1
|
Dsouza R, Jain M, Khattar E. p53-deficient cancer cells hyperactivate DNA double-strand break repair pathways to overcome chemotherapeutic damage and augment survival. Mol Biol Rep 2025; 52:333. [PMID: 40119972 DOI: 10.1007/s11033-025-10434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND p53 deficiency in cancer is associated with chemoresistance and cancer progression. However, the precise role of p53 in regulating DDR in the context of chemoresistance is still unclear. METHODS AND RESULTS In the present study, we investigated the regulatory role of p53 on the cellular recovery potential upon transient DNA damage. p53 deficiency promotes cell survival following transient DNA damage induction. During recovery, p53 deficient cells display temporary S/G2/M arrest, returning to normal cell cycle profile, while p53 proficient cells remain permanently arrested in the S-phase. Additionally, colony formation assay revealed 50% clonogenicity in p53-proficient cells, while p53-deficient cells showed 90% clonogenicity. Chemoresistance also correlated with accelerated DNA repair in p53-deficient cells. Since doxorubicin induces DNA double-strand breaks, whose repair is driven by two major pathways: homology-directed repair and nonhomologous end joining, we measured their activity during the recovery period. During the early recovery period, both pathways were activated irrespective of p53 expression status. However, during the late recovery time point, NHEJ and HDR activities returned to basal in p53-deficient cells, while their activity was significantly reduced in p53-proficient cells. NHEJ inhibitor Ku57788 could overcome the chemoresistance in p53-deficient cells. CONCLUSION Thus, our findings suggest that sustained DDR promotes chemoresistance and enhanced survival in p53-deficient cancer cells.
Collapse
Affiliation(s)
- Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to Be) University, Vile Parle West, Mumbai, 400056, India
| | - Meghna Jain
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to Be) University, Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to Be) University, Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
2
|
Wang X, Rong C, Niu P, Leng W, Wang G, He Z, Qi X, Zhao D, Li J. The neurotoxicity of iodoacetic acid, a byproduct of drinking water disinfection. FRONTIERS IN TOXICOLOGY 2025; 7:1543374. [PMID: 39931280 PMCID: PMC11808161 DOI: 10.3389/ftox.2025.1543374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
IAA is a by-product of the water disinfection process and has been found to be neurotoxic. However, the role and mechanism of IAA neurotoxicity remain unclear. In this review, we comprehensively discuss the neurotoxic effects and mechanisms of IAA from the molecular level, cellular level and neurological manifestations. At the molecular level, IAA causes neurotoxicity by reducing mitochondrial membrane potential, aggravating oxidative stress and DNA damage. At the cellular level, IAA causes neurotoxicity by inducing BBB disruption, neuroinflammation, and apoptosis. In neurological manifestations, IAA can lead to neurotransmitter disorders, neurodevelopment dysfunction, and even neurodegenerative diseases. Taken together, our review provides insights into the mechanisms of IAA neurotoxicity that will contribute to future studies of IAA neurotoxicity and its protective strategies.
