ_0000745 regulated the expression of CCND1 partly by acting as miR-488 sponge and interacting with HuR protein, thus promoting the progression of OSCC.
Collapse
|
6
|
Ren H, Mai G, Liu Y, Xiang R, Yang C, Su W. Eukaryotic Translation Initiation Factor 3 Subunit B Is a Promoter in the Development and Progression of Pancreatic Cancer. Front Oncol 2021; 11:644156. [PMID: 33996561 PMCID: PMC8116711 DOI: 10.3389/fonc.2021.644156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic cancer (PC) is a malignant tumor with hidden incidence, high degree of malignancy, rapid disease progression, and poor prognosis. Eukaryotic translation initiation factor 3 subunit B (EIF3B) is necessary for tumor growth, which is an alternative therapeutic target for many cancers. However, little is known about the relationship between EIF3B and PC. Methods: The expression of EIF3B in PC was detected by immunohistochemistry. EIF3B knockdown cell models were constructed by lentivirus infection. The MTT assay, the wound-healing assay, the transwell assay, the flow cytometry, and the Human Apoptosis Antibody Array was used to detect the effects of EIF3B knockdown on cell proliferation, cell migration, cell apoptosis, and cell cycle in vitro. Also, the effects of EIF3B knockdown on the tumor growth of PC were determined in vivo. Results: This study showed that the expression level of EIF3B was significantly up-regulated in PC tumor tissues and associated with pathological grade. In vitro, EIF3B knockdown inhibited the PC cell proliferation and migration, and the apoptosis levels were obviously promoted by regulating apoptosis-related proteins including Bcl-2, HSP27, HSP60, Survivin, sTNF-R2, TNF-α, TNF-β, TRAILR-3, TRAILR-4, and XIAP. Furthermore, the tumor growth of PC was inhibited after the knockdown of EIF3B in vivo. Conclusion: EIF3B was up-regulated in PC and was a promoter in the development and progression of PC, which could be considered as a therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Haoyuan Ren
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Gang Mai
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Yong Liu
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Rongchao Xiang
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Chong Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
7
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Qian X, Chen Z, Chen SS, Liu LM, Zhang AQ. Integrated Analyses Identify Immune-Related Signature Associated with Qingyihuaji Formula for Treatment of Pancreatic Ductal Adenocarcinoma Using Network Pharmacology and Weighted Gene Co-Expression Network. J Immunol Res 2020; 2020:7503605. [PMID: 32537471 PMCID: PMC7256764 DOI: 10.1155/2020/7503605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis (GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies targets of QYHJ.
Collapse
Affiliation(s)
- Xiang Qian
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhuo Chen
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Sha Sha Chen
- Department of Traditional Chinese Medicine, Taizhou Cancer Hospital, Zhejiang, China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, China
| | - Ai Qin Zhang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
9
|
He Q, Long J, Yin Y, Li Y, Lei X, Li Z, Zhu W. Emerging Roles of lncRNAs in the Formation and Progression of Colorectal Cancer. Front Oncol 2020; 9:1542. [PMID: 32010629 PMCID: PMC6978842 DOI: 10.3389/fonc.2019.01542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the primary cause of cancer-related death worldwide; however, specific and sensitive tools for the early diagnosis and targeted therapy of CRC are currently lacking. High-throughput sequencing technology revealed that gene expression of long-chain non-coding RNAs (lncRNAs) in a number of cancers directly or indirectly interferes with various biological processes. Emerging evidence suggests that lncRNAs regulate target genes and play an important role in the biological processes of malignancies, including CRC. Many carcinostatic/oncogenic lncRNAs have been identified as biomarkers for metastasis and prognosis in CRC; hence, they serve as therapeutic tools. In this article, we systematically review the literature on the disordered lncRNAs in CRC from four aspects: DNA transcription, RNA level regulation, post-translational level, and the translation of lncRNAs into polypeptides. Subsequently, we analyze the mechanism through which lncRNAs participate in the biological process of CRC. Finally, we discuss the application and prospects of these lncRNAs in CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jiali Long
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan Hospital of Southern Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
10
|
Han Y, Ma L, Zhao L, Feng W, Zheng X. Rosmarinic inhibits cell proliferation, invasion and migration via up-regulating miR-506 and suppressing MMP2/16 expression in pancreatic cancer. Biomed Pharmacother 2019; 115:108878. [PMID: 31060006 DOI: 10.1016/j.biopha.2019.108878] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths worldwide. However, therapeutic strategies for the treatment of pancreatic cancer are still limited. Therefore, it is urgent for us to develop novel effective therapies for pancreatic cancer. In this study, we explored the effects of rosmarinic acid on pancreatic progression and explored the underlying molecular mechanisms. Rosmarinic acid significantly suppressed cell viability, cell growth, cell invasion and migration as well as epithelial mesenchymal transition (EMT) of pancreatic cancer cells, and induced cell apoptosis in pancreatic cells. In addition, rosmarinic acid significantly up-regulated the expression of miR-506 in pancreatic cancer cells, and knockdown of miR-506 attenuated the suppressive effects of rosmarinic acid on cell growth, cell invasion and migration and EMT, and prevented the enhanced effects of rosmarinic acid on cell apoptosis in pancreatic cancer cells. Mechanistically, the luciferase reporter assay showed that miR-506 targeted the 3' untranslated region of matrix metalloproteinase (MMP)-2/16, and miR-506 overexpression and rosmarinic acid treatment suppressed the expression of MMP2/16 in pancreatic cancer cells. Overexpression of MMP2/16 attenuated the inhibitory effects of rosmarinic acid on pancreatic cell invasion and migration. In vivo studies showed that rosmarinic acid dose-dependently suppressed tumor growth of pancreatic cancer cells, and increased the expression of miR-506, while suppressed the expression of MMP2/16 and Ki-67 in dissected tumor tissues from xenograft nude mice. Collectively, our results for the first time revealed the anti-tumor effects of rosmarinic acid in pancreatic cancer, and the anti-tumor effects of rosmarinic acid were via regulating the miR-506/MMP2/16 axis in pancreatic cancer.
Collapse
Affiliation(s)
- Yongguang Han
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ligang Ma
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Le Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|