1
|
Xu C, Pei Y, Wang Y, Li W, Yang L, Chai A, Wang Y, Fan W, Tan H. Progress in the application of auto-concentrated growth factor (CGF) in wound repair. J Biomater Appl 2025; 39:819-827. [PMID: 39648295 DOI: 10.1177/08853282241305362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Auto-concentrated growth factor (CGF) constitutes the latest generation of plasma extract, and has high concentrations of growth factors and white blood cells. Due to the continuous variable speed centrifugation used during preparation, the tensile strength of the fibrin is also higher. CGF preparation does not involve the use of animal serum, minimizing the risk of infection and immune rejection. Therefore, it has wide potential applications in various fields of regenerative medicine. This paper summarizes the history behind CGF development, reviews the clinical applications and research progress concerning single CGF therapy and CGF used in combination with other treatments in multiple wound repair, and summarizes its potential value as therapeutic agent. Finally, some constructive suggestions and research perspectives for the application of CGF in wound healing are put forward. The available evidence indicates that CGF can promote the healing of chronic refractory wounds and acute wound, promote the growth of granulation, accelerate the speed and improve the quality of wound healing, reduce scar formation, minimize the need for repeated wound dressing, and ameliorate the pain experienced by patients.
Collapse
Affiliation(s)
- Chao Xu
- Department of Plastic Surgery, Zibo Central Hospital, Zibo, China
| | | | - Yanli Wang
- Department of Plastic Surgery, Zibo Central Hospital, Zibo, China
| | - Wenpeng Li
- Department of Plastic Surgery, Zibo Central Hospital, Zibo, China
| | - Liu Yang
- Department of Plastic Surgery, Zibo Central Hospital, Zibo, China
| | - Aimei Chai
- Wuxi Chuangmeng Precision Medicine Technology Co., Ltd, Wuxi, China
| | - Ying Wang
- Shandong Airuida Guoke Medical Technology Co., Ltd, Jinan, China
| | | | - Huiquan Tan
- Shandong Airuida Guoke Medical Technology Co., Ltd, Jinan, China
| |
Collapse
|
2
|
Hanari T, Okada M, Nakata T, Asoh S, Nishihara E, Teraoka M, Hato N. Efficacy of Concentrated Growth Factors in Treating Tympanic Membrane Perforation in Guinea Pigs. J Int Adv Otol 2025; 21:1-7. [PMID: 39936485 PMCID: PMC11843268 DOI: 10.5152/jiao.2025.241732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/25/2024] [Indexed: 02/13/2025] Open
Abstract
Background: Less invasive and cost-effective alternatives are needed to manage tympanic membrane perforation (TMP). Therefore, the effectiveness of concentrated growth factors (CGF) in promoting tympanic membrane regeneration in guinea pig models of eardrum perforation was invetigeted. Methods: Large TMPs were created in 34 guinea pig ears using a CO2 laser and divided into 3 groups: CGF-gelatin sponge (with-CGF group), saline-gelatin sponge (without-CGF group), and untreated group. In the with-CGF group, CGF and gelatin sponges were implanted into the perforations, while the without-CGF group received gelatin sponges impregnated with saline. Eardrums were observed under a light microscope on days 14 and 28, and tympanic membranes were examined histologically with hematoxylin and eosin staining. Results: On day 14, 8 of 14 (57.1%) ears in the with-CGF group achieved perforation closure, while no closures were observed in the withoutCGF or untreated groups. The closure rate was significantly higher in the with-CGF group compared to both without-CGF and untreated groups (P < .001). By day 28, 12 of 14 (85.7%) ears in the with-CGF group and 8 of 14 (57.1%) ears in the without-CGF group had closure. No closures were noted in the untreatedgroup. Although the closure rates between the with-CGF and without-CGF groups were similar (P=.07), the withCGF group showed a significantly higher rate than the untreated group (P < .001). Histological analysis revealed that the regenerated tympanic membrane was thicker in the with-CGF group compared to the without-CGF group. Conclusion: Concentrated growth factor effectively promotes tympanic membrane regeneration and provides a promising, minimally invasive treatment option for TMP.