Collapse
Affiliation(s)
- Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- School of Public Health, Jilin University, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunshu Rong
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ping Niu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Leng
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Qi
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Ghelli Luserna di Rorà A, Jandoubi M, Padella A, Ferrari A, Marranci A, Mazzotti C, Olimpico F, Ghetti M, Ledda L, Bochicchio MT, Paganelli M, Zanoni M, Cafaro A, Servili C, Galimberti S, Gottardi M, Rondoni M, Endri M, Onofrillo D, Audisio E, Marconi G, Simonetti G, Martinelli G. Exploring the role of PARP1 inhibition in enhancing antibody-drug conjugate therapy for acute leukemias: insights from DNA damage response pathway interactions. J Transl Med 2024; 22:1062. [PMID: 39587643 PMCID: PMC11590640 DOI: 10.1186/s12967-024-05838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The introduction of antibody-drug conjugates represents a significant advancement in targeted therapy of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Our study aims to investigate the role of the DNA damage response pathway and the impact of PARP1 inhibition, utilizing talazoparib, on the response of AML and ALL cells to Gemtuzumab ozogamicin (GO) and Inotuzumab ozogamicin (INO), respectively. METHODS AML and ALL cells were treated with GO, INO and γ-calicheamicin in order to induce severe DNA damage and activate the G2/M cell-cycle checkpoint in a dose- and time-dependent manner. The efficacy of PARP1 inhibitors and, in particular, talazoparib in enhancing INO or GO against ALL or AML cells was assessed through measurements of cell viability, cell death, cell cycle progression, DNA damage repair, accumulation of mitotic DNA damage and inhibition of clonogenic capacity. RESULTS We observed that both ALL and AML cell lines activate the G2/M cell-cycle checkpoint in response to γ-calicheamicin-induced DNA damage, highlighting a shared cellular response mechanism. Talazoparib significantly enhanced the efficacy of INO against ALL cell lines, resulting in reduced cell viability, increased cell death, G2/M cell-cycle checkpoint override, accumulation of mitotic DNA damage and inhibition of clonogenic capacity. Strong synergism was observed in primary ALL cells treated with the combination. In contrast, AML cells exhibited a heterogeneous response to talazoparib in combination with GO. Our findings suggest a potential link between the differential responses of ALL and AML cells to the drug combinations and the ability of talazoparibto override G2/M cell-cycle arrest induced by antibody-drug conjugates. CONCLUSION PARP1 emerges as a key player in the response of ALL cells to INO and represents a promising target for therapeutic intervention in this leukemia setting. Our study sheds light on the intricate interplay between the DNA damage response pathway, PARP1 inhibition, and response of γ-calicheamicin-induced DNA damages in AML and ALL. These findings underscore the importance of targeted therapeutic strategies and pave the way for future research aimed at optimizing leukemia treatment approaches.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
- Wellmicro SPA, Bologna, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy.
| | - Andrea Marranci
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Cristina Mazzotti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | | | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Lorenzo Ledda
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Alessandro Cafaro
- Pharmacy, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Chiara Servili
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126, Pisa, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Michela Rondoni
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, Ravenna, Italy
| | - Mauro Endri
- Azienda ULSS 2 Marca Trevigiana Ospedale Ca' Foncello, Treviso, Italy
| | - Daniela Onofrillo
- UOC di Ematologia, Dipartimento di Oncologia Ematologia, Ospedale Santo Spirito, Pescara, Italy
| | - Ernesta Audisio
- Hematology Unit, Presidio Ospedaliero Molinette, A.O.U. Città della Salute e Della Scienza, Turin, Italy
| | - Giovanni Marconi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| |
Collapse
|
4
|
Zhao H, Han Y, Zhou P, Guan H, Gao S. Protein lysine crotonylation in cellular processions and disease associations. Genes Dis 2024; 11:101060. [PMID: 38957707 PMCID: PMC11217610 DOI: 10.1016/j.gendis.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/05/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2024] Open
Abstract
Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Han
