1
|
Kano T, Suzuki H, Makita Y, Nihei Y, Fukao Y, Nakayama M, Lee M, Aoki R, Yamada K, Muto M, Suzuki Y. Lessons from IgA Nephropathy Models. Int J Mol Sci 2024; 25:11484. [PMID: 39519036 PMCID: PMC11546737 DOI: 10.3390/ijms252111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
IgA nephropathy (IgAN) is the most common type of primary glomerulonephritis worldwide; however, the underlying mechanisms of this disease are not fully understood. This review explores several animal models that provide insights into IgAN pathogenesis, emphasizing the roles of aberrant IgA1 glycosylation and immune complex formation. It discusses spontaneous, immunization, and transgenic models illustrating unique aspects of IgAN development and progression. The animal models, represented by the grouped ddY (gddY) mouse, have provided guidance concerning the multi-hit pathogenesis of IgAN. In this paradigm, genetic and environmental factors, including the dysregulation of the mucosal immune system, lead to increased levels of aberrantly glycosylated IgA, nephritogenic immune complex formation, and subsequent glomerular deposition, followed by mesangial cell activation and injury. Additionally, this review considers the implications of clinical trials targeting molecular pathways influenced by IgAN (e.g., a proliferation-inducing ligand [APRIL]). Collectively, these animal models have expanded the understanding of IgAN pathogenesis while facilitating the development of therapeutic strategies that are currently under clinical investigation. Animal-model-based studies have the potential to facilitate the development of targeted therapies with reduced side effects for IgAN patients.
Collapse
Affiliation(s)
- Toshiki Kano
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Yuko Makita
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Fukao
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Mingfeng Lee
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Ryosuke Aoki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Masahiro Muto
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Xiang X, Peng B, Liu K, Wang T, Ding P, Zhu Y, Cheng K, Ming Y. Prediction of delayed graft function by early salivary microbiota following kidney transplantation. Appl Microbiol Biotechnol 2024; 108:402. [PMID: 38951204 PMCID: PMC11217047 DOI: 10.1007/s00253-024-13236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Delayed graft function (DGF) is a frequently observed complication following kidney transplantation (KT). Our prior research revealed dynamic shifts in salivary microbiota post-KT with immediate graft function (IGF), yet its behavior during DGF remains unexplored. Five recipients with DGF and 35 recipients with IGF were enrolled. Saliva samples were collected during the perioperative period, and 16S rRNA gene sequencing was performed. The salivary microbiota of IGFs changed significantly and gradually stabilized with the recovery of renal function. The salivary microbiota composition of DGFs was significantly different from that of IGFs, although the trend of variation appeared to be similar to that of IGFs. Salivary microbiota that differed significantly between patients with DGF and IGF at 1 day after transplantation were able to accurately distinguish the two groups in the randomForest algorithm (accuracy = 0.8333, sensitivity = 0.7778, specificity = 1, and area under curve = 0.85), with Selenomonas playing an important role. Bacteroidales (Spearman's r = - 0.4872 and p = 0.0293) and Veillonella (Spearmen's r = - 0.5474 and p = 0.0125) were significantly associated with the serum creatinine in DGF patients. Moreover, the significant differences in overall salivary microbiota structure between DGF and IGF patients disappeared upon long-term follow-up. This is the first study to investigate the dynamic changes in salivary microbiota in DGFs. Our findings suggested that salivary microbiota was able to predict DGF in the early stages after kidney transplantation, which might help the perioperative clinical management and early-stage intervention of kidney transplant recipients. KEY POINTS: • Salivary microbiota on the first day after KT could predict DGF. • Alterations in salivary taxa after KT are related to recovery of renal function.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Bo Peng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Kai Liu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Ke Cheng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China.
| |
Collapse
|
3
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
4
|
He JW, Zhou XJ, Hou P, Wang YN, Gan T, Li Y, Liu Y, Liu LJ, Shi SF, Zhu L, Lv JC, Zhang H. Potential Roles of Oral Microbiota in the Pathogenesis of Immunoglobin A Nephropathy. Front Cell Infect Microbiol 2021; 11:652837. [PMID: 33869084 PMCID: PMC8050349 DOI: 10.3389/fcimb.2021.652837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Disturbance in microbiota affects the mucosal immune response, and it is gradually recognized to be associated with the Immunoglobin A nephropathy (IgAN). This study aims to explore the potential roles of oral microbiota in disease pathogenesis. Saliva samples were collected from 31 patients with IgAN and 30 controls for 16S rRNA gene sequencing. The evenness, diversity, and composition of oral microbiota were analyzed. Moreover, sub-phenotype association analysis was conducted. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to investigate microbiota functions. Compared to healthy controls, microbial diversity tended to decrease in IgAN, and the microbial profiles were remarkably distinguished. The relative abundance of Capnocytophaga and SR1_genera_incertae_sedis were enriched, whereas 17 genera, such as Rothia, were significantly reduced in IgAN. Variable importance in projection scores showed that 12 genera, including Capnocytophaga, Rothia, and Haemophilus, could discriminate between the two groups. In the sub-phenotype correlation analysis, the relative abundance of Capnocytophaga and Haemophilus was positively associated with levels of proteinuria and serum IgA, respectively. Further metabolic pathway analysis showed 7 predictive functional profiles, including glycosphingolipid biosynthesis, oxidative phosphorylation, and N-glycan biosynthesis were enriched in IgAN. In conclusion, disturbance in oral microbiota was observed to be associated with IgAN and its sub-phenotypes, which may shed novel insights into disease pathogenesis from a microbiome perspective.