Collapse
Affiliation(s)
- Takahiro Hanari
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Department of Otolaryngology, Matsuyama Shimin Hospital, Otemachi, Matsuyama, Ehime, Japan
| | - Masahiro Okada
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Okada ENT Clinic, Doimachi, Ehime, Japan
| | - Takahiro Nakata
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Sawa Asoh
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Eriko Nishihara
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masato Teraoka
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Naohito Hato
- Department of Otolaryngology, Head and Neck Surgery, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
3
|
You JS, Jung GW, Oh JS, Moon SY, Lee WP, Jo HH. Volumetric evaluation of effects of platelet-rich fibrin and concentrated growth factor on early bone healing after endodontic microsurgery: a randomized controlled trial. BMC Oral Health 2023; 23:821. [PMID: 37899448 PMCID: PMC10613388 DOI: 10.1186/s12903-023-03530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND This randomized controlled clinical trial compared the effects of platelet-rich fibrin (PRF) and concentrated growth factor (CGF) on early bone healing after endodontic microsurgery. METHODS Eighteen patients with an isolated periapical lesion < 10 mm in the maxillary anterior region were randomly assigned to three groups: control, PRF, or CGF. Endodontic microsurgery was performed and PRF or CGF membranes were placed over the bone defects in the experimental groups. The volume of the bone defect at postoperative one week, three months, and six months was evaluated using cone-beam computed tomography and Mimics software. The results were statistically analyzed using the Kruskal-Wallis test and post-hoc Mann-Whitney U test with Bonferroni correction. RESULTS At the three-month follow-up, the PRF and CGF groups showed significantly greater bone healing compared with the control group (p > 0.05). However, no significant difference was observed between the PRF and CGF groups. At the six-month follow-up, no significant differences were observed between the groups. CONCLUSIONS These results suggested that PRF and CGF promote early bone healing after endodontic microsurgery.
Collapse
Affiliation(s)
- Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea
| | - Gyeo-Woon Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea
| | - Ji-Su Oh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea
| | - Seong-Yong Moon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea
| | - Won-Pyo Lee
- Department of Periodontology, School of Dentistry, Chosun University, Gwangju, Korea
| | - Hyoung-Hoon Jo
- Department of Conservative Dentistry, School of Dentistry, Chosun University, 309 Phimun-daero, Dong-gu, Gwangju, 61452, Korea.
| |
Collapse
|
4
|
Palermo A, Giannotti L, Di Chiara Stanca B, Ferrante F, Gnoni A, Nitti P, Calabriso N, Demitri C, Damiano F, Batani T, Lungherini M, Carluccio MA, Rapone B, Qorri E, Scarano A, Siculella L, Stanca E, Rochira A. Use of CGF in Oral and Implant Surgery: From Laboratory Evidence to Clinical Evaluation. Int J Mol Sci 2022; 23:15164. [PMID: 36499489 PMCID: PMC9736623 DOI: 10.3390/ijms232315164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Edentulism is the condition of having lost natural teeth, and has serious social, psychological, and emotional consequences. The need for implant services in edentulous patients has dramatically increased during the last decades. In this study, the effects of concentrated growth factor (CGF), an autologous blood-derived biomaterial, in improving the process of osseointegration of dental implants have been evaluated. Here, permeation of dental implants with CGF has been obtained by using a Round up device. These CGF-coated dental implants retained a complex internal structure capable of releasing growth factors (VEGF, TGF-β1, and BMP-2) and matrix metalloproteinases (MMP-2 and MMP-9) over time. The CGF-permeated implants induced the osteogenic differentiation of human bone marrow stem cells (hBMSC) as confirmed by matrix mineralization and the expression of osteogenic differentiation markers. Moreover, CGF provided dental implants with a biocompatible and biologically active surface that significantly improved adhesion of endothelial cells on CGF-coated implants compared to control implants (without CGF). Finally, data obtained from surgical interventions with CGF-permeated dental implants presented better results in terms of optimal osseointegration and reduced post-surgical complications. These data, taken together, highlight new and interesting perspectives in the use of CGF in the dental implantology field to improve osseointegration and promote the healing process.