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Bian X, Liu W, Yang K, Sun C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol 2024; 15:1421816. [PMID: 39175540 PMCID: PMC11338796 DOI: 10.3389/fphar.2024.1421816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Targeting the poly (ADP-ribose) polymerase (PARP) protein has shown therapeutic efficacy in cancers with homologous recombination (HR) deficiency due to BRCA mutations. Only small fraction of acute myeloid leukemia (AML) cells carry BRCA mutations, hence the antitumor efficacy of PARP inhibitors (PARPi) against this malignancy is predicted to be limited; however, recent preclinical studies have demonstrated that PARPi monotherapy has modest efficacy in AML, while in combination with cytotoxic chemotherapy it has remarkable synergistic antitumor effects. Immunotherapy has revolutionized therapeutics in cancer treatment, and PARPi creates an ideal microenvironment for combination therapy with immunomodulatory agents by promoting tumor mutation burden. In this review, we summarize the role of PARP proteins in DNA damage response (DDR) pathways, and discuss recent preclinical studies using synthetic lethal modalities to treat AML. We also review the immunomodulatory effects of PARPi in AML preclinical models and propose future directions for therapy in AML, including combined targeting of the DDR and tumor immune microenvironment; such combination regimens will likely benefit patients with AML undergoing PARPi-mediated cancer therapy.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenli Liu
- Food and Drug Inspection Center, Lu’an, China
| | - Kaijin Yang
- Food and Drug Inspection Center, Huai’nan, China
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
6
|
Liu Y, Zhu J, Zhou S, Hou Y, Yan Z, Ao X, Wang P, Zhou L, Chen H, Liang X, Guan H, Gao S, Xie D, Gu Y, Zhou P. Low-dose ionizing radiation-induced RET/PTC1 rearrangement via the non-homologous end joining pathway to drive thyroid cancer. MedComm (Beijing) 2024; 5:e690. [PMID: 39135916 PMCID: PMC11318340 DOI: 10.1002/mco2.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Thyroid cancer incidence increases worldwide annually, primarily due to factors such as ionizing radiation (IR), iodine intake, and genetics. Papillary carcinoma of the thyroid (PTC) accounts for about 80% of thyroid cancer cases. RET/PTC1 (coiled-coil domain containing 6 [CCDC6]-rearranged during transfection) rearrangement is a distinctive feature in over 70% of thyroid cancers who exposed to low doses of IR in Chernobyl and Hiroshima‒Nagasaki atomic bombings. This study aims to elucidate mechanism between RET/PTC1 rearrangement and IR in PTC. N-thy-ori-3-1 cells were subjected to varying doses of IR (2/1/0.5/0.2/0.1/0.05 Gy) of IR at different days, and result showed low-dose IR-induced RET/PTC1 rearrangement in a dose-dependent manner. RET/PTC1 has been observed to promote PTC both in vivo and in vitro. To delineate the role of different DNA repair pathways, SCR7, RI-1, and Olaparib were employed to inhibit non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ), respectively. Notably, inhibiting NHEJ enhanced HR repair efficiency and reduced IR-induced RET/PTC1 rearrangement. Conversely, inhibiting HR increased NHEJ repair efficiency and subsequent RET/PTC1 rearrangement. The MMEJ did not show a markable role in this progress. Additionally, inhibiting DNA-dependent protein kinase catalytic subunit (DNA-PKcs) decreased the efficiency of NHEJ and thus reduced IR-induced RET/PTC1 rearrangement. To conclude, the data suggest that NHEJ, rather than HR or MMEJ, is the critical cause of IR-induced RET/PTC1 rearrangement. Targeting DNA-PKcs to inhibit the NHEJ has emerged as a promising therapeutic strategy for addressing IR-induced RET/PTC1 rearrangement in PTC.
Collapse
Affiliation(s)
- Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Yifan Hou
- College of Life SciencesHebei UniversityBaodingChina
| | - Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Huixi Chen
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Hua Guan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Dafei Xie
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
- College of Life SciencesHebei UniversityBaodingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
7
|
Han Y, Zhao H, Li G, Jia J, Guo H, Tan J, Sun X, Li S, Ran Q, Bai C, Gu Y, Li Z, Guan H, Gao S, Zhou PK. GCN5 mediates DNA-PKcs crotonylation for DNA double-strand break repair and determining cancer radiosensitivity. Br J Cancer 2024; 130:1621-1634. [PMID: 38575732 PMCID: PMC11091118 DOI: 10.1038/s41416-024-02636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.
Collapse
Affiliation(s)
- Yang Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gang Li
- School of Public Health, Institute for Environmental Medicine and Radiation Hygiene, University of South China, Hengyang, China
- Department of Hospital Infection Control, Shenzhen Luohu Peoples Hospital, Shenzhen, China
| | - Jin Jia
- School of Medicine, University of South China, Hengyang, China
| | - Hejiang Guo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jinpeng Tan
- School of Medicine, University of South China, Hengyang, China
| | - Xingyao Sun
- School of Medicine, University of South China, Hengyang, China
| | - Saiyu Li
- School of life Sciences, Hebei University, Baoding, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yongqing Gu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - ZhongJun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China.