Collapse
Affiliation(s)
- Jia-Wei He
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ping Hou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yan-Na Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ting Gan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Li
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li-Jun Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Shi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Zhu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Khasnobish A, Takayasu L, Watanabe KI, Nguyen TTT, Arakawa K, Hotta O, Joh K, Nakano A, Hosomi S, Hattori M, Suda W, Morita H. Dysbiosis in the Salivary Microbiome Associated with IgA Nephropathy-A Japanese Cohort Study. Microbes Environ 2021; 36. [PMID: 34078780 PMCID: PMC8209455 DOI: 10.1264/jsme2.me21006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IgA nephropathy is one of the leading causes of chronic kidney disease in Japan. Since the origin and mechanisms by which IgA nephropathy develops currently remain unclear, a confirmed disease diagnosis is currently only possible by highly invasive renal biopsy. With the background of the salivary microbiome as a rich source of biomarkers for systemic diseases, we herein primarily aimed to investigate the salivary microbiome as a tool for the non-invasive diagnosis of IgA nephropathy. In a comparison of salivary microbiome profiles using 16S rRNA amplicon sequencing, significant differences were observed in microbial diversity and richness between IgA nephropathy patients and healthy controls. Furthermore, recent studies reported that patients with IgA nephropathy are more likely to develop inflammatory bowel diseases and that chronic inflammation of the tonsils triggered the recurrence of IgA nephropathy. Therefore, we compared the salivary microbiome of IgA nephropathy patients with chronic tonsillitis and ulcerative colitis patients. By combining the genera selected by the random forest algorithm, we were able to distinguish IgA nephropathy from healthy controls with an area under the curve (AUC) of 0.90, from the ulcerative colitis group with AUC of 0.88, and from the chronic tonsillitis group with AUC of 0.70. Additionally, the genus Neisseria was common among the selected genera that facilitated the separation of the IgA nephropathy group from healthy controls and the chronic tonsillitis group. The present results indicate the potential of the salivary microbiome as a biomarker for the non-invasive diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Anushka Khasnobish
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University
| | - Lena Takayasu
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo
| | - Ken-Ichi Watanabe
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine
| | - Tien Thi Thuy Nguyen
- Faculty of Engineering and Technology College of Agriculture and Forestry, Hue University
| | - Kensuke Arakawa
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University
| | | | - Kensuke Joh
- Department of Pathology, Tohoku University Graduate School of Medicine
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences
| | - Hidetoshi Morita
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
6
|
Li H, Lu R, Pang Y, Li J, Cao Y, Fu H, Fang G, Chen Q, Liu B, Wu J, Zhou Y, Zhou J. Zhen-Wu-Tang Protects IgA Nephropathy in Rats by Regulating Exosomes to Inhibit NF-κB/NLRP3 Pathway. Front Pharmacol 2020; 11:1080. [PMID: 32765277 PMCID: PMC7381112 DOI: 10.3389/fphar.2020.01080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is one of the most frequent kinds of primary glomerulonephritis characterized by IgA immune complexes deposition and glomerular proliferation. Zhen-wu-tang (ZWT), a well-known traditional Chinese formula has been reported to ameliorate various kidney diseases. However, its pharmacological mechanism remains unclear. Exosomes have been described in diverse renal diseases by mediating cellular communication but rarely in the IgAN. The purpose of the present study is to explore whether the underlying mechanisms of the effect of ZWT on IgAN is correlated to exosomes. Our results demonstrated that in human renal tubular epithelial cells (HK-2) stimulated by lipopolysaccharide, exosomes are obviously released after ZWT-containing serum treatment especially with 10% ZWT. In addition, once released, HK-2-derived exosomes were uptaked by human mesangial cells (HMC), which impeded the activation of NF-κB/NLRP3 signaling pathway to exert anti-inflammatory effects in a lipopolysaccharide induced proliferation model. Moreover, IgAN rat model was established by bovine serum albumin, CCL4 mixed solution and LPS. We found that 10% ZWT could significantly promote the release of exosomes from HK-2 and inhibit HMC proliferation to improve inflammation. Thus HK-2-derived exosomes treated with 10% ZWT (ZWT-EXO) were administered to the rats by tail vein injection. Our results showed that ZWT-EXO decreased the levels of 24 h proteinuria, urinary erythrocyte, IgA deposition in glomerulus and renal pathological injury which ameliorated the kidney damage. In addition, ZWT was able to dramatically promote secretion of exosomes in renal tissues while blocked NF-κB nuclear translocation as well as activation of NLRP3 inflammasome, leading to the inhibition of IL-1β and caspase-1. In conclusion, our study reveal that ZWT has protective effects on IgAN by regulating exosomes secretion to inhibit the activation of NF-κB/NLRP3 pathway, thereby attenuating the renal dysfunction. These findings may provide a new therapeutic target for the treatment of IgAN.
Collapse
Affiliation(s)
- Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Pang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jicheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwen Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxin Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxing Fang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhe Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|