Collapse
Affiliation(s)
- Andrea Palermo
- College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Paola Nitti
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Christian Demitri
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | | | | | - Biagio Rapone
- Interdisciplinary Department of Medicine, Aldo Moro University of Bari, 70121 Bari, Italy
| | - Erda Qorri
- Faculty of Medical Science, Albanian University, Bulevardi Zogu I, 1001 Tirana, Albania
| | - Antonio Scarano
- Department of Oral Science, Nano and Biotechnology and CeSi-Met, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Eleonora Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alessio Rochira
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
5
|
Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, Delgado-Gonzalez P, Islas JF, Roacho-Pérez JA, Garza-Treviño EN. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int J Mol Sci 2022; 23:ijms23179879. [PMID: 36077276 PMCID: PMC9456199 DOI: 10.3390/ijms23179879] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a highly organized tissue that provides remarkable load-bearing and low friction properties, allowing for smooth movement of diarthrodial joints; however, due to the avascular, aneural, and non-lymphatic characteristics of cartilage, joint cartilage has self-regeneration and repair limitations. Cartilage tissue engineering is a promising alternative for chondral defect repair. It proposes models that mimic natural tissue structure through the use of cells, scaffolds, and signaling factors to repair, replace, maintain, or improve the specific function of the tissue. In chondral tissue engineering, fibrin is a biocompatible biomaterial suitable for cell growth and differentiation with adequate properties to regenerate damaged cartilage. Additionally, its mechanical, biological, and physical properties can be enhanced by combining it with other materials or biological components. This review addresses the biological, physical, and mechanical properties of fibrin as a biomaterial for cartilage tissue engineering and as an element to enhance the regeneration or repair of chondral lesions.
Collapse
Affiliation(s)
- Juan Antonio Rojas-Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Mario A. Simental-Mendía
- Servicio de Ortopedia y Traumatología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Nidia K. Moncada-Saucedo
- Departamento de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Paulina Delgado-Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - José Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Jorge A. Roacho-Pérez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Elsa N. Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
- Correspondence: ; Tel.: +52-81-83294173
| |
Collapse
|
6
|
Liu Y, Guo L, Li X, Liu S, Du J, Xu J, Hu J, Liu Y. Challenges and tissue engineering strategies of periodontal guided tissue regeneration. Tissue Eng Part C Methods 2022; 28:405-419. [PMID: 35838120 DOI: 10.1089/ten.tec.2022.0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a chronic infectious oral disease with a high prevalence rate in the world, and is a major cause of tooth loss. Nowadays, people have realized that the local microenvironment that includes proteins, cytokines, and extracellular matrix has a key influence on the functions of host immune cells and periodontal ligament stem cells during a chronic infectious disease such as periodontitis. The above pathological process of periodontitis will lead to a defect of periodontal tissues. Through the application of biomaterials, biological agents, and stem cells therapy, guided tissue regeneration (GTR) makes it possible to reconstruct healthy periodontal ligament tissue after local inflammation control. To date, substantial advances have been made in periodontal guided tissue regeneration. However, the process of periodontal remodeling experiences complex microenvironment changes, and currently periodontium regeneration still remains to be a challenging feat. In this review, we summarized the main challenges in each stage of periodontal regeneration, and try to put forward appropriate biomaterial treatment mechanisms or potential tissue engineering strategies that provide a theoretical basis for periodontal tissue engineering regeneration research.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China;