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
- School of Public Health, Institute for Environmental Medicine and Radiation Hygiene, University of South China, Hengyang, China.
| |
Collapse
|
8
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 PMCID: PMC11870302 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
9
|
Curreli S, Benedetti F, Yuan W, Munawwar A, Cocchi F, Gallo RC, Sherman NE, Zella D. Characterization of the interactome profiling of Mycoplasma fermentans DnaK in cancer cells reveals interference with key cellular pathways. Front Microbiol 2022; 13:1022704. [PMID: 36386669 PMCID: PMC9651203 DOI: 10.3389/fmicb.2022.1022704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/10/2024] Open
Abstract
Chaperone proteins are redundant in nature and, to achieve their function, they bind a large repertoire of client proteins. DnaK is a bacterial chaperone protein that recognizes misfolded and aggregated proteins and drives their folding and intracellular trafficking. Some Mycoplasmas are associated with cancers, and we demonstrated that infection with a strain of Mycoplasma fermentans isolated in our lab promoted lymphoma in a mouse model. Its DnaK is expressed intracellularly in infected cells, it interacts with key proteins to hamper essential pathways related to DNA repair and p53 functions and uninfected cells can take-up extracellular DnaK. We profile here for the first time the eukaryotic proteins interacting with DnaK transiently expressed in five cancer cell lines. A total of 520 eukaryotic proteins were isolated by immunoprecipitation and identified by Liquid Chromatography Mass Spectrometry (LC-MS) analysis. Among the cellular DnaK-binding partners, 49 were shared between the five analyzed cell lines, corroborating the specificity of the interaction of DnaK with these proteins. Enrichment analysis revealed multiple RNA biological processes, DNA repair, chromatin remodeling, DNA conformational changes, protein-DNA complex subunit organization, telomere organization and cell cycle as the most significant ontology terms. This is the first study to show that a bacterial chaperone protein interacts with key eukaryotic components thus suggesting DnaK could become a perturbing hub for the functions of important cellular pathways. Given the close interactions between bacteria and host cells in the local microenvironment, these results provide a foundation for future mechanistic studies on how bacteria interfere with essential cellular processes.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas E. Sherman
- Biomolecular Analysis Facility Core, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
11
|
Han Y, Huang X, Cao X, Li Y, Gao L, Jia J, Li G, Guo H, Liu X, Zhao H, Guan H, Zhou P, Gao S. SENP3-mediated TIP60 deSUMOylation is required for DNA-PKcs activity and DNA damage repair. MedComm (Beijing) 2022; 3:e123. [PMID: 35356800 PMCID: PMC8941250 DOI: 10.1002/mco2.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The activation of DNA-dependent kinase (DNA-PKcs) upon DNA damage contains a cascade of reactions, covering acetylation by TIP60, binding with Ku70/80, and autophosphorylation. However, how cells regulate TIP60-mediated acetylation of DNA-PKcs and the following DNA-PKcs activation upon DNA damage remains obscure. This present study reported that TIP60 is hyper-SUMOylated in normal conditions, but upon irradiation-induced DNA damage, small ubiquitin-like modifier (SUMO)-specific protease 3 (SENP3)-mediated deSUMOylation of TIP60 promoted its interaction with DNA-PKcs to form the TIP60-DNA-PKcs complex. We show that TIP60 SUMOylation is reduced quickly in response to DNA damage and the deSUMOylation of TIP60 by SENP3 is required for DNA-PKcs acetylation and its autophosphorylation. Comet and γH2AX immunofluorescence assay showed that knockdown of SENP3 impaired DNA damage repair. Using the NHEJ report system, we found that knockdown of SENP3 affected the efficiency of NHEJ. Further exploration using clonogenic survival assay, cell viability assay and cytoflow assay suggested that leaking SENP3 increased the sensitivity of tumour cells to serval DNA damage treatment. Overall, our findings revealed a previously unidentified role of SENP3 in regulating DNA-PKcs activity and DNA damage repair.
Collapse
Affiliation(s)
- Yang Han
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xin Huang
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xiaoyu Cao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- School of life SciencesHebei UniversityBaodingChina
| | - Yuchen Li
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- School of MedicineUniversity of South ChinaHengyangChina
| | - Lei Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- School of life SciencesHebei UniversityBaodingChina
| | - Jin Jia
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- School of MedicineUniversity of South ChinaHengyangChina
| | - Gang Li
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- School of Public HealthInstitute for Environmental Medicine and Radiation HygieneUniversity of South ChinaHengyangChina
| | - Hejiang Guo
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xiaochang Liu
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Pingkun Zhou
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- School of MedicineUniversity of South ChinaHengyangChina
- School of Public HealthInstitute for Environmental Medicine and Radiation HygieneUniversity of South ChinaHengyangChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
12
|
Zhang L, Zhuang Y, Tu G, Li D, Fan Y, Ye S, Xu J, Zheng M, Wu Y, Wu L. Positive Feedback Regulation of Poly(ADP-ribose) Polymerase 1 and the DNA-PK Catalytic Subunit Affects the Sensitivity of Nasopharyngeal Carcinoma to Etoposide. ACS OMEGA 2022; 7:2571-2582. [PMID: 35097256 PMCID: PMC8793086 DOI: 10.1021/acsomega.1c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Etoposide (VP-16) is used for the treatment of various cancers, including nasopharyngeal carcinoma (NPC); however, cancers develop resistance to this agent by promoting DNA repair. The DNA-PK (DNA-PKcs) catalytic subunit and poly(ADP-ribose) polymerase 1 (PARP1) mediate acquired resistance and poor survival in NPC cells exposed to DNA damaging agents. DNA repair can alter the sensitivity of NPC cells to DNA damaging agents, and these two enzymes function concomitantly in response to DNA damage in vivo. Therefore, we explored the relationship between DNA-PKcs and PARP1, which may affect NPC cell survival by regulating DNA repair after VP-16 treatment. We performed quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunoassays and found that DNA-PKcs knockdown downregulated the PARP1 and PAR expression. Conversely, PARP1 knockdown reduced DNA-PKcs activity, indicating the mutual regulation between DNA-PKcs and PARP1 in VP-16-induced DNA repair. Moreover, a combination treatment with olaparib (a PARP1 inhibitor) and NU7441 (a DNA-PKcs inhibitor) sensitized NPC cells to VP-16 in vitro and in vivo, suggesting that the combined treatment of olaparib, NU7441, and a DNA-damaging agent may be a successful treatment regimen in patients with NPC.
Collapse
Affiliation(s)
- Lingyu Zhang
- Fujian
Medical University Cancer Hospital, Fujian
Cancer Hospital, Fuzhou 350001, China
- Fujian
Key Laboratory of Translational Cancer Medicine, Fuzhou 350001, China
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
| | - Yingting Zhuang
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
| | - Guihui Tu
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
| | - Ding Li
- Department
of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, P. R. China
| | - Yingjuan Fan
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
| | - Shengnan Ye
- The First
Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jianhua Xu
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
- Institute
of Materia Medical, Fujian Medical University
(FMU), Fuzhou 350005, P. R. China
| | - Ming Zheng
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
| | - Ying Wu
- Key
Laboratory of Natural Drug Pharmacology in Fujian Province, School
of Pharmacy, Fujian Medical University, Fuzhou 350122, P. R. China
| | - Lixian Wu
- Department
of Pharmacology, School of Pharmacy, Fujian
Medical University (FMU), Fuzhou 350005, P. R.