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Jingchao Hu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Yi Liu
- Capital Medical University School of Stomatology, Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction,, Tian Tan Xi Li No.4, Beijing, Beijing , China, 100050;
| |
Collapse
|
7
|
Wang H, Ding X, Liu C, Yang S, Zhao B. An evaluation of allogeneic freeze-dried concentrated growth factors biocompatibility in vitroand in vivo. Biomed Mater 2021; 16. [PMID: 34555823 DOI: 10.1088/1748-605x/ac2995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 11/12/2022]
Abstract
This study evaluated the biocompatibility of allogeneic freeze-dried concentrated growth factors (AFD-CGFs)in vitroandin vivo.For thein vitroexperiments, bone marrow stem cells (BMSCs) were cultured in 10% fresh allogeneic concentrated growth factors (CGFs). AFD-CGF solution was used as the experimental group, and Dulbecco's modified Eagle medium was used as control. Transmission electron microscopy (TEM) showed that the cell ultrastructure was unchanged, and membranes were intact. Scanning electron microscopy, cell counting kit-8, and quantitative polymerase chain reaction indicated that BMSCs and differentiation were unchanged between AFD-CGFs versus control groups (allp> 0.05). Alkaline phosphatase activity was higher in CGF groups (peaked at 14 d) than in the control group. Regarding thein vivoexperiments, four beagles were used for surgery and the rest as controls. Beagles were sacrificed at 2 weeks to observe acute response and membrane absorption; at 12 weeks for wound healing and chronic damage to the liver. According to general observations and histology, the CGFs of all groups were absorbed 2 weeks afterin vivoimplantation. No sign of intolerance was observed. Histology showed a slight increase in immune cells appearing in the implantation area after 2 weeks. However, no or very few inflammatory and immune cells were detected 3 months after the operation. Based on the hematoxylin and eosin staining and TEM results, the ultrastructure of the liver tissue was unchanged. In general, the results suggest that AFD-CGFs are biocompatible and may be a promising option for tissue healing.
Collapse
Affiliation(s)
- Hong Wang
- Department of Stomatology, The Second Affiliated Stomatological Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Xiaoling Ding
- Department of Stomatology, General Hospital of the PLA, Beijing 100185, People's Republic of China
| | - Changkui Liu
- Department of Stomatology, Dalian Stomatological Hospital, Dalian 116000, Liaoning, People's Republic of China
| | - Sefei Yang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an 710000, Shanxi, People's Republic of China
| | - Bingjing Zhao
- Department of Stomatology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523710, Guangdong, People's Republic of China.,Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| |
Collapse
|
8
|
Analysis of CGF Biomolecules, Structure and Cell Population: Characterization of the Stemness Features of CGF Cells and Osteogenic Potential. Int J Mol Sci 2021; 22:ijms22168867. [PMID: 34445573 PMCID: PMC8396261 DOI: 10.3390/ijms22168867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/08/2023] Open
Abstract
Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. In this study, the chemical, structural, and biological characterization of CGF was carried out. CGF molecular characterization was performed by GC/MS to quantify small metabolites and by ELISA to measure growth factors and matrix metalloproteinases (MMPs) release; structural CGF characterization was carried out by SEM analysis and immunohistochemistry; CGF has been cultured, and its primary cells were isolated for the identification of their surface markers by flow cytometry, Western blot, and real-time PCR; finally, the osteogenic differentiation of CGF primary cells was evaluated through matrix mineralization by alizarin red staining and through mRNA quantification of osteogenic differentiation markers by real-time PCR. We found that CGF has a complex inner structure capable of influencing the release of growth factors, metabolites, and cells. These cells, which could regulate the production and release of the CGF growth factors, show stem features and are able to differentiate into osteoblasts producing a mineralized matrix. These data, taken together, highlight interesting new perspectives for the use of CGF in regenerative medicine.
Collapse
|
9
|
Calabriso N, Stanca E, Rochira A, Damiano F, Giannotti L, Di Chiara Stanca B, Massaro M, Scoditti E, Demitri C, Nitti P, Palermo A, Siculella L, Carluccio MA. Angiogenic Properties of Concentrated Growth Factors (CGFs): The Role of Soluble Factors and Cellular Components. Pharmaceutics 2021; 13:pharmaceutics13050635. [PMID: 33946931 PMCID: PMC8146902 DOI: 10.3390/pharmaceutics13050635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Blood-derived concentrated growth factors (CGFs) represent a novel autologous biomaterial with promising applications in regenerative medicine. Angiogenesis is a key factor in tissue regeneration, but the role played by CGFs in vessel formation is not clear. The purpose of this study was to characterize the angiogenic properties of CGFs by evaluating the effects of its soluble factors and cellular components on the neovascularization in an in vitro model of angiogenesis. CGF clots were cultured for 14 days in cell culture medium; after that, CGF-conditioned medium (CGF-CM) was collected, and soluble factors and cellular components were separated and characterized. CGF-soluble factors, such as growth factors (VEGF and TGF-β1) and matrix metalloproteinases (MMP-2 and -9), were assessed by ELISA. Angiogenic properties of CGF-soluble factors were analyzed by stimulating human cultured endothelial cells with increasing concentrations (1%, 5%, 10%, or 20%) of CGF-CM, and their effect on cell migration and tubule-like formation was assessed by wound healing and Matrigel assay, respectively. The expression of endothelial angiogenic mediators was determined using qRT-PCR and ELISA assays. CGF-derived cells were characterized by immunostaining, qRT-PCR and Matrigel assay. We found that CGF-CM, consisting of essential pro-angiogenic factors, such as VEGF, TGF-β1, MMP-9, and MMP-2, promoted endothelial cell migration; tubule structure formation; and endothelial expression of multiple angiogenic mediators, including growth factors, chemokines, and metalloproteinases. Moreover, we discovered that CGF-derived cells exhibited features such as endothelial progenitor cells, since they expressed the CD34 stem cell marker and endothelial markers and participated in the neo-angiogenic process. In conclusion, our results suggest that CGFs are able to promote endothelial angiogenesis through their soluble and cellular components and that CGFs can be used as a biomaterial for therapeutic vasculogenesis in the field of tissue regeneration.
Collapse
Affiliation(s)
- Nadia Calabriso
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
| | - Eleonora Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Alessio Rochira
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Fabrizio Damiano
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Laura Giannotti
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Benedetta Di Chiara Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
| | - Marika Massaro
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
| | - Egeria Scoditti
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
| | - Christian Demitri
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (C.D.); (P.N.)
| | - Paola Nitti
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (C.D.); (P.N.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (E.S.); (A.R.); (F.D.); (L.G.); (B.D.C.S.)
- Correspondence: (L.S.); (M.A.C.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via per Monteroni, 73100 Lecce, Italy; (N.C.); (M.M.); (E.S.)
- Correspondence: (L.S.); (M.A.C.)
| |
Collapse
|
10
|
Liu LB, Wen HC, Huang JJ, Xu GZ, Liao HW. [Research advances on platelet-rich blood products combined with biological materials in wound repair]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:395-400. [PMID: 33887888 PMCID: PMC11917241 DOI: 10.3760/cma.j.cn501120-20200531-00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The efficient management of wounds is the focus of current research. In addition to conventional wound management and necessary surgery, the role of pro-healing drugs in wound treatment has gradually been emphasized. Platelet-rich blood products that is rich in a variety of biologically active molecules are considered as a low-cost and safe therapy in promoting tissue healing, and have great development prospects in the field of regenerative medicine. However, due to the lack of standard preparation and management and the unstable activities of the biomolecules in them, the therapeutic effects of platelet-rich blood products are uneven. In order to solve these problems, researches related to the protection and delivery of biologically active molecules in platelet-rich blood products by biomaterials have gradually increased in recent years, which is also one of the latest trends in wound treatment research. This article first briefly introduces the types of platelet-rich blood products, then outlines the latest research progress achieved by their combination with biomaterials, and finally summarizes the research progress and future research directions of the combination approach in wound treatment.