China
- Fujian
Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou 350005, P. R. China
- Institute
of Materia Medical, Fujian Medical University
(FMU), Fuzhou 350005, P. R. China
| |
Collapse
|
13
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|
14
|
Burgess JT, Cheong CM, Suraweera A, Sobanski T, Beard S, Dave K, Rose M, Boucher D, Croft LV, Adams MN, O'Byrne K, Richard DJ, Bolderson E. Barrier-to-autointegration-factor (Banf1) modulates DNA double-strand break repair pathway choice via regulation of DNA-dependent kinase (DNA-PK) activity. Nucleic Acids Res 2021; 49:3294-3307. [PMID: 33660778 PMCID: PMC8034644 DOI: 10.1093/nar/gkab110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023] Open
Abstract
DNA repair pathways are essential to maintain the integrity of the genome and prevent cell death and tumourigenesis. Here, we show that the Barrier-to-Autointegration Factor (Banf1) protein has a role in the repair of DNA double-strand breaks. Banf1 is characterized as a nuclear envelope protein and mutations in Banf1 are associated with the severe premature aging syndrome, Néstor–Guillermo Progeria Syndrome. We have previously shown that Banf1 directly regulates the activity of PARP1 in the repair of oxidative DNA lesions. Here, we show that Banf1 also has a role in modulating DNA double-strand break repair through regulation of the DNA-dependent Protein Kinase catalytic subunit, DNA-PKcs. Specifically, we demonstrate that Banf1 relocalizes from the nuclear envelope to sites of DNA double-strand breaks. We also show that Banf1 can bind to and directly inhibit the activity of DNA-PKcs. Supporting this, cellular depletion of Banf1 leads to an increase in non-homologous end-joining and a decrease in homologous recombination, which our data suggest is likely due to unrestrained DNA-PKcs activity. Overall, this study identifies how Banf1 regulates double-strand break repair pathway choice by modulating DNA-PKcs activity to control genome stability within the cell.
Collapse
Affiliation(s)
- Joshua T Burgess
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Chee Man Cheong
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Amila Suraweera
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Thais Sobanski
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Sam Beard
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Keyur Dave
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Maddison Rose
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Didier Boucher
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Laura V Croft
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Kenneth O'Byrne
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia.,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), Cancer & Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Brisbane, Australia
| |
Collapse
|
15
|
Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet 2020; 11:607428. [PMID: 33424929 PMCID: PMC7786053 DOI: 10.3389/fgene.2020.607428] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells' fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqiao Yue
- School of Public Health, University of South China, Hengyang, China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
16
|
Frederick BA, Gupta R, Atilano-Roque A, Su TT, Raben D. Combined EGFR1 and PARP1 Inhibition Enhances the Effect of Radiation in Head and Neck Squamous Cell Carcinoma Models. Radiat Res 2020; 194:519-531. [PMID: 32936912 PMCID: PMC7682633 DOI: 10.1667/rr15480.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a challenging cancer with little change in five-year overall survival rate of 50-60% over the last two decades. Radiation with or without platinum-based drugs remains the standard of care despite limited benefit and high toxicity. HNSCCs often overexpress epidermal growth factor receptor (EGFR) and inhibition of EGFR signaling enhances radiation sensitivity by interfering with repair of radiation-induced DNA breaks. Poly (adenosine diphosphate-ribose) polymerase-1 (PARP1) also participates in DNA damage repair, but its inhibition provides benefit in cancers that lack DNA repair by homologous recombination (HR) such as BRCA-mutant breast cancer. HNSCCs in contrast are typically BRCA wild-type and proficient in HR repair, making it challenging to apply anti-PARP1 therapy in this model. A recently published study showed that a combination of EGFR and PARP1 inhibition induced more DNA damage and greater growth control than each single agent in HNSCC cells. This led us to hypothesize that a combination of EGFR and PARP1 inhibition would enhance the efficacy of radiation to a greater extent than each single agent, providing a rationale for paradigm-shifting combinatorial approaches to improve the standard of care in HNSCC. Here, we report a proof-of-concept study using Detroit562 HNSCC cells, which are proficient for DNA repair by both HR and non-homologous end joining (NHEJ) mechanisms. We tested the effect of adding cetuximab and/or olaparib (inhibitors of EGFR and PARP1, respectively) to radiation and compared it to that of cisplatin and radiation combination, which is the standard of care. Our results demonstrate that the combination of cetuximab and olaparib with radiation was superior to the combination of any single drug with radiation in terms of induction of unrepaired DNA damage, induction of senescence, apoptosis and clonogenic death, and tumor growth control in mouse xenografts. Combined with our recently published phase I safety data on cetuximab/olaparib/radiation triple combination, the data reported here demonstrate a potential for combining biologically-based therapies that might optimize radiosensitization in HNSCC.
Collapse
Affiliation(s)
- Barbara A Frederick
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Colorado
- SuviCa, Inc., Boulder, Colorado
| | - Rohit Gupta
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amandla Atilano-Roque
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Colorado
- SuviCa, Inc., Boulder, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
17
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 636] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|