Collapse
Affiliation(s)
- L B Liu
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - H C Wen
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - J J Huang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - G Z Xu
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - H W Liao
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
11
|
Mijiritsky E, Assaf HD, Peleg O, Shacham M, Cerroni L, Mangani L. Use of PRP, PRF and CGF in Periodontal Regeneration and Facial Rejuvenation-A Narrative Review. BIOLOGY 2021; 10:317. [PMID: 33920204 PMCID: PMC8070566 DOI: 10.3390/biology10040317] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022]
Abstract
Growth factors (GFs) play a vital role in cell proliferation, migration, differentiation and angiogenesis. Autologous platelet concentrates (APCs) which contain high levels of GFs make them especially suitable for periodontal regeneration and facial rejuvenation. The main generations of APCs presented are platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and concentrated growth factor (CGF) techniques. The purpose of this review is to provide the clinician with an overview of APCs' evolution over the past decade in order to give reliable and useful information to be used in clinical work. This review summarizes the most interesting and novel articles published between 1997 and 2020. Electronic and manual searches were conducted in the following databases: Pubmed, Scopus, Cochrane Library and Embase. The following keywords were used: growth factors, VEGF, TGF-b1, PRP, PRF, CGF and periodontal regeneration and/or facial rejuvenation. A total of 73 articles were finally included. The review then addresses the uses of the three different techniques in the two disciplines, as well as the advantages and limitations of each technique. Overall, PRP is mainly used in cases of hard and soft tissue procedures, while PRF is used in gingival recession and the treatment of furcation and intrabony defects; CGF is mainly used in bone regeneration.
Collapse
Affiliation(s)
- Eitan Mijiritsky
- Department of Otolaryngology, Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv 6139001, Israel; (E.M.); (O.P.)
- The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haya Drora Assaf
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Oren Peleg
- Department of Otolaryngology, Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv 6139001, Israel; (E.M.); (O.P.)
| | - Maayan Shacham
- School of Social Work, Ariel University, Ariel 40700, Israel
| | - Loredana Cerroni
- Department of Translational Medicine and Clinical Science, University of Tor Vergata, 00133 Rome, Italy; (L.C.); (L.M.)
| | - Luca Mangani
- Department of Translational Medicine and Clinical Science, University of Tor Vergata, 00133 Rome, Italy; (L.C.); (L.M.)
| |
Collapse
|
12
|
Ding ZY, Tan Y, Peng Q, Zuo J, Li N. Novel applications of platelet concentrates in tissue regeneration (Review). Exp Ther Med 2021; 21:226. [PMID: 33603835 PMCID: PMC7851614 DOI: 10.3892/etm.2021.9657] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have explored the suitability of biocompatible materials in regenerative medicine. Platelet concentrates are derived from centrifuged blood and are named according to their biological characteristics, such as platelet-rich plasma, platelet-rich fibrin and concentrated growth factor. Platelet concentrates have gained considerable attention in soft and hard tissue engineering. Indeed, multiple components of autologous platelet concentrates, such as growth factors, fibrin matrix and platelets, serve essential roles in wound healing. Current studies are focused on cutting-edge strategies to meet the requirements for tissue restoration by improving the properties of autologous platelet concentrates. In the present review, applications of platelet concentrates for tissue engineering are discussed, presenting a selection of recent advances and novel protocols. In addition, several aspects of these strategies, such as the advantages of lyophilized platelet concentrates and the combination of platelet concentrates with biomaterials, stem cells or drugs are discussed. The present review aims to summarize novel strategies using platelet concentrates to improve the outcomes of wound healing.
Collapse
Affiliation(s)
- Zhen-Yu Ding
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Tan
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Peng
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Zuo
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Application of a New Type of Natural Calcined Bone Repair Material Combined with Concentrated Growth Factors in Bone Regeneration in Rabbit Critical-Sized Calvarial Defect. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8810747. [PMID: 33299879 PMCID: PMC7707950 DOI: 10.1155/2020/8810747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023]
Abstract
Purpose This study is aimed at investigating bone regeneration in critical-sized defects in rabbit calvarium using a novel nano- (n-) hydroxyapatite hybrid scaffold with concentrated growth factors (CGFs). Methods Twenty-four male adult rabbits were chosen to establish a critical-sized bone defect model and randomly divided into two groups. Two defects of 15 mm diameter each were created in the parietal bone of each animal. Group A had n-hydroxyapatite hybrid scaffold placed in the experimental defect on the right, and the left defect was unfilled as blank. Group B had hydroxyapatite hybrid scaffold mixed with CGF placed in the right defect and CGF on the left. Six animals in each group were sacrificed after 6 and 12 weeks. Cone-beam computed tomography system scanning and hematoxylin and eosin (HE) staining were used to detect osteogenesis within the defects. Results The treatment with n-hydroxyapatite hybrid scaffold along with CGF resulted in a significantly higher amount of new bone at 6 and 12 weeks compared to the treatment with CGF alone and the controls. No apparent inflammation and foreign body reaction were observed through HE staining. Conclusions The new synthesized n-hydroxyapatite hybrid scaffold and CGF can be applied for bone defect regeneration to promote the process to a certain extent.
Collapse
|
14
|
Concentrated Growth Factors (CGF) Induce Osteogenic Differentiation in Human Bone Marrow Stem Cells. BIOLOGY 2020; 9:biology9110370. [PMID: 33143015 PMCID: PMC7693660 DOI: 10.3390/biology9110370] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Bone regeneration is a complex process regulated by several factors that control overlapping biological processes, coordinating interactions among distinct cell populations. There is a great interest in identifying new strategies for inducing osteogenesis in a safe and efficient manner. Concentrated Growth Factor (CGF) is an autologous blood derived product obtained by centrifugation of venous blood following the procedure set on the Silfradent device. In this study the effects of CGF on osteogenic differentiation of human Bone Marrow Stem Cells (hBMSC) in vitro have been investigated; hBMSC were cultured with CGF or osteogenic medium, for 21 days. The osteogenic differentiation was evaluated measuring alkaline phosphatase (ALP) enzyme activity, matrix mineralization by alizarin red staining and through mRNA and protein quantification of osteogenic differentiation markers by Real-time PCR and Western blotting, respectively. The treatment with CGF stimulated ALP activity and promoted matrix mineralization compared to control and seems to be more effective than osteogenic medium. Also, hBMSC lost mesenchymal markers and showed other osteogenic features. Our study showed for the first time that CGF alone is able to induce osteogenic differentiation in hBMSC. The application of CGF on hBMSC osteoinduction might offer new clinical and biotechnological strategies in the tissue regeneration field.
Collapse
|
15
|
Andia I, Perez-Valle A, Del Amo C, Maffulli N. Freeze-Drying of Platelet-Rich Plasma: The Quest for Standardization. Int J Mol Sci 2020; 21:ijms21186904. [PMID: 32962283 PMCID: PMC7555364 DOI: 10.3390/ijms21186904] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The complex biology of platelets and their involvement in tissue repair and inflammation have inspired the development of platelet-rich plasma (PRP) therapies for a broad array of medical needs. However, clinical advances are hampered by the fact that PRP products, doses and treatment protocols are far from being standardized. Freeze-drying PRP (FD-PRP) preserves platelet function, cytokine concentration and functionality, and has been proposed as a consistent method for product standardization and fabrication of an off-the-shelf product with improved stability and readiness for future uses. Here, we present the current state of experimental and clinical FD-PRP research in the different medical areas in which PRP has potential to meet prevailing medical needs. A systematic search, according to PRISMA (Preferred Reported Items for Systematic Reviews and Meta-Analyses) guidelines, showed that research is mostly focused on wound healing, i.e., developing combination products for ulcer management. Injectable hydrogels are investigated for lumbar fusion and knee conditions. In dentistry, combination products permit slow kinetics of growth factor release and functionalized membranes for guided bone regeneration.
Collapse
Affiliation(s)
- Isabel Andia
- Bioprinting Laboratory, Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (A.P.-V.); (C.D.A.)
- Correspondence: ; Tel.: +34-609419897 or +34-946007964
| | - Arantza Perez-Valle
- Bioprinting Laboratory, Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (A.P.-V.); (C.D.A.)
| | - Cristina Del Amo
- Bioprinting Laboratory, Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (A.P.-V.); (C.D.A.)
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentristry, 84084 Salerno, Italy;
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London E1 4DG, UK
| |
Collapse